CPSC156: The Internet Co-Evolution of Technology and Society

Lecture 2: January 18, 2007 Internet Basics, continued

Acknowledgments: R. Wang and J. Rexford

Directly Connected Machines

- · (a) Point-to-point: e.g., ATM
- · (b) Multiple-access: e.g., Ethernet
- Can't build a network by requiring all nodes to be directly connected to each other; need scalability with respect to the number of wires or the number of nodes that can attach to a shared medium

Switched Network

- · Circuit switching vs. packet routing
- Hosts vs. "the network," which is made of routers
- Nice property: scalable aggregate throughput

Interconnection of Networks

Recursively build larger networks

Some Hard Questions

- How do you name and address hosts?
- Routing: Given a destination address, how do you get to it?

IP Addresses and Host Names

- Each machine is addressed by an integer, its
 <u>IP address</u>, written down in a "dot notation"
 for "ease" of reading, such as 128.36.229.231
- IP addresses are the universal IDs that are used to name everything.
- For convenience, each host also has a human-friendly host name. For example, 128.36.229.231 was concave.cs.yale.edu.
- Question: How do you translate names into IP addresses?

Domain Hierarchy

- Now, we have a hierarchical name space, just like a UNIX file-system tree.
- Top-level names (historical influence): heavily US-centric, governmentcentric, and military-centric view of the world

DNS Zones and Name Servers

mil

 Divide up the name hierarchy into zones.

net

org

uk

Each zone corresponds
 to one or more name
 servers under the same
 administrative control.

Hierarchy of Name Servers

- Clients send queries to name servers.
- Name servers reply with answers or forward requests to other name servers.
- Most name servers perform "lookup caching."

Application-Level Abstraction

- What you have: hop-to-hop links, multiple routes, packets, can be potentially lost, can be potentially delivered out-of-order
- What you may want: application-to-application (end-to-end) channel, communication stream, reliable, in-order delivery

Basic Architectural Principle: Layering

The Physical Layer

· A network spans different hardware.

- Physical components can work however they want, as long as the interface between them is consistent.
- · Then, different hardware can be connected.

The Role of the IP Layer

 Internet Protocol (IP): gives a standard way to "package" messages across different hardware types.

IP Connectionless Paradigm

- No error detection or correction for packet data
 - Higher-level protocol can provide error checking
- Successive packets may not follow the same path
 - Not a problem as long as packets reach the destination
- Packets can be delivered out-of-order
 - Receiver can put packets back in order (if necessary)
- Packets may be lost or arbitrarily delayed
 - Sender can send the packets again (if desired)
- No network congestion control (beyond "drop")
 - Send can slow down in response to loss or delay

IP Packet Structure

4-bit Version	4-bit Header Length	8-bit Type of Service (TOS)			
16-bit Identification			3-bit Flags	13-bit Fragment Offset	
	8-bit Time to 8-bit Live (TTL) Protocol		16-bit Header Checksum		20-byte Header
	32-bit Source IP Address				
32-bit Destination IP Address					
Options (if any)					Ì
	Payload				

Main IP Header Fields

- Version number (e.g., version 4, version 6)
- Header length (number of 4-byte words)
- Header checksum (error check on header)
- Source and destination IP addresses
- Upper-level protocol (e.g., TCP, UDP)
- Length in bytes (up to 65,535 bytes)
- · IP options (security, routing, timestamping, etc.)
- TTL (prevents messages from looping around forever; packets "die" if they "get lost")

Getting from A to B: Summary

- Need IP addresses for:
 - Self (to use as source address)
 - DNS Server (to map names to addresses)
 - Default router to reach other hosts (e.g., gateway)
- Use DNS to get destination address
- Pass message through TCP/IP handler
- · Send it off! Routers will do the work:
 - Physically connecting different networks
 - Deciding where to next send packets

Internet Architecture

Discussion Point

- · Dial-up, intermittent access
 - Low-bandwidth, slow
 - Dynamic IP addressing more private?
- · Cable, always-on access
 - High-bandwidth, fast
 - Static IP addressing less private?

Other examples of similar tradeoffs?

Discussion Point

Who should maintain the "master file" of DNS root-server IP addresses?

US Department of Commerce?

Reading Assignment For January 18, 2006

- "Networks: How the Internet Works,"
 Appendix C of The Digital Dilemma
 (NRC, 2000)
 http://books.nap.edu/html/digital_dilemma/appC.html
- "Rethinking the design of the Internet: The end-to-end arguments vs. the brave new world," Clark and Blumenthal, 2000 http://itel.mit.edu/itel/docs/jun00/TPRC-Clark-Blumenthal.pdf