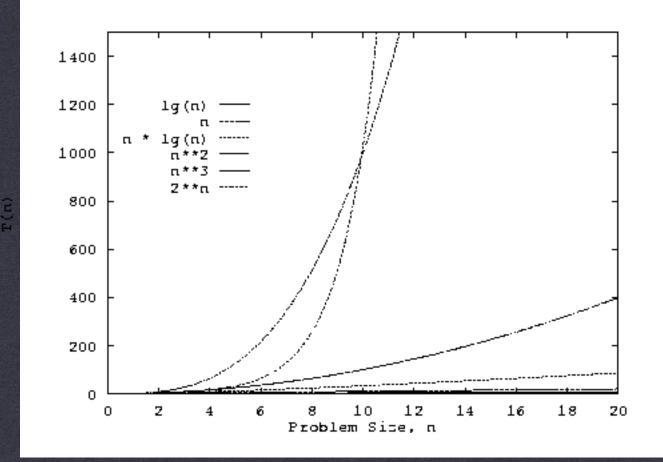
Asymptotic Analysis



Comparing Algorithms

*Linked Lists and Array List

Which one is best?

Comparing Algorithms

*Linked Lists and Array List

***** Which one is **fastest**?

Comparing Algorithms

*Linked Lists and Array List

***** Which one is **fastest**?

***** How can we compare?

*How do we know if an algorithm/data structure is efficient?

*What does it mean to be efficient?

Complexity

- time complexity
 - how many operations are needed
- space complexity
 - how much *memory* is needed

Let's focus on speed

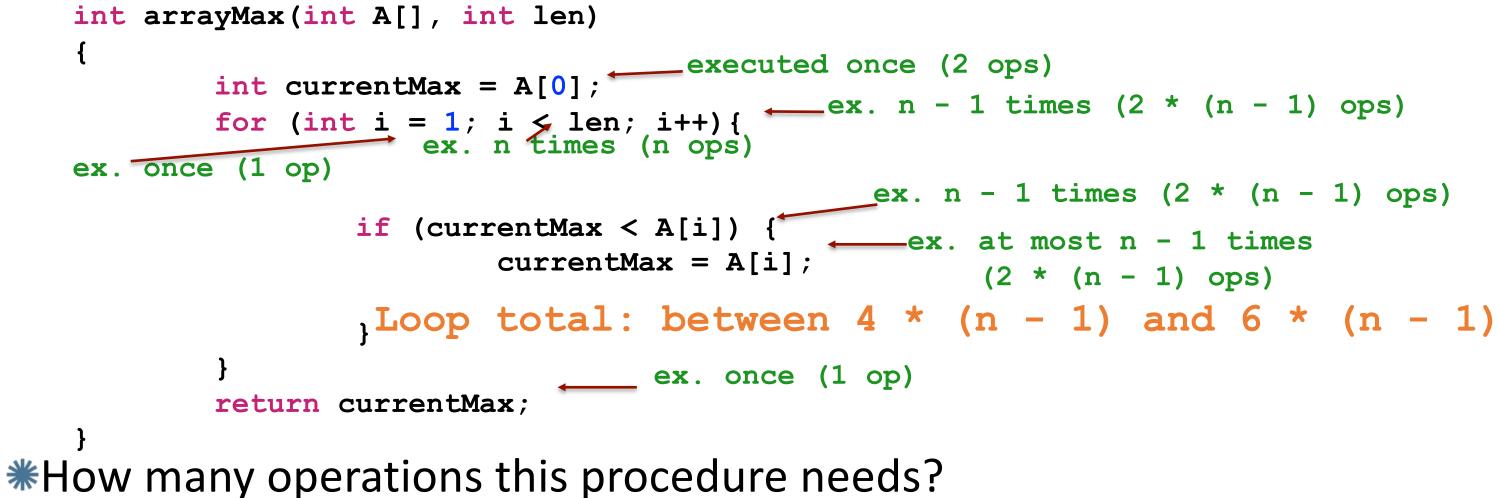
*****We need to **count the operations**

* Determine the cost per operation

Count the number of times an operation is executed

*Sum over all operations

Measuring runtime



- _ex. n 1 times (2 * (n 1) ops)

Let's simplify

*Assume all operations need 1 unit of time

*Let's count best, worst, and average worst case

***** Best Case:

Worst Case

* Average?

Let's simplify

*Assume all operations need 1 unit of time

*Let's count best, worst, and average worst case

2 + 1 + n + 4(n - 1) + 1 = 5n# Best Case: 2 + 1 + n + 6(n - 1) + 1 = 7n - 2***** Worst Case

* Average? Depends on input

Problems

*Computing the exact number is tedious (unfeasible for big code)

*Exact number of operations depends on many parameters

* Compiler (under the hood improvements)

* Computer that it is run (allocate variables in register? RAM?)

* Operating System

*Sometimes it is hard to even compute

***** How much time does a search take?

Impractical!

What is common about these functions? $5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3$ $18n^3 - 12$

What is common about these functions? $5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3$ $18n^3 - 12$ The dominant term contains n^3

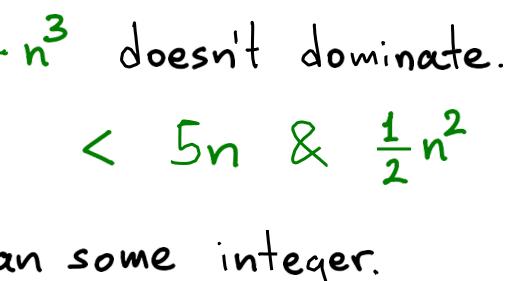
40 n³ + logn

What is common about these functions? $5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3 = 18n^3 - 12$ The dominant term contains n³ \bigcirc what does this mean? For n=5, $\frac{1}{100} \cdot n^3$ doesn't dominate.

