
CS 201 Midterm 2 Review
Fall 2024



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



Logistics - Midterm 2

Thursday, November 7th at 7pm in ML 211
2-hour hand-written exam

No computers, notes, or books

For special accommodations, please reach out to 
Professor Slade ASAP



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



Available Resources
• The Basics → CPSC 200 – Course Site; This include the lecture notes
• Google’s Python Class Intro → Overview
• "THE" Python Guide

• Practice material for Midterm 2
• Practice Exam / Solutions
• UNIX Transcript / Solutions

• ssh into the Zoo; then in your home folder, type the following command: 
• python3 /c/cs201/www/unixtutorial.py

• Ed Discussion board → Ask questions and call out typos (great way to earn Errata points)
• Reviewing problem sets, especially Pset 4 (hint, hint), and each other (it never hurts to make 

study groups)!

https://zoo.cs.yale.edu/classes/cs200/index.html
https://developers.google.com/edu/python/
https://docs.python.org/3/tutorial/index.html
https://zoo.cs.yale.edu/classes/cs200/lectures/practicemidterm2.pdf
https://zoo.cs.yale.edu/classes/cs200/lectures/practicemidterm2ans.pdf
https://zoo.cs.yale.edu/classes/cs200/lectures/mt2.script
https://zoo.cs.yale.edu/classes/cs200/lectures/mt2.script.answer


Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



UNIX will cover through Principle Three

1) UNIX tutorial on the Zoo → ssh into the Zoo; then in your home folder, type the 
following command:

python3 /c/cs201/www/unixtutorial.py

2) Another resource for additional practice is Tutorial Point’s Unix/Linux Tutorial

https://www.tutorialspoint.com/unix/index.htm

General tips:

• Take the time to work on the principles. Even if you completed the first two, go 
back and practice.



Two examples of UNIX scenarios



UNIX
● Principles 1-3 → Some highlights of III:

○ diff
○ touch
○ grep
○ file
○ whoami
○ id
○ uptime

● Difference between piping and redirection:
○ Piping (|) takes output and sends to to another program
○ Redirection (>, &>, 2>, >>,etc.) takes output and sends to to either a file or a 

stream.



UNIX
[crb84@scorpion tmp]$ ls
Friday  test  test_01  test_02
[crb84@scorpion tmp]$ XXXX1
[crb84@scorpion tmp]$ ls
files  Friday  test  test_01  test_02
[crb84@scorpion tmp]$ ls > files_new
[crb84@scorpion tmp]$ XXXX2
0a1,3
> files
> files_new
> Friday
[crb84@scorpion tmp]$



UNIX
[crb84@scorpion tmp]$ ls
Friday  test  test_01  test_02
[crb84@scorpion tmp]$ ls | grep test > files
[crb84@scorpion tmp]$ ls
files  Friday  test  test_01  test_02
[crb84@scorpion tmp]$ ls > files_new
[crb84@scorpion tmp]$ diff files files_new
0a1,3
> files
> files_new
> Friday
[crb84@scorpion tmp]$



UNIX
[crb84@scorpion tmp]$ ls -l
total 0
[crb84@scorpion tmp]$ XXXX1
[crb84@scorpion tmp]$ ls -l
total 4
-rw-rw-r-- 1 crb84 crb84 204 Apr 15 21:49 1
[crb84@scorpion tmp]$ XXXX2

total        used        free      shared  buff/cache   available



UNIX
[crb84@scorpion tmp]$ ls -l
total 0
[crb84@scorpion tmp]$ free > 1
[crb84@scorpion tmp]$ ls -l
total 4
-rw-rw-r-- 1 crb84 crb84 204 Apr 15 21:49 1
[crb84@scorpion tmp]$ head -n1 1

total        used        free      shared  buff/cache   available



Take the time to complete the tutorial

This is the best way to learn the content



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



Python... so far
• Midterm 1 covered:

○ Procedure Examples
○ Regular Expressions
○ Python Expressions
○ Recursion
○ Comprehensions
○ Object-oriented Programming

• For Midterm 2, the scope include:
○ Python Virtual Machine (PVM), OOP Methods, Basic Data Structures (Stacks, 

Queues, and Hash Tables), Exceptions, Iterators, Decorators, and Recursion.



