
YOUR NAME PLEASE:

Computer Science 201b
Practice Final Exam

Spring 2015
2.5 hour exam + .5 hour of writing up

Closed book and closed notes. Show ALL work you want graded on the test itself.

For problems that do not ask you to justify the answer, an answer alone is suffi-
cient. However, if the answer is wrong and no derivation or supporting reasoning is
given, there will be no partial credit.

GOOD LUCK!

problem points actual
1 12
2 12
3 12
4 12
5 12
6 12
7 12
8 12
9 12
10 12
total 120

1

1.(a) (6 points)

Write a Racket procedure (insert x lst) that takes as input a number x

and a list lst of numbers in non-decreasing order, and returns a list of

numbers in non-decreasing order that includes x and all the elements of lst.

There may be duplicates in the lists.

Examples:

(insert 7 ’(1 4 5 10 12)) => ’(1 4 5 7 10 12)

(insert 3 ’()) => ’(3)

(insert 2 ’(1 2 4)) => ’(1 2 2 4)

(insert 2 ’(1 2 2 4)) => ’(1 2 2 2 4)

2

1.(b) (4 points)

Assuming that the insert procedure works as in part (a),

use it to write a procedure (isort lst) that takes a list lst

of numbers and returns the list of numbers sorted into

non-decreasing order. There may be duplicates.

Examples:

(isort ’(6 3 10 1 5)) => ’(1 3 5 6 10)

(isort ’()) => ’()

(isort ’(4 2 2 1 2)) => ’(1 2 2 2 4)

1.(c) (2 points)

Give an example of a number x and a list lst of n elements in non-decreasing

order that make your insert procedure from part (a) run for

(i) the shortest time (best case):

(ii) the longest time (worst case):

3

2. An and/or expression is recursively defined. The base case is a Boolean

value or a symbol. The recursive case is a list containing three elements:

1. the left operand, which is an and/or expression,

2. the operation symbol, ’+ or ’*,

3. the right operand, which is an and/or expression.

Examples: ’x, #t, ’(#t + #f), ’(((x + y) * (u + v)) + (a + b))

2.(a) (3 points)

If exp is an and/or expression that is not a symbol or

a Boolean value, what Racket expressions will give the

following parts of exp (the first one is done):

(i) the left operand: (first exp)

(ii) the operation symbol:

(iii) the right operand:

2.(b) (6 points)

Write a Racket procedure (reformat exp) that takes an and/or expression

exp and reformats it so that the operation symbol comes first in the list,

followed by the left operand and then the right operand.

Examples:

(reformat #t) => #t

(reformat ’hi) => ’hi

(reformat ’(x + y)) => ’(+ x y)

(reformat ’(((x + y) * (u + v)) + (a + b))) => ’(+ (* (+ x y) (+ u v)) (+ a b))

4

2.(b) (more space)

2.(c) (3 points)

Draw the tree of recursive calls (and no return values) for the procedure call:

(reformat ’((a + b) * (c + (d + e)))).

5

3. Recall that the TC-201 assembly-language instructions are:

halt, load address, store address, add address, sub address,

input, output, jump address, skipzero, skippos, skiperr,

loadi address, storei address

and the directive: data number, which reserves one memory location

and stores the number in it.

3.(a) (10 points)

Write a TC-201 program in assembly language that reads in a number, n

and then prints out the first n odd positive integers, in increasing order,

and then halts. You may assume that n is between 1 and 5000, inclusive.

You may use symbolic addresses. An example of the behavior of the program:

input = 4

output = 1

output = 3

output = 5

output = 7

6

3.(b) (1 point)

What is the largest value of n for which we could expect to have a TC-201

program output the first n odd positive integers in increasing order.

Exponential notation is fine. Please justify your answer.

3.(c) (1 point)

Could there exist a Racket program that takes as input a configuration config

of the TC-201 computer and correctly decides whether starting in config the

machine would eventually reach a configuration with the run-flag equal to 0?

Assume that the user types 0 in response to every input instruction.

Please justify your answer.

7

4.

You are to design a combinational circuit with

four inputs: a1, a0, b1, b0, and two outputs: c1, c0.

a1 and a0 are interpreted as a 2-bit binary number A,

b1 and b0 are interpreted as a 2-bit binary number B, and

c1 and c0 are interpreted as a 2-bit binary number C.

The value of C should be the minimum of A and B.

For example, if a1 = 1 and a0 = 0 then A = 2 because 10

in binary is 2.

4.(a) (6 points)

Complete the rows of the truth table giving c1 and c0 as

a function of a1, a0, b1, b0:

a1 a0 b1 b0 | c1 c0

--

0 0 0 0 |

0 0 0 1 |

0 0 1 0 |

0 0 1 1 |

0 1 0 0 |

0 1 0 1 |

0 1 1 0 | 0 1

0 1 1 1 |

--

1 0 0 0 |

1 0 0 1 |

1 0 1 0 |

1 0 1 1 |

--

1 1 0 0 |

1 1 0 1 |

1 1 1 0 |

1 1 1 1 |

Note that for the row shown, a1 and a0 are 0 and 1, so A = 1,

and b1 and b0 are 1 and 0, so B = 2. Thus, C = min(A,B) = 1,

so c1 = 0 and c0 = 1.

8

4.

4.(b) (2 points)

Give Boolean expressions for c1 and c0.

c1 =

c0 =

4.(c) (4 points)

Draw a combinational circuit for computing outputs c1 and c0

from inputs a1, a0, b1, b0. You may use AND and OR gates of

any number of inputs, NOT gates of one input, and XOR gates of

two inputs. You may draw gates as simple boxes; be sure to

label your input and output wires and your gates (if you don’t

use the standard symbols.)

9

5. The following is a context-free grammar in BNF for a small subset

of syntactically correct Racket expressions.

<exp> ::= <id> | <number> | <