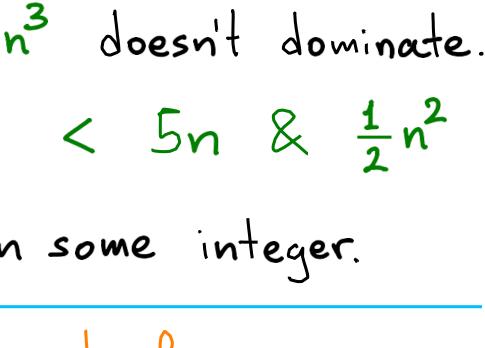
40 n³ + logn¹⁰

< $5n \& \frac{1}{2}n^2$

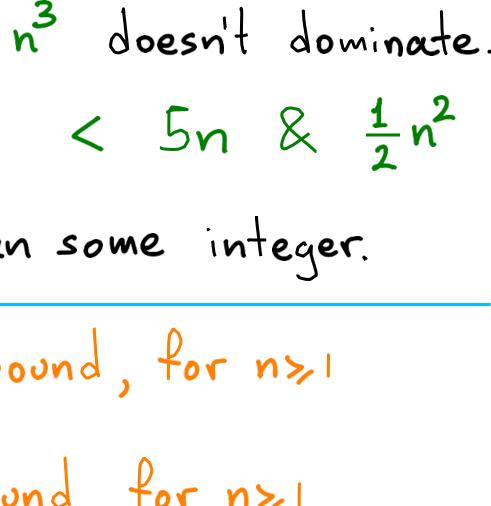
What is common about these functions? $5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3 = 18n^3 - 12$ The dominant term contains n³ (what does this mean? For n=5, $\frac{1}{100} \cdot n^3$ doesn't dominate. < 5n & $\frac{1}{2}n^2$ $\sim n^3$ dominates for all n larger than some integer.



What is common about these functions? $5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3 = 18n^3 - 12$ •The dominant term contains n³ (what does this mean? For n=5, $\frac{1}{100} \cdot n^3$ doesn't dominate. < $5n \& \frac{1}{2}n^2$ $\sim n^3$ dominates for all n larger than some integer. • All three functions have 50 n³ as an upper bound, for n>1



What is common about these functions ? $5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3 = 18n^3 - 12$ •The dominant term contains n³ Gubat does this mean? For n=5, $\frac{1}{100} \cdot n^3$ doesn't dominate. $< 5n \& \frac{1}{2}n^2$ $\sim n^3$ dominates for all n larger than some integer. • All three functions have 50 n³ as an upper bound, for n>1 • All three functions have $\frac{1}{100}$ n³ as a lower bound, for n>1



$$5n + \frac{1}{2}n^2 + \frac{1}{100} \cdot n^3$$

• All three functions have
$$50n^3$$
 as an upper b
• All three functions have $\frac{1}{100}n^3$ as a lower box

40 n³ + logn¹⁰

ound, for n>1

$$5n + \frac{1}{2}n^{2} + \frac{1}{100} \cdot n^{3}$$

$$18n^{3} - 12$$
There exist constants c>0, no>0 such that f
All three functions have cn³ as an upper
(all < c

• All three functions have
$$50n^3$$
 as an upper be
• All three functions have $\frac{1}{100}n^3$ as a lower bound

40 n³ + logn¹⁰

for all $n \ge n_0$: bound n^3)

ound, for ny 1 und, for ny 1

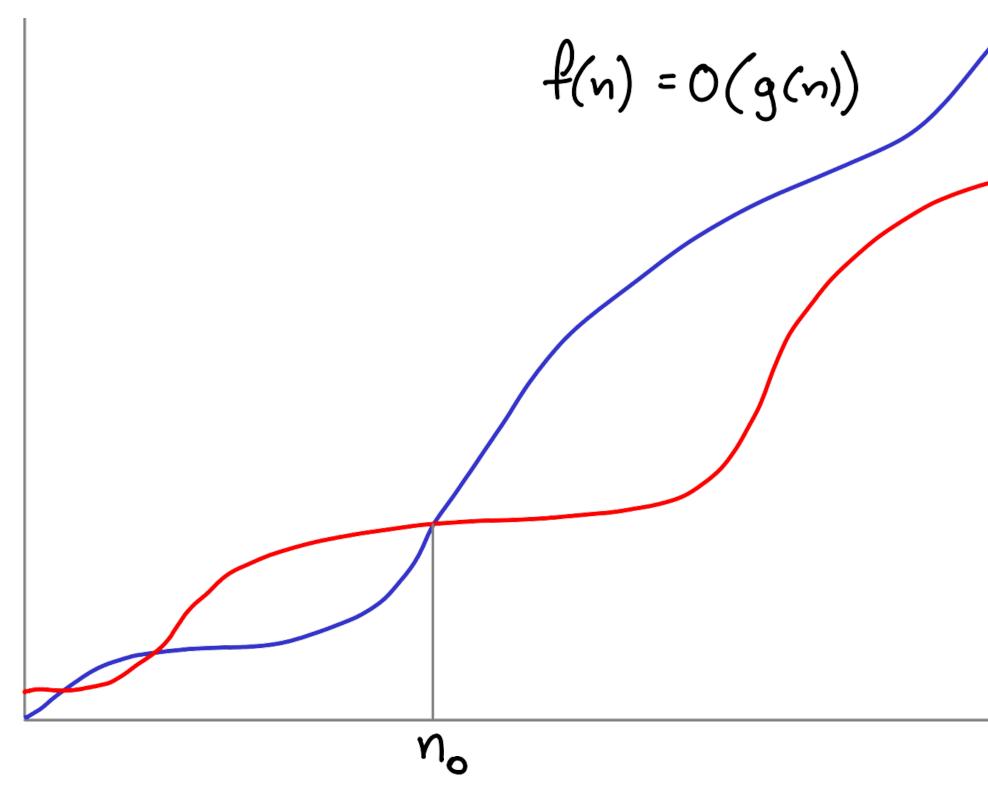
$$5n + \frac{1}{2}n^{2} + \frac{1}{100} \cdot n^{3}$$

$$18n^{3} - 12$$
There exist constants $c > 0$, $n_{0} > 0$ such that f
All three functions have cn^{3} as an upper
(all $\leq c$
There exist constants $d > 0$, $n_{1} > 0$ such that f
All three functions have dn^{3} as a lower bo
(all $\geq d$
• All three functions have $50n^{3}$ as an upper b
• All three functions have $\frac{1}{100}n^{3}$ as a lower bound