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



○Python Virtual Machine (PVM)
1. What is it?
The PVM is the core component of the Python interpreter

When you write Python code, it’s first converted into bytecode, a lower-level, platform-
independent representation of your code

This bytecode is then executed by the PVM, which interprets each bytecode instruction 
and performs the corresponding operations on your machine

Essentially, the PVM acts as the bridge between Python code and your hardware



○Python Virtual Machine (PVM)
2. Why does it matter?
Understanding the PVM is important because it helps explain Python’s behavior, 
performance, and certain limitations. Here are a few reasons why it’s significant:
• Portability: Bytecode can run on any machine with a Python interpreter, making 

Python code highly portable
• Memory Management: The PVM handles memory allocation, garbage collection, and 

resource cleanup, so understanding it helps developers write efficient, memory-safe 
programs

• Execution Flow: Knowing that Python code goes through a compile phase (to 
bytecode) and then an interpret phase (by the PVM) helps with understanding 
debugging, performance optimization, and troubleshooting runtime errors



○Python Virtual Machine (PVM)
3. Where can you expect to see this?
• Debugging and Profiling Tools: Tools like pdb (Python debugger) and profiling libraries 

interact with the PVM to monitor and manipulate Python code execution. If you’re 
troubleshooting code performance or runtime errors, you’re indirectly working with 
the PVM

• Compiled Bytecode Files: You might see .pyc files generated by Python. These are 
cached bytecode files created to speed up subsequent executions of the same script

• Error Messages: Certain error messages refer to bytecode or the internals of the PVM, 
especially if you're dealing with complex or low-level programming in Python



○Example 1: PVM
Define a Python function y() 
that generates the following 
bytecode in Python version 
3.10:



○How to approach?
To approach this type of bytecode-related problem, follow these steps:
1. Understand the Bytecode Instructions: Analyze each bytecode line and understand 

what operation it performs (e.g., LOAD_CONST, BINARY_MODULO, 
POP_JUMP_IF_FALSE). Recognize common instructions for assignments, arithmetic 
operations, and conditionals

2. Identify Control Flow and Conditions: Look for jump instructions like 
POP_JUMP_IF_FALSE to determine where the code branches or checks conditions, 
helping you identify if-else or loop structures

3. Map Bytecode to Python Constructs: Based on the bytecode, infer the high-level 
Python operations (e.g., variable assignments, conditional statements) that would 
produce the same bytecode

4. Determine Variable Values and Expressions: Identify the constants and operations 
(like 15 and % 3 in the example) and how they relate to the bytecode operations

5. Write the Python Function: Draft a function that matches the inferred structure, 
ensuring it uses the correct constants, operators, and control flow to generate the 
expected bytecode



○Example 2: PVM
Define a Python function y() 
that generates the following 
bytecode in Python version 
3.10:



○Example 3: PVM
Provide the bytecode generated for the 
following Python function, 
compute_product().

Use dis.dis() format, but without the source 
code line numbers from the first column. 
Assume Python version 3.10.



○How to approach?
1. Break Down Each Line of the Python Function:
• Write out each line of the function separately, including assignments, calculations, and the 

return statement
• Label each line with what it does (e.g., “assigns a constant,” “performs addition,” “returns a 

variable”)
2. List Common Bytecode Instructions and Their Purposes:
• Create a small reference guide on the side for common bytecode instructions:

• LOAD_CONST: Loads a constant onto the stack
• STORE_FAST: Stores a variable
• LOAD_FAST: Loads a variable onto the stack
• Arithmetic Operations: Use BINARY_ADD for addition, BINARY_SUBTRACT for subtraction, 

etc
• RETURN_VALUE: Returns the value at the top of the stack



○How to approach (continued)?
3. Assign Offsets Sequentially:
• Start with an offset of 0 for the first instruction and increase by 2 for each subsequent 

instruction
• Write down the offset before each instruction to maintain the flow (e.g., 0, 2, 4, etc.)
4. Translate Each Line to Bytecode:
• For each line in the function:

• Determine if it’s an assignment, operation, or return
• Use the reference list to pick the appropriate bytecode instructions
• For example, if a line is a = 5, write down LOAD_CONST followed by STORE_FAST, increasing 

the offset by 2 for each step
• Don’t forget to include any constants or variable names in parentheses after each instruction 

