
1

CPSC156: The Internet
Co-Evolution of Technology

and Society

Lecture 22: April 17, 2007

Browser-based Security and Privacy Tools

2

Privacy and Security Problems

• Phishing
– Spam directs users to spoofed websites
– Malicious programs/websites steal info

• Passwords
– Same password used at multiple websites

• Transaction Generators
– “Hijack” user's session with a website

3

Stanford Anti-Phishing Projects

• http://crypto.stanford.edu/antiphishing
• SpoofGuard

– Notify user about spoofed websites

• PwdHash
– Transparently manage website-specific passwords

• SafeCache/SafeHistory
– Prevent website from learning your prior behavior

• SpyBlock
– Prevent unauthorized transactions

4

Spoofed Websites

• Why create them?
– Steal private info (passwords, SSN, etc.)

• Users directed to fake websites
– Easy to create website
– Easy to imitate authentic websites

• Users typically enticed via spam
– Easy to craft believable email
– Easy to distribute email widely

• Examples: http://www.millersmiles.co.uk/

5

Traditional Indications

• Indications
– Suspicious URLs

• For example: http://www.ebay.com@129.170.213.101/
• Requires user to read URL in address bar

– Non-HTTPS URL
• Most authentic websites requiring senstive information use HTTPS
• Most spoofed websites don't use HTTPS
• Requires user to read URL in address bar or notice the “lock” icon

• Problems
– Users don't read carefully
– Users don't understand what they see

6

SpoofGuard: Overview

• Goal: Automate detection of spoofs
– Don't rely on reactive measures (e.g., blacklists)

• Idea: Score each page visited
– Score correlated with believe that webpage is a spoof

• Notify user of scoring results
– Low suspicion: traffic light
– High suspicion: force user to acknowledge popup

• Availability: Internet Explorer plugin

7

SpoofGuard: Scoring Criteria

• URLs and Links
– Does the URL have a suspicious pattern?

• Images
– Keep database of images and their domains
– Are a page's images similar to ones from a different domain?

• Passwords
– If page asks for a password, does it use HTTPS and have valid certificate?

• Referring Address
– Was user referred from an email message (e.g., Hotmail)?

• Post Data
– Store (hash of) posted data and domain
– Is posted data same as data previously posted to a different domain?

8

SpoofGuard: Notification

• Traffic light in toolbar
– Indicates score assigned to the page

• Popup notification
– Forces user confirmation
– Popup on any detected spoof; or
– Popup only when user submits information

• Intercepts form submission
• Spoofs usually harmless when only viewing

9

The Same-Origin Principle

• Began with Netscape Navigator 2.0
– “prevents document[s] or script[s] loaded from one origin from

getting or setting properties of a document from a different
origin.“
http://www.mozilla.org/projects/security/components/same-origin.html

• Why?

– Information provided to/from a website should not be directly
available to another website unless user explicitly provides it

• Applied to cookies (we've seen this before)

10

Types of Tracking

• Single-session / Multiple-session
– Normal web features (e.g., via special URLs, cookies)

• Cooperative tracking

– 3rd-party cookies, JavaScript, <META> tags

• Semi-cooperative tracking

– Post link to external image on a forum

• Non-cooperative tracking

– What can one learn without explicitly adding content to
another site? We'll see...

11

SafeHistory and SafeCache

12

Content and DNS Caches

• Why store recently-used information?
– Load pages faster, save bandwidth

• Timing attacks

– Content cache

1) User visits www.ebay.com

2) User visits www.phishingsite.com, which measures how long it takes to

load eBay logo

– DNS cache

1) User visits www.ebay.com

2) User visits www.phishingsite.com, which measures how long it takes to
lookup IP address for www.ebay.com

13

Loading From the Cache

• Assume http://www.mysite.com/index.html contains
this HTML:

• Two different players

– Embedding site (mysite.com)

• The “carrier” for the image

– Hosting site (microsoft.com)

• Location in the network of the image being displayed

14

SafeCache: Overview

• Cached content is associated with embedding site

• Whats the difference?

– Normally: Request for same hosted content is loaded from
cache regardless of embedding site.

– With SafeCache: Request for hosted content is loaded from
cache only if same embedding site previously cached it.

• Availability: Mozilla Firefox add-on

15

Visited Links

• Browser stores history of visited pages

• Visited links and unvisited links differentiated

– Usually by color

– Convenience to user

• But...