40 n³ + logn¹⁰ for all n>no: bound (n³) for all n>n, : ound 8 (**8** ound, for ny 1 und, for ny 1

If there exist constants c>0, no>0 such that for all n>no: $f(n) \leq cn^3$

If there exist constants c>0, no>0 such that for all n>no: $f(n) \leq cn^3$ then we say $f(n) = O(n^3)$



$f(n) \leq cn^3$

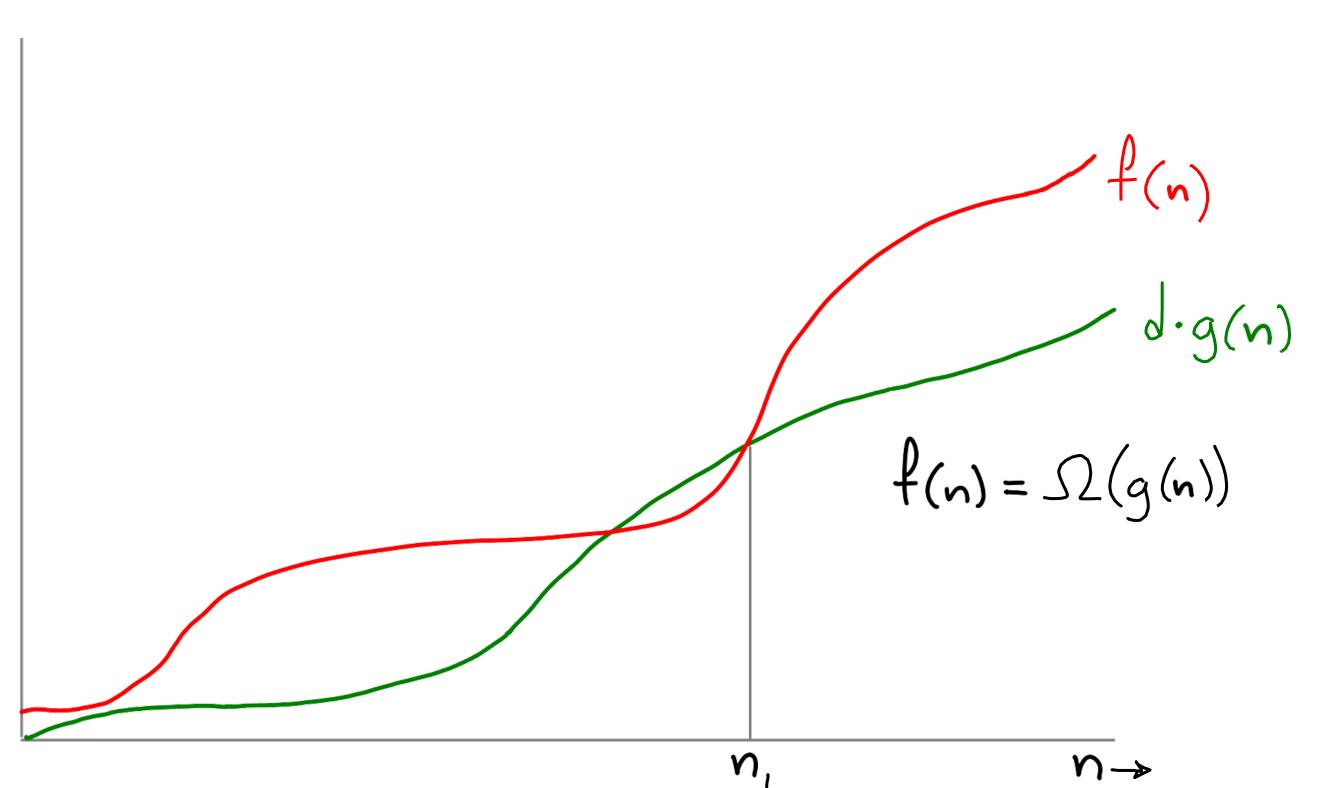
/c·g(n) _f(n)

If there exist constants
$$c>0$$
, $n_0>0$ such the
 $f(n) \leq cn^3$
then we say $f(n) = O(n^3)$
If there exist constants $d>0$, $n_1>0$ such the
 $f(n) \geq dn^3$

at for all n>no :

If there exist constants
$$c > 0$$
, $n_0 > 0$ such the
 $f(n) \le cn^3$
then we say $f(n) = O(n^3)$
If there exist constants $d > 0$, $n_1 > 0$ such the
 $f(n) \ge dn^3$
then we say $f(n) = \Omega(n^3)$

at for all n>no:

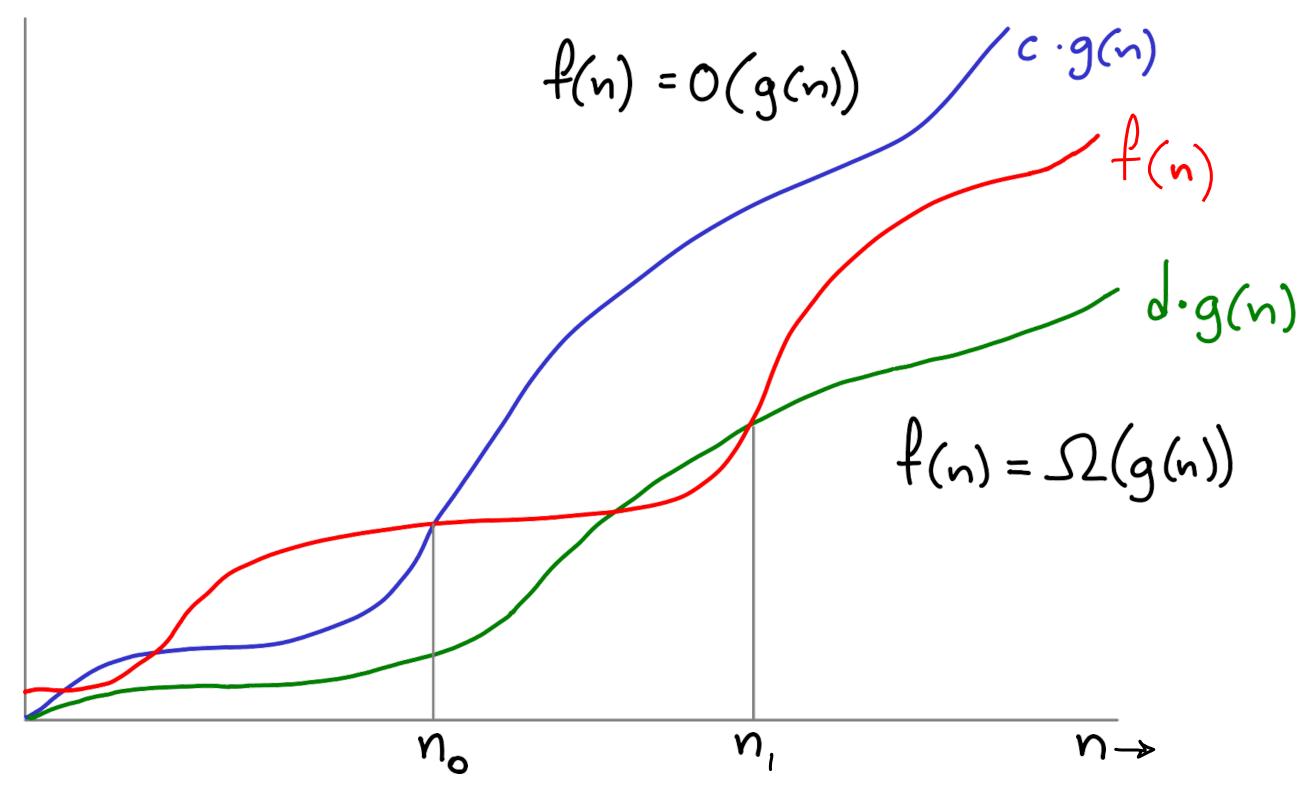


If there exist constants
$$c > 0$$
, $n_0 > 0$ such the
 $f(n) \leq c \cdot g(n)$
then we say $f(n) = O(g(n))$
If there exist constants $d > 0$, $n_1 > 0$ such the
 $f(n) \ge d \cdot g(n)$
then we say $f(n) = \Omega(g(n))$

at for all n>no:

If there exist constants
$$c > 0$$
, $n_0 > 0$ such the
 $f(n) \leq c \cdot g(n)$
then we say $f(n) = O(g(n))$
If there exist constants $d > 0$, $n_1 > 0$ such the
 $f(n) \ge d \cdot g(n)$
then we say $f(n) = \Omega(g(n))$

