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Motivation
Cryptographic primitives are basic building 

blocks of Internet security, including 
some popular browser-based security 
and privacy tools.

http://zoo.cs.yale.edu/classes/cs156/lectures/  
lecture22.ppt

http://crypto.stanford.edu/antiphishing
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Symmetric-key Encryption (1)

x: plaintext y: ciphertext
E: encryption function D: decryption function
kAB: Alice’s and Bob’s shared secret key

Alice Bob
Eve
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k AB

k AB

x
y E  x , k AB xD  y , k AB
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Symmetric-key Encryption (2)
• For all messages x and all keys k, D(E(x, k), k) = x.   

That is, decryption “undoes” encryption perfectly, as 
long as the right key is used.

• If she does not know the secret key kAB, the 
eavesdropper Eve cannot deduce the plaintext x from 
the ciphertext y, even if she knows the encryption and 
decryption functions E and D.

• Alice and Bob must keep kAB secret and must run E and 
D in a private environment.

• Examples of widely used symmetric-key encryption 
schemes: AES (Advanced Encryption Standard) and 
DES (Data Encryption Standard)
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Symmetric-key Encryption (3)
• Problem: Alice and Bob must meet to 

create a shared key kAB before they 
can communicate privately over a 
public network (or they must belong to 
a group with a common “key manager”).  
Won’t work for global-scale Internet 
commerce.

• Solution: Public-key encryption
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Public-key Encryption (1)
• Alice runs the key generator to obtain a public-key, 

secret-key pair (pkA, skA).

• She publishes “Alice: pkA” and keeps skA secret.

• To communicate securely, Bob first looks up pkA.

AliceBob
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x
y E x , pk A xD  y , sk A
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Public-key Encryption (2)
• With overwhelming probability, the key generator 

produces a different key pair each time it is run.
• For each pk, there is a unique sk, and vice versa.  

Given pk, it is computationally infeasible to find the 
corresponding sk.

• For all messages x and all key pairs (pk, sk),         
D(E(x, pk), sk) = x.  Decryption “undoes” encryption 
perfectly if the corresponding key is used.

• If she does not know sk, the eavesdropper Eve 
cannot deduce the plaintext x from the ciphertext 
y, even if she knows pk, E, and D.
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Public-key Encryption (3)
• This solves the scalability problem by enabling anyone 

who wants to receive secure communication to “sign 
up” unilaterally.  

• The possibility of public-key cryptography was a 
radical conceptual breakthrough put forth by W. 
Diffie and M. Hellman in 1976. 

• A well known and widely used public-key encryption 
system is the RSA system, named for its inventors R. 
Rivest, A. Shamir, and L. Adleman.  Roughly speaking, 
the difficulty of computing sk from the corresponding 
pk stems from the fact that integer  factoring is far 
harder than multiplication.  
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Digital Signatures (1)
• Alice runs the key generator to obtain a verification-

key, signing-key pair (vkA, gkA).

• She publishes “Alice: vkA” and keeps gkA secret.

• To verify her signature, Bob first looks up vkA.

Alice Bob

Alice ,M ,gk A Verify M , , vk A

=ACCEPT
? Sign M ,gk A
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Digital Signatures (2)
• With overwhelming probability, the key generator 

produces a different key pair each time it is run.
• For each vk, there is a unique gk, and vice versa.  

Given vk, it is computationally infeasible to find the 
corresponding gk.

• For all documents M and all key pairs (vk, gk),         
Verify(M, Sign(M, gk), vk) = ACCEPT.  

• If he does not know gk, a forger cannot produce a 
valid signature (i.e., one that would cause the Verify 
procedure to accept), even if he knows vk, Sign, and 
Verify.
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Discussion Point

Note that Alice’s digital signature on 
digital document M1 will be different 
from her digital signature on digital 
document M2.  Thus, digital signatures 
are not analogous to handwritten 
signatures.

Why is this necessary? 
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On “publishing” name-key pairs
• Problem: An impersonator could 

generate a key pair (pkI, skI) [resp., 
(vkI, gkI)] and then publish “Alice: pkI” 
[resp., “Alice: vkI”].  This would enable 
him to read Alice’s private 
communication [resp., forge Alice’s 
signature].

• Solution: Certified keys
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Certificates
• We can leverage our confidence in the integrity of a 

single verification key.
• Let CA (for “certifying authority”) be an entity with a 

valid, highly available verification key vkCA.  Verisign is 
an example of a CA.

• The CA can verify that Alice, Bob, Eve, etc., have 
appropriate IDs and have not presented keys that are 
already owned by someone else.  It can then publish 
“certified” name-key pairs:

(Alice, pkA, Sign((Alice, pkA), gkCA)),

(Bob, pkB, Sign((Bob, pkB), gkCA)),

(Eve, pkE, Sign((Eve, pkE), gkCA)), …
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Cryptographic Hash Functions
• A “hash function” h maps an arbitrary-length input to a 

fixed-length (e.g., 256-bit) output.  Note that, of 
necessity, there are many inputs x1, x2, x3, … that are 
mapped to the same hash value y.

• h is a (keyed) “cryptographic hash function” if      
       -  each user has a secret key k that he uses to compute 

y = hk(x);
       -  it is computationally infeasible for someone who does 

not know k to find any x* such that hk(x*) = y, even if 
he knows h and y.

• Note that this is different from encryption, in which 
each ciphertext produced with a given key corresponds 
to a unique plaintext that must be recoverable.