(e.g., LOAD_CONST 1 (5) or STORE_FAST 0 (a))



○How to approach (continued)?
5. Organize the Bytecode:
• Write the bytecode in a clear list, each line including the offset, instruction, and arguments if 

applicable
• Leave space between bytecode segments to make it easier to check each section
6. Review for Common Patterns:
• Check that you’ve included:

• Assignments with LOAD_CONST and STORE_FAST
• Arithmetic or Boolean operations with BINARY_ instructions if needed
• Loading and returning variables correctly with LOAD_FAST and RETURN_VALUE

• Make sure there’s a final RETURN_VALUE instruction if the function has a return statement
7. Double-Check Each Offset and Instruction:
• Go through each line to ensure offsets increase correctly, each instruction is appropriate, and 

all variables/constants are accurately represented in parentheses



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



○OOP and Basic Data Structures
1. What is it?
• OOP (Object-Oriented Programming) Methods: OOP is a programming paradigm that 

allows you to model real-world entities as objects. In Python, OOP concepts such as 
classes, methods, inheritance, and encapsulation enable the creation of modular and 
reusable code. These OOP methods provide structure, organization, and a way to 
represent data and behavior together

• Basic Data Structures:
• Stacks: A stack is a Last-In, First-Out (LIFO) structure, where elements are added and 

removed from the same end. Operations include push (add) and pop (remove)
• Queues: A queue is a First-In, First-Out (FIFO) structure, where elements are added 

at one end and removed from the other. Operations include enqueue (add) and 
dequeue (remove)

• Hash Tables: A hash table is a data structure that stores key-value pairs, enabling 
fast data retrieval by mapping keys to values through a hashing function



○OOP and Basic Data Structures
2. Why does it matter?
• Organization and Modularity: OOP allows for a more structured codebase where data 

and functions are organized within classes. This modularity makes code easier to 
maintain, debug, and extend

• Efficient Data Handling: Stacks and queues offer efficient ways to manage ordered 
data, which is essential in applications like backtracking algorithms (for stacks) or 
scheduling tasks (for queues)

• Fast Data Retrieval: Hash tables allow for nearly constant-time complexity (O(1)) for 
lookups, making them highly efficient for cases where quick access to data is crucial, 
such as dictionaries, caching, and managing unique identifiers



○OOP and Basic Data Structures
3. Where can you expect to see this?
• Application Development: You’ll see OOP used in software applications to create 

models for users, products, transactions, etc. Data structures like stacks and queues 
are also used to manage tasks, events, or command histories

• Web Development and APIs: OOP principles help design classes that encapsulate API 
functionalities. Hash tables (or dictionaries in Python) are common in storing 
configuration settings, managing user sessions, or caching responses

• Algorithm Design and Data Processing: Stacks, queues, and hash tables are 
fundamental in algorithm design. For example, stacks are used in depth-first search 
(DFS) algorithms, while hash tables help manage unique data items



○OOP and Basic Data Structures
What is it?
• OOP (Object-Oriented Programming) Methods: OOP is a programming paradigm that 

allows you to model real-world entities as objects. In Python, OOP concepts such as 
classes, methods, inheritance, and encapsulation enable the creation of modular and 
reusable code. These OOP methods provide structure, organization, and a way to 
represent data and behavior together.

• Basic Data Structures:
• Stacks: A stack is a Last-In, First-Out (LIFO) structure, where elements are added and 

removed from the same end. Operations include push (add) and pop (remove).
• Queues: A queue is a First-In, First-Out (FIFO) structure, where elements are added 

at one end and removed from the other. Operations include enqueue (add) and 
dequeue (remove).

• Hash Tables: A hash table is a data structure that stores key-value pairs, enabling 
fast data retrieval by mapping keys to values through a hashing function.



A stack follows the Last-In, First-Out (LIFO) 
principle. It can be implemented using a list 
with append (for pushing items) and pop 
(for removing items)

Use Cases:
• Backtracking: Stacks are useful in 

algorithms that involve exploring all 
possibilities and then backtracking, 
such as depth-first search (DFS) in 
graphs or mazes

• Undo/Redo Functionality: Applications 
like text editors use stacks to keep track 
of changes, allowing users to undo or 
redo actions

• Expression Parsing: Stacks help 
evaluate mathematical expressions, 
especially when handling parentheses 
or converting infix expressions to 
postfix

Use append and pop for adding and removing items, respectively.