Big-0

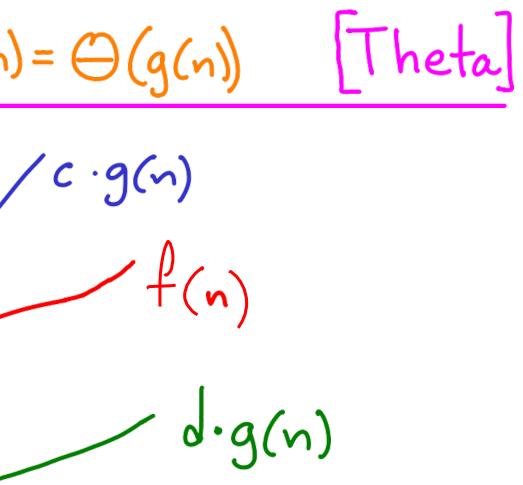


If
$$f(n) = O(g(n))$$
 AND $f(n) = \Omega(g(n))$ then $f(n)$

$$f(n) = O(g(n))$$

$$f(n)$$

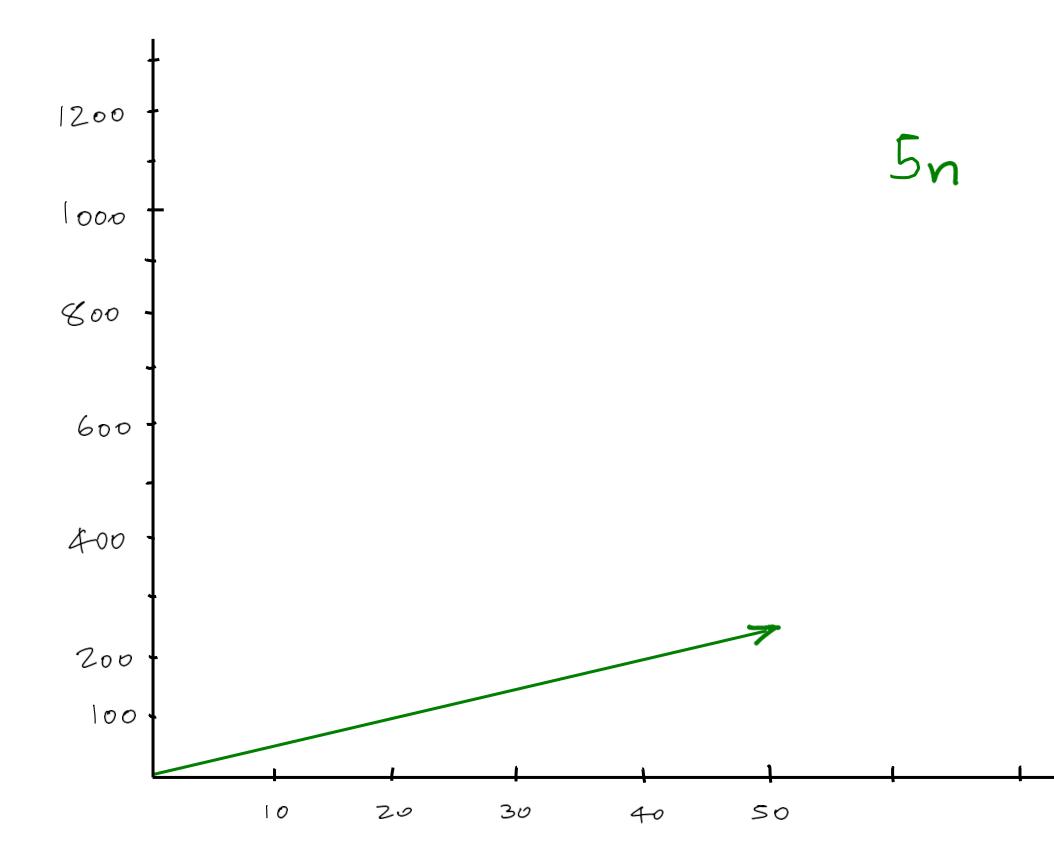
$$f(n)$$