– Font color can be read by page itself

• JavaScript and Cascading Style Sheets

– Phishing page can determine which websites the user has
previously visited

16

SafeHistory: Overview

• Only two hosts can know if a page is visited
– Host of the referrer

– Host of the page itself

• Why only these two hosts?

– Referrer could learn this information anyways (it can craft
special hyperlinks)

– The host of the page itself knows anyways (it can check its
server logs)

• Availability: Mozilla Firefox add-on

17

Password Security

• Basic Problems
– Many passwords easy to guess

• Based on common words

• Based on easily discoverable information (e.g., pet name, last name, etc.)

• Traditional recommendation: use “random” combination of letters and
numbers (hard to remember!)

– Same password used at multiple websites
• Stealing password from weakly-secured website gives access to account at

highly-secured website

• Traditional recommendation: use different password at each website (also
hard to remember!)

18

Some Other Solutions

• Password list managers
– Store usernames/passwords for each site

– Cons: lack of portability, must consult list each time

• Limited-time Passwords
– Example: RSA SecurID

• Code on device changes every 60 seconds

• User's password is combination of master password and code displayed on
device

• Cons: must carry device, typically
only for single domain

19

PwdHash: Overview

• Let user remember a single “master” password

• Transparently convert password into site-specific
password

• As a bonus, provides protection from common phishing
attacks!

• Availability: Mozilla Firefox add-on

20

PwdHash: How It Works

1) Find all password fields on a page
• <INPUT type=”password” ... >

2) User enters '@@' before typing password
• Signals browser to begin capturing password

3) Browser captures the user password and computes
hash: HMACpwd(domain-name)

4) Hash is stored in password field and submitted to
website in place of master password

21

PwdHash: Other Features

• Protection against common phishing attacks
– Domain name is part of hash generation

– Example:
• HMAC”password”(bankofamerica.com) = “y8JSLKDPFO”

• HMAC”password”(bankofamericas.com) = “pDVn5u7UYO”

• Usable when roaming
– http://www.pwdhash.com/

– Generates hash within the browser (via JavaScript)

– Neither master password nor generated password are ever
communicated over network

22

PwdHash: Why the '@@'?

• Consider the straightforward approach
– Translate passwords when user leaves form field

– Use domain name from target of the form

• But... webpages can execute code (JavaScript)

– Monitor keyboard

– Change form target before it is submitted

• Before submission:
<FORM action=”http://www.citibank.com/submit.cgi”>

• After submission:
<FORM action=”http://www.phishingsite.net/submit.cgi”>

23

PwdHash: Limitations

• Runs inside browser
– No protection against DNS attacks

– No protection against spyware

– Limited protection for Flash

24

Is Password Security Enough?

• Consider this scenario

1) User logs into www.ebay.com

2) Interacts with website as usual, possibly bidding on items and

making purchases

• But...

– Malicious software can send messages over authenticated

session

– These are called transaction generators (TGs)

25

How TGs Work

1) User logs into website with username and password

2) Website issues “session cookie” which is sent by the

user with subsequent messages

3) TG can access this session cookie

4) TG initiates its own transactions using the session

cookie

TG never needs to know the user's password!

26

SpyBlock: Overview

• Browser and all applications run within virtual machine (VM)

• User confirms transactions in trusted environment

• Availability: Mozilla Firefox add-on under Windows Vista

27

SpyBlock: The Pieces

• Virtual Machine

– Essentially, an operating system running within another operating system

• Authentication Agent

– Runs outside virtual machine, not alongside browser and other applications

– Prompts user to confirm transactions

• Browser Helper

– Allows browser to initiate transaction confirmation

– Cannot confirm transactions itself

28

SpyBlock: Confirmation

1) Website requests confirmation (request accompanied with transaction
details)

2) Browser helper passes transaction details to authentication helper

3) Authentication agent and website have shared key K (or they generate one

if necessary)

4) Authentication agent computes hash:

T = HMACK(transaction details)

5) Authentication agent passes T to browser helper, which submits it to the

website

6) Website can compute HMACK(transaction details) itself and verify against T

29

SpyBlock: Downsides

• Website must support SpyBlock transaction
confirmations

• Though available for free, most people don't run

virtual machines

• Security may be compromised as soon as user runs a

single untrusted application outside virtual machine