A queue follows the First-In, First-Out 
(FIFO) principle. It can be implemented 
using collections.deque for efficient 
enqueue and dequeue operations.

Use Cases:
• Task Scheduling: Queues are used to 

manage tasks that need to be 
processed in a specific order, such as 
jobs waiting to be printed or CPU 
scheduling in operating systems

• Breadth-First Search (BFS): BFS in 
graphs and trees uses a queue to 
explore nodes layer by layer

• Asynchronous Data Processing: Queues 
are useful in message-based systems 
and asynchronous processing, where 
data is processed in the order it arrives.

Use deque with append for enqueue and popleft for dequeue.



A hash table stores key-value pairs and 
uses a hash function to map keys to values. 
In Python, you can use a dictionary to 
implement a hash table

Use Cases:
• Fast Data Retrieval: Hash tables enable 

fast lookups, making them ideal for 
implementing dictionaries, caches, and 
databases

• Counting and Frequency Tracking: Hash 
tables are often used to count 
occurrences of items, such as words in 
a document or elements in a dataset

• Implementing Sets: Since hash tables 
store unique keys, they’re often used to 
implement sets, which require that 
each element is unique

Use a dictionary to store key-value pairs with insert, get, and delete methods.



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



○Exceptions
1. What is it?
• An exception is an event that disrupts the normal flow of a program. In Python, 

exceptions are raised when the interpreter encounters an error that prevents it from 
continuing.

• Common exceptions include TypeError, ValueError, IndexError, and 
FileNotFoundError, among many others

• Python provides a way to handle these exceptions gracefully through try, except, else, 
and finally blocks, allowing developers to manage unexpected events and control 
program flow even when errors occur



○Exceptions
2. Why does it matter?
• Robustness and Error Handling: Exceptions are crucial for creating robust programs 

that can handle errors without crashing unexpectedly. By anticipating possible errors, 
developers can ensure their code behaves predictably and provide meaningful 
feedback to the user

• Debugging and Troubleshooting: Exceptions make it easier to identify where issues 
arise in code. Python provides detailed error messages and stack traces that help 
developers locate the source of the problem, facilitating faster debugging

• Maintaining Program Flow: Exception handling allows a program to manage errors 
while maintaining continuity, rather than terminating abruptly. For example, if an error 
occurs while reading a file, the program can catch the exception, log the issue, and 
continue with other tasks



○Exceptions
3. Where can you expect to see this?

• File I/O: When working with files, exceptions are often raised if a file is missing, 
inaccessible, or corrupted. For instance, trying to open a non-existent file raises 
a FileNotFoundError

• User Input Validation: Programs that require user input use exceptions to 
handle invalid inputs. For example, a program might raise a ValueError if a user 
enters non-numeric data where a number is expected



○Exceptions
3. Where can you expect to see this (continued)?

• API and Network Requests: When connecting to external servers or APIs, 
exceptions handle cases like timeouts, connectivity issues, or unexpected 
responses. This allows the program to retry the connection or gracefully alert 
the user if the resource is unavailable

• Algorithmic and Mathematical Operations: When performing calculations, 
exceptions can handle scenarios like division by zero (ZeroDivisionError) or out-
of-bound index access (IndexError), helping maintain program stability



○Exception 1 example:
Here, we define several functions, 
which may or may not raise an 
exception when executed.

For each function, indicate if an 
exception is raised always, 
sometimes, or never.

For always and sometimes, indicate 
which exception is raised and, for 
sometimes, specify the conditions 
under which the exception occurs.



○How to approach this?
When approaching this type of exception identification problem, follow these steps:
1. Read Each Function Carefully: Analyze the code in each function to understand what it’s doing and 

identify potential issues

2. Consider Possible Errors: Think about common Python exceptions (e.g., ImportError, IndexError, 
TypeError) and whether the function might trigger any of them

3. Determine Exception Frequency:
• Decide if the exception will be raised always, sometimes, or never
• Always: The exception occurs every time the function is called
• Sometimes: The exception depends on external factors or specific conditions
• Never: No exception will occur under typical circumstances

4. Identify the Conditions for "Sometimes": If an exception is raised sometimes, specify the exact conditions 
under which it occurs (e.g., missing files, invalid module names)

5. Test Your Understanding: If possible, think through test cases or mentally simulate running the code to 
check if your predictions make sense

6. Use Python Documentation: Refer to the documentation for unfamiliar functions or methods to 
understand their typical behavior and associated exceptions



○Exception 2 example:
Here, we define several functions, 
which may or may not raise an 
exception when executed.