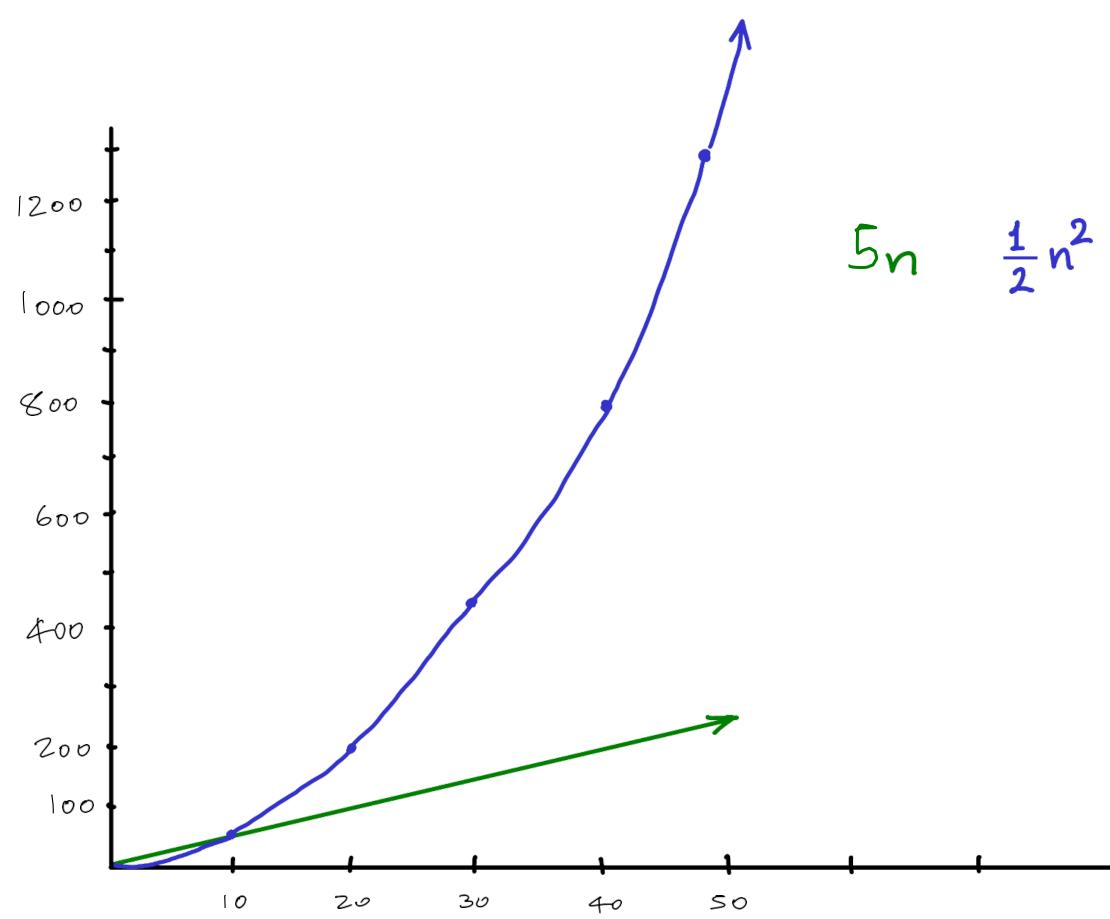


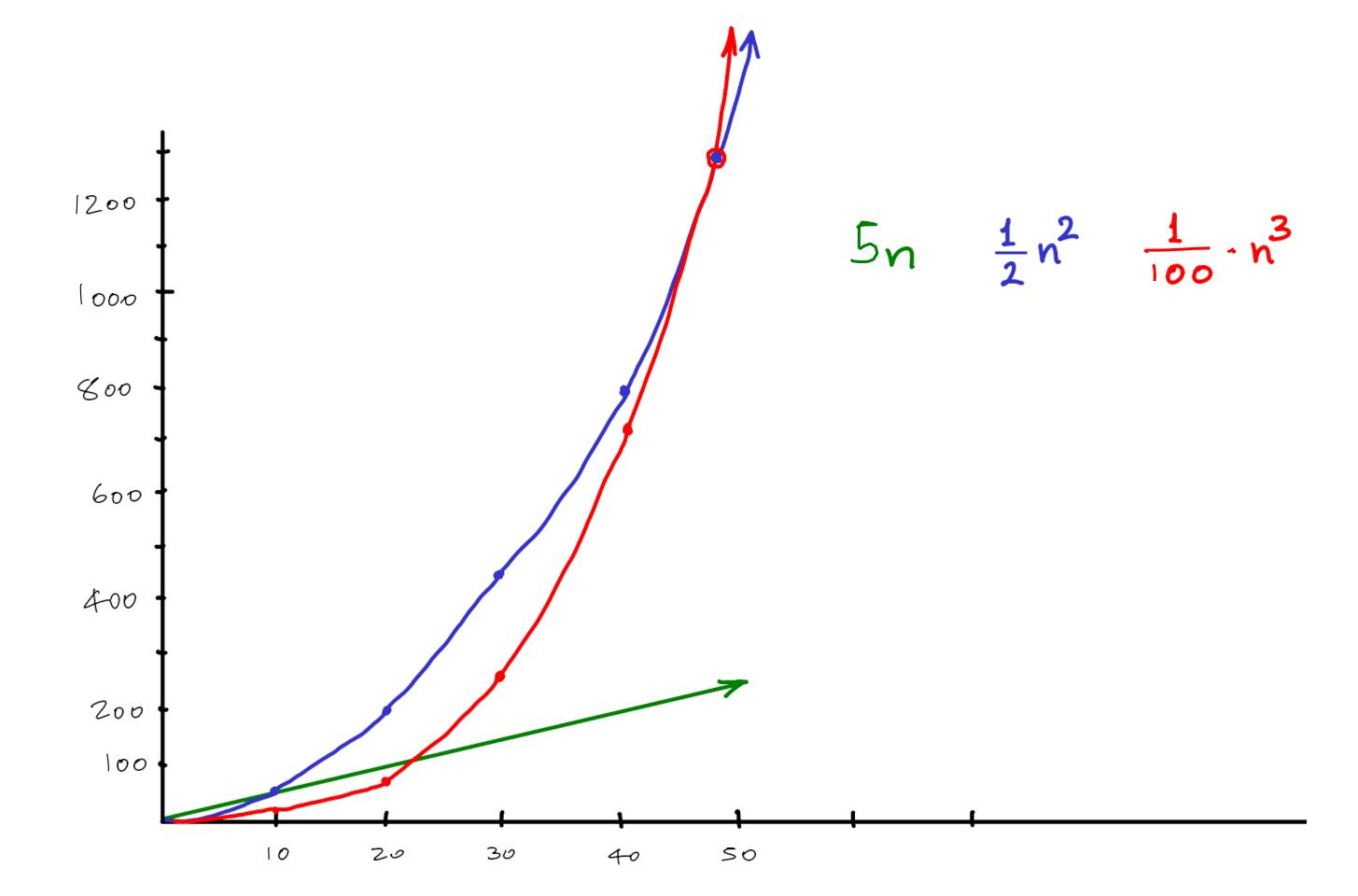
 $s) = \Omega(g(n))$

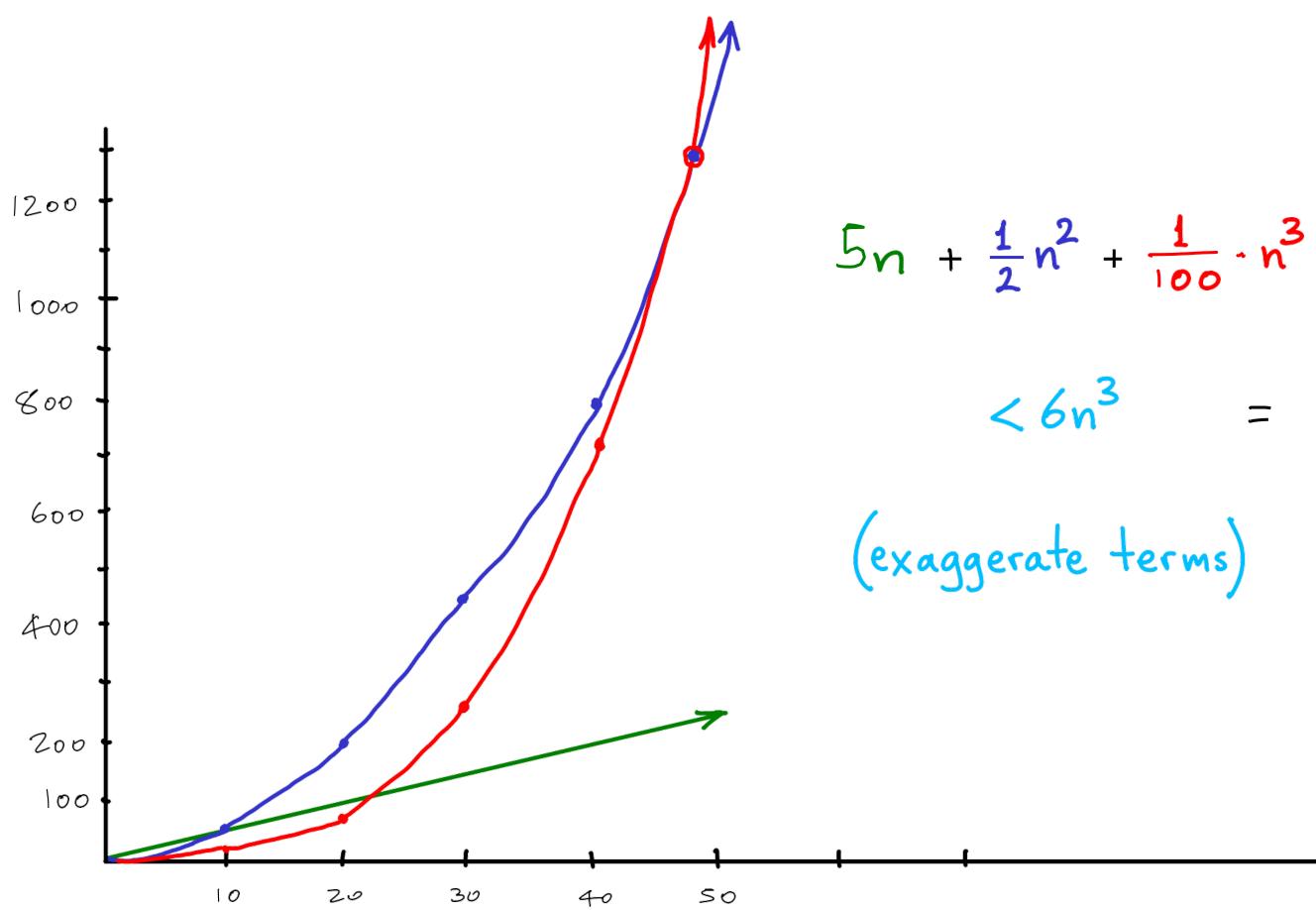
Let's compare runtimes

