
 1

CPSC156: The Internet
Co-Evolution of Technology

and Society

Lectures 19,20, and 21:
April 5, 10, and 12, 2007

Cryptographic Primitives

 2

Outline
• Motivation
• Symmetric-key encryption
• Public-key encryption
• Digital signature
• Certificates
• Cryptographic hash functions

 3

Motivation
Cryptographic primitives are basic building

blocks of Internet security, including
some popular browser-based security
and privacy tools.

http://zoo.cs.yale.edu/classes/cs156/lectures/
lecture22.ppt

http://crypto.stanford.edu/antiphishing

 4

Symmetric-key Encryption (1)

x: plaintext y: ciphertext
E: encryption function D: decryption function
kAB: Alice’s and Bob’s shared secret key

Alice Bob
Eve

y

x

k AB

k AB

x
y E  x , k AB xD  y , k AB

 5

Symmetric-key Encryption (2)
• For all messages x and all keys k, D(E(x, k), k) = x.

That is, decryption “undoes” encryption perfectly, as
long as the right key is used.

• If she does not know the secret key kAB, the
eavesdropper Eve cannot deduce the plaintext x from
the ciphertext y, even if she knows the encryption and
decryption functions E and D.

• Alice and Bob must keep kAB secret and must run E and
D in a private environment.

• Examples of widely used symmetric-key encryption
schemes: AES (Advanced Encryption Standard) and
DES (Data Encryption Standard)

 6

Symmetric-key Encryption (3)
• Problem: Alice and Bob must meet to

create a shared key kAB before they
can communicate privately over a
public network (or they must belong to
a group with a common “key manager”).
Won’t work for global-scale Internet
commerce.

• Solution: Public-key encryption

 7

Public-key Encryption (1)
• Alice runs the key generator to obtain a public-key,

secret-key pair (pkA, skA).

• She publishes “Alice: pkA” and keeps skA secret.

• To communicate securely, Bob first looks up pkA.

AliceBob

Eve

y
x

pk A

sk A

x
y E x , pk A xD  y , sk A

 8

Public-key Encryption (2)
• With overwhelming probability, the key generator

produces a different key pair each time it is run.
• For each pk, there is a unique sk, and vice versa.

Given pk, it is computationally infeasible to find the
corresponding sk.

• For all messages x and all key pairs (pk, sk),
D(E(x, pk), sk) = x. Decryption “undoes” encryption
perfectly if the corresponding key is used.

• If she does not know sk, the eavesdropper Eve
cannot deduce the plaintext x from the ciphertext
y, even if she knows pk, E, and D.

 9

Public-key Encryption (3)
• This solves the scalability problem by enabling anyone

who wants to receive secure communication to “sign
up” unilaterally.

• The possibility of public-key cryptography was a
radical conceptual breakthrough put forth by W.
Diffie and M. Hellman in 1976.

• A well known and widely used public-key encryption
system is the RSA system, named for its inventors R.
Rivest, A. Shamir, and L. Adleman. Roughly speaking,
the difficulty of computing sk from the corresponding
pk stems from the fact that integer factoring is far
harder than multiplication.

 10

Digital Signatures (1)
• Alice runs the key generator to obtain a verification-

key, signing-key pair (vkA, gkA).

• She publishes “Alice: vkA” and keeps gkA secret.

• To verify her signature, Bob first looks up vkA.

Alice Bob

Alice ,M ,gk A Verify M , , vk A

=ACCEPT
? Sign M ,gk A

 11

Digital Signatures (2)
• With overwhelming probability, the key generator

produces a different key pair each time it is run.
• For each vk, there is a unique gk, and vice versa.

Given vk, it is computationally infeasible to find the
corresponding gk.

• For all documents M and all key pairs (vk, gk),
Verify(M, Sign(M, gk), vk) = ACCEPT.

• If he does not know gk, a forger cannot produce a
valid signature (i.e., one that would cause the Verify
procedure to accept), even if he knows vk, Sign, and
Verify.

 12

Discussion Point

Note that Alice’s digital signature on
digital document M1 will be different
from her digital signature on digital
document M2. Thus, digital signatures
are not analogous to handwritten
signatures.

Why is this necessary?

 13

On “publishing” name-key pairs
• Problem: An impersonator could

generate a key pair (pkI, skI) [resp.,
(vkI, gkI)] and then publish “Alice: pkI”
[resp., “Alice: vkI”]. This would enable
him to read Alice’s private
communication [resp., forge Alice’s
signature].

• Solution: Certified keys

 14

Certificates
• We can leverage our confidence in the integrity of a

single verification key.
• Let CA (for “certifying authority”) be an entity with a

valid, highly available verification key vkCA. Verisign is
an example of a CA.

• The CA can verify that Alice, Bob, Eve, etc., have
appropriate IDs and have not presented keys that are
already owned by someone else. It can then publish
“certified” name-key pairs:

(Alice, pkA, Sign((Alice, pkA), gkCA)),

(Bob, pkB, Sign((Bob, pkB), gkCA)),

(Eve, pkE, Sign((Eve, pkE), gkCA)), …

 15

Cryptographic Hash Functions
• A “hash function” h maps an arbitrary-length input to a

fixed-length (e.g., 256-bit) output. Note that, of
necessity, there are many inputs x1, x2, x3, … that are
mapped to the same hash value y.

• h is a (keyed) “cryptographic hash function” if
 - each user has a secret key k that he uses to compute

y = hk(x);
 - it is computationally infeasible for someone who does

not know k to find any x* such that hk(x*) = y, even if
he knows h and y.

• Note that this is different from encryption, in which
each ciphertext produced with a given key corresponds
to a unique plaintext that must be recoverable.