For each function, indicate if an 
exception is raised always, 
sometimes, or never.

For always and sometimes, indicate 
which exception is raised and, for 
sometimes, specify the conditions 
under which the exception occurs.



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



○Iterators
1. What is it?
• An iterator is an object that allows sequential access to elements in a collection (like a 

list, tuple, or dictionary) without exposing the underlying data structure

• In Python, an iterator is an object that implements the __iter__() and __next__() 
methods

• The __iter__() method returns the iterator object itself, and __next__() returns the 
next element in the sequence. When there are no more items to return, __next__() 
raises a StopIteration exception, signaling the end of the iteration



○Iterators
2. Why does it matter?
• Memory Efficiency: Iterators allow you to work with data collections without loading 

the entire collection into memory. This is particularly useful for handling large datasets 
or streams of data, as iterators fetch items one at a time only when needed

• Lazy Evaluation: Iterators enable lazy evaluation, meaning values are generated on-
the-fly and only computed when accessed. This can greatly improve performance and 
reduce memory usage for operations on large or infinite sequences

• Enhanced Code Readability and Maintainability: Using iterators often leads to cleaner 
and more readable code. They are foundational for Python’s loop constructs (like for 
loops), making it easier to write concise and expressive code

• Custom Iteration Patterns: Python allows developers to create custom iterator 
classes, which can be useful for implementing specific traversal or access patterns, 
such as iterating over data in a custom order or implementing a filter



○Iterators
3. Where can you expect to see this?
• For Loops: Every time you use a for loop in Python, you’re working with an iterator. 

Python automatically converts iterables (such as lists, tuples, and dictionaries) into 
iterators for loop processing

• Data Streams and File I/O: Iterators are common in handling data streams and file I/O. 
For example, using file_object with for line in file_object creates an iterator that reads 
each line of a file one at a time, conserving memory

• Generators: Python's generator functions (using the yield keyword) create iterators. 
Generators are a convenient way to build iterators without the need to implement 
__iter__() and __next__() directly, and they’re commonly used for tasks requiring lazy 
evaluation

• Custom Classes: By defining __iter__() and __next__() in a custom class, developers 
can implement tailored iteration patterns for specific applications, like traversing 
complex data structures or simulating a sequence of events



○Iterators
3. Where can you expect to see this?
• For Loops: Every time you use a for loop in Python, you’re working with an iterator. 

Python automatically converts iterables (such as lists, tuples, and dictionaries) into 
iterators for loop processing

• Data Streams and File I/O: Iterators are common in handling data streams and file I/O. 
For example, using file_object with for line in file_object creates an iterator that reads 
each line of a file one at a time, conserving memory

• Generators: Python's generator functions (using the yield keyword) create iterators. 
Generators are a convenient way to build iterators without the need to implement 
__iter__() and __next__() directly, and they’re commonly used for tasks requiring lazy 
evaluation

• Custom Classes: By defining __iter__() and __next__() in a custom class, developers 
can implement tailored iteration patterns for specific applications, like traversing 
complex data structures or simulating a sequence of events



○Example
Define a Python function iterator_example() that returns an iterator for a list of numbers [1, 2, 3, 4] and then iterates 
through it using the next() function

The function should retrieve and return each item in the list one at a time using next() 

For each call to next(), if there are no more items, the function should handle the StopIteration exception and return "End of 
Iterator" instead

Write the function iterator_example() and provide the output of each call to next() on the iterator

Expected output: 



○How to approach?
• To approach this problem, first understand that an iterator allows sequential access to 

elements in a collection
• Begin by creating an iterator from the given list using iter()
• Then, use next() to retrieve each element one-by-one
• Anticipate the StopIteration exception, which signals the end of the iterator, and 

handle it with a try-except block to print "End of Iterator" when no more items are 
available

• This structure ensures that all elements are accessed, and the end of the iteration is 
managed gracefully