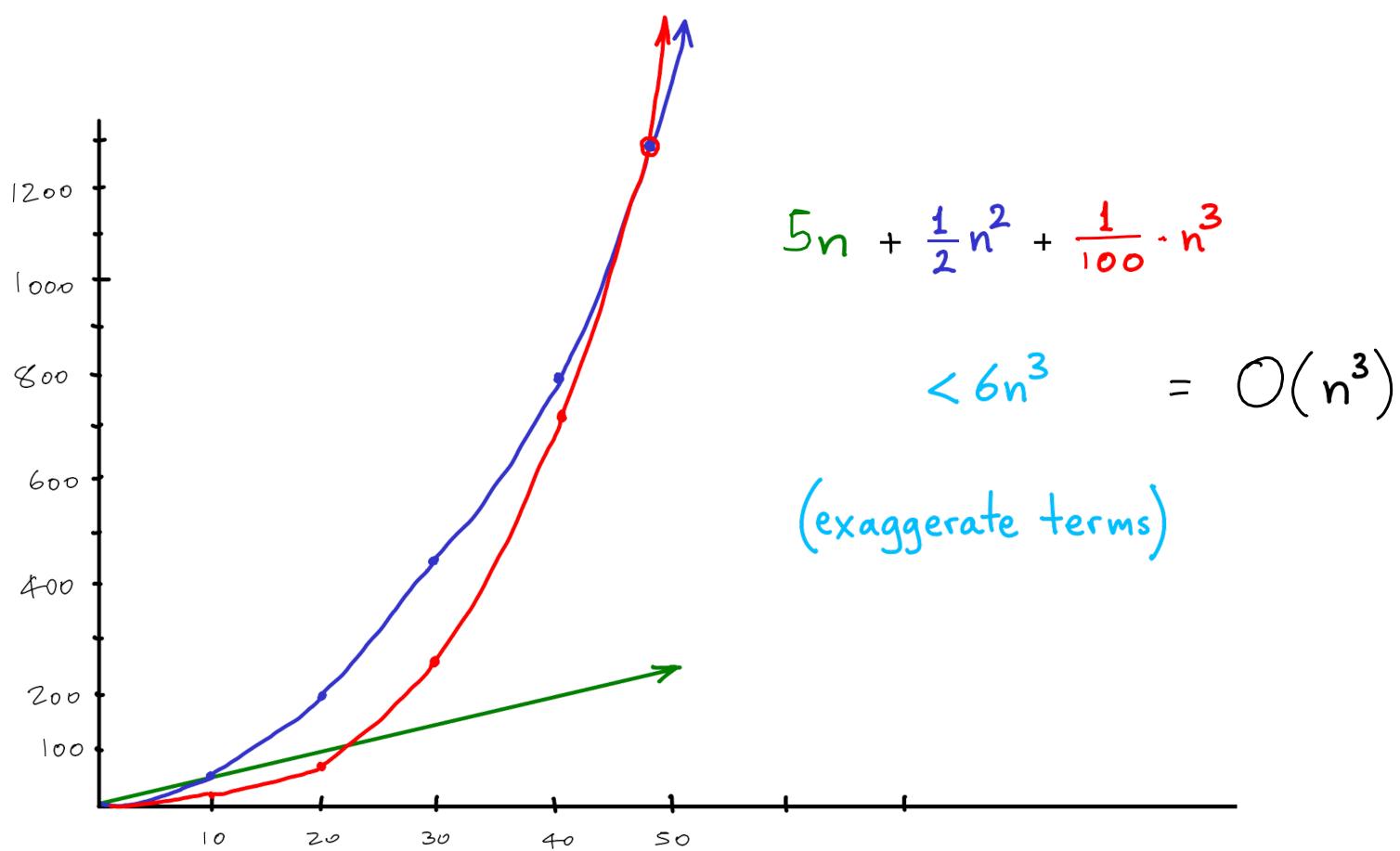
constant	logarithmic	linear	quadratic	polynomial	exponential
0(1)	O(log n)	O(n)	O(n ²)	O(n ^k) (k≥1)	O(a ⁿ) (a>1)











 $O(n^k)$

(compare to: a, n+azn+...tan)