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators
○ Recursion

○ Final Tips



○Decorators
1. What is it?
• A decorator is a higher-order function that "wraps" another function or method to 

modify or extend its behavior. In Python, decorators are functions that take another 
function as an argument, add some functionality, and return a new function or the 
original function with added behavior

• Decorators are applied to functions or methods using the @decorator_name syntax 
placed above the function definition. This syntax is shorthand for passing the function 
to the decorator



○Decorators
2. Why does it matter?
• Code Reusability: Decorators allow you to add functionality to multiple functions 

without repeating code. This makes code more modular and reusable
• Separation of Concerns: By using decorators, you can separate core function logic 

from auxiliary functionality (like logging, authentication, or caching). This keeps your 
code clean and focused

• Readability and Maintenance: Decorators provide a concise, readable way to add 
behavior to functions, making the code easier to understand and maintain. For 
example, adding @log or @authenticate at the top of a function definition clearly 
indicates the function’s added behavior without cluttering its main logic

• Enhanced Functionality: Decorators enable the implementation of cross-cutting 
concerns like timing, debugging, access control, and more, which are essential for 
building robust applications



○Decorators
3. Where can you expect to see this?
• Logging and Debugging: Decorators are often used to add logging to functions, 

allowing developers to track function calls and outputs. For example, a @log decorator 
might record when a function is called and what values it returns

• Authentication and Authorization: In web applications, decorators are frequently 
used to control access. For example, an @authenticate decorator could check if a user 
is logged in before allowing access to a function

• Caching and Memoization: Decorators can add caching to functions, storing the 
results of expensive calculations and returning the cached result on subsequent calls. 
This is common in performance optimization, where results of certain function calls 
are saved for reuse



○Decorators
3. Where can you expect to see this (continued)?

• Timing and Performance Monitoring: A @timer decorator can be used to measure the 
time a function takes to execute, which is helpful for performance monitoring and 
optimization.

• Class and Method Enhancements: In classes, decorators like @staticmethod, 
@classmethod, and @property are built-in Python decorators that modify method 
behavior, such as making a method callable on the class itself rather than an instance.



○Example: Decorator implementation
Problem Prompt:
Create a decorator named timed that measures the execution time of a function and 
prints out the time taken each time the function is called. The decorator should:
1. Print the function's name, arguments, and the time taken in seconds to complete the 

call.
2. Ensure that the decorated function behaves like the original function, preserving its 

name and docstring.
Then, apply the timed decorator to a function compute_factorial that computes the 
factorial of a given number n. Test the decorator by calling compute_factorial(5) and 
compute_factorial(10).
Example Output:
compute_factorial(5) took 0.0001 seconds
compute_factorial(10) took 0.0001 seconds



○How could this be approached? 
When approaching a problem that involves creating a decorator like timed, here’s 
a structured approach and the key considerations someone should keep in mind:
1. Clarify the Decorator’s Purpose: Identify the decorator's function—e.g., timing, logging, caching—and 

what it should output

2. Set Up Structure: Create an outer function that takes the original function as an argument, then define an 
inner wrapper function to add new behavior

3. Plan Core Logic: Place the necessary logic in the wrapper (e.g., capturing start and end times for timing)

4. Preserve Metadata: Use @wraps to retain the original function’s name, docstring, and attributes

5. Implement and Test: Write the code, apply the decorator to a sample function, and test with different 
inputs

6. Ensure Transparency: Verify that the decorator doesn’t alter the function’s original behavior or output

7. Check Reusability: Confirm that the decorator works well with various functions and argument types

8. Consider Edge Cases: Test scenarios with different input sizes and types to ensure reliability 



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Virtual Machine (PVM)
○ OOP Methods and Basic Data Structures (Stacks, Queues, and Hash Tables)
○ Exceptions
○ Iterators
○ Decorators 
○ Recursion

○ Final Tips



Recursion [Same Slides from Last Review]
Recursion is a method of solving problems where a function calls itself as a part of its computation. The key 
idea is to break a problem down into smaller, more manageable parts until you reach a base case, which 
stops the recursive calls.

Key Concepts of Recursion

• Definition:
• Recursion occurs when a function calls itself during its execution.

• Base Case:
• Every recursive function needs a base case that stops the recursion.
• Without a base case, the recursion would go on indefinitely, leading to a "stack overflow" error.