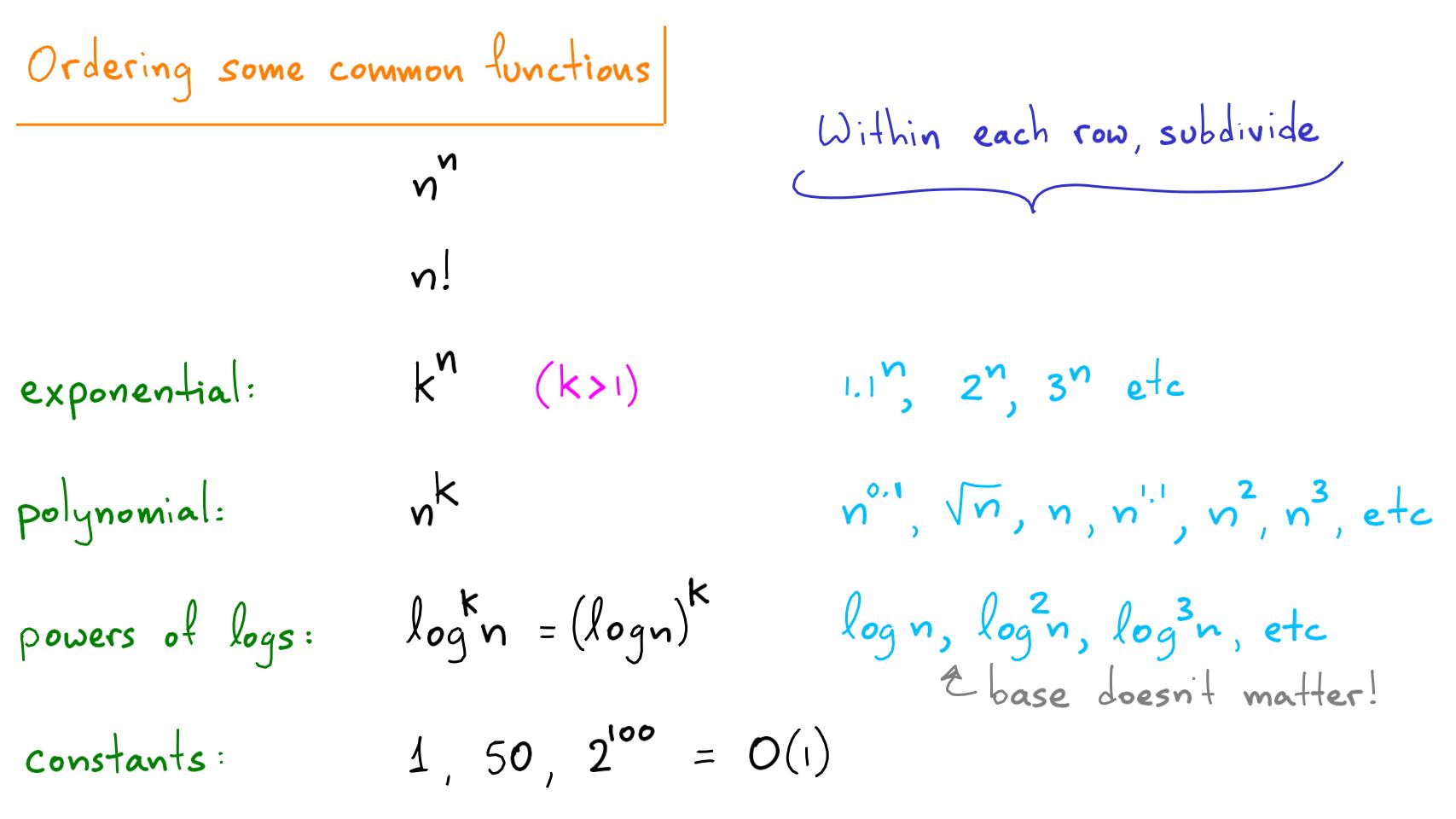
Polynomials: $a + bn + cn^2 + dn^3 - - + zn^k = O(n^k)$ a, b, c, d, ..., z : constants Also assuming one of each term (compare to: a, n+a2n+...tan)

 $50 \cdot logn^{3} + logn^{20} + n^{0.1} = O(n^{0.1})$ Logarithms : "weaker" than polynomial

Polynomials: $a + bn + cn^2 + dn^3 - - + zn^k = O(n^k)$ a, b, c, d, ..., z : constants Also assuming one of each term (compare to: a, n+azn+...tan)

 $50 \cdot \log^3 + \log^2 n + n' = O(n^{0.1})$ Logarithms : "weaker" than polynomial

Exponential: $100 \cdot n^{50} + 3^{n} + 40 \cdot 2^{n} = O(3^{n})$ "stronger" than polynomial



Summary

If runtime is...

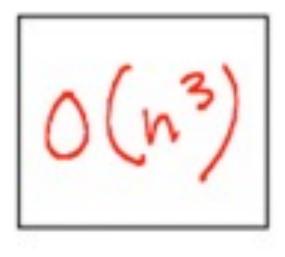
Constant/Logarithmic runtime Amazing
Linear Great
Quadratic Ok
Anything bigger? We are in trouble

Let's Practice!!!

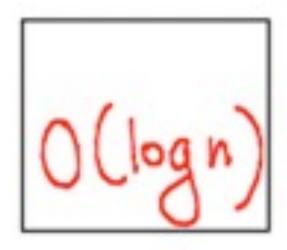
```
void silly(int n) {
   for (int i = 0; i < n; ++i) {
      for (int j = 0; j < i; ++j) {
        System.out.println("j = " + j);
      }
      for (int k = 0; k < n * 3; ++k) {
        System.out.println("k = " + k);
      }
   }
}</pre>
```



```
void silly(int n, int x, int y) {
  for (int i = 0; i < n; ++i) {
    if (x < y)
      for (int k = 0; k < n * n; ++k) {
        System.out.println("k = " + k);
      }
    else
      System.out.println("i = " + i);</pre>
```



```
void silly(int n) {
    if (n <= 0) return;
    System.out.println("n = " + n);
    silly(n-1);
void silly(int n) {
    if (n <= 0) return;
    System.out.println("n = " + n);
    silly(n/2);
```



$$f(N) = N \log(N^2) + N$$

$$f(N) = 20000^2 + N \log N + N$$

$$f(N) = 100N + N \log N + N/2$$

$$f(N) = N \cdot (\log (N^4) - \log N) + N^2$$

$$f(N) = N^2 \cdot \log_2 (N/2) + N^2$$