• Recursive Case:
• The part of the function where the function calls itself with a smaller or simpler input, moving the 

problem closer to the base case.



Recursion [Same Slides from Last Review]
Why Use Recursion?:

• Breaks down complex problems: Recursion is especially useful for problems that can be broken into 
similar subproblems, such as dividing a list, solving mathematical sequences, or working with tree-like 
structures.

• Elegance and simplicity: Recursive solutions can often be more elegant and easier to read than 
iterative solutions (loops).

Common Examples:

• Factorial calculation: n! = n × (n−1) × (n−2) ×⋯ × 1

• Fibonacci sequence: F(n) = F(n−1) + F(n−2)

• Navigating nested structures: Recursion is great for navigating trees, directories, and nested lists.



Recursion [Same Slides from Last Review]
Key Steps in Writing Recursive Functions:
1. Identify the base case:

• What is the simplest version of the problem where you know the answer immediately?
• Example: For a factorial function, the base case is n == 0, where the result is 1

2. Identify the recursive case:
• How can you break the problem into a smaller version of itself?
• Example: For factorials, you can reduce the problem to n * factorial(n-1)

3. Ensure Progress Toward the Base Case:
• Every recursive call should bring the input closer to the base case
• If there is no progress toward the base case, the recursion will continue indefinitely



Agenda
● Midterm Logistics
● Reviewing resources
● Unix
● Python review

○ Python Background
○ Procedure Examples
○ Regular Expressions
○ Python Expressions
○ Recursion
○ Comprehensions
○ Object-oriented Programming

○ Final Tips



Final Tips

• Start studying early
• Review your last two Psets (especially 4)
• Complete the Unix Tutorial, up to Three
• Post on Ed Discussions for clarifying answers




	Slide 1: CS 201 Midterm 2 Review Fall 2024
	Slide 2: Agenda
	Slide 3: Agenda
	Slide 4: Logistics - Midterm 2
	Slide 5: Agenda
	Slide 6: Available Resources
	Slide 7: Agenda
	Slide 8: UNIX will cover through Principle Three
	Slide 9: Two examples of UNIX scenarios
	Slide 10: UNIX
	Slide 11: UNIX
	Slide 12: UNIX
	Slide 13: UNIX
	Slide 14: UNIX
	Slide 15: Take the time to complete the tutorial  This is the best way to learn the content
	Slide 16: Agenda
	Slide 17: Python... so far
	Slide 18: Agenda
	Slide 19: Python Virtual Machine (PVM)
	Slide 20: Python Virtual Machine (PVM)
	Slide 21: Python Virtual Machine (PVM)
	Slide 22: Example 1: PVM
	Slide 23: How to approach?
	Slide 24: Answer:
	Slide 25: Example 2: PVM
	Slide 26: Answer:
	Slide 27: Example 3: PVM
	Slide 28: How to approach?
	Slide 29: How to approach (continued)?
	Slide 30: How to approach (continued)?
	Slide 31: Answer
	Slide 32: Agenda
	Slide 33: OOP and Basic Data Structures
	Slide 34: OOP and Basic Data Structures
	Slide 35: OOP and Basic Data Structures
	Slide 36: OOP and Basic Data Structures
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Agenda
	Slide 41: Exceptions
	Slide 42: Exceptions
	Slide 43: Exceptions
	Slide 44: Exceptions
	Slide 45: Exception 1 example:
	Slide 46: How to approach this?
	Slide 47: Answer Key:
	Slide 48: Exception 2 example:
	Slide 49: Answer Key:
	Slide 50: Agenda
	Slide 51: Iterators
	Slide 52: Iterators
	Slide 53: Iterators
	Slide 54: Iterators
	Slide 55: Example
	Slide 56: How to approach?
	Slide 57: Answer  The function iterator_example() that meets these requirements is:
	Slide 58: Agenda
	Slide 59: Decorators
	Slide 60: Decorators
	Slide 61: Decorators
	Slide 62: Decorators
	Slide 63: Example: Decorator implementation
	Slide 64: How could this be approached? 
	Slide 65: Detailed answer:
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Agenda
	Slide 71: Recursion [Same Slides from Last Review]
	Slide 72: Recursion [Same Slides from Last Review]
	Slide 73: Recursion [Same Slides from Last Review]
	Slide 74: Agenda
	Slide 75
	Slide 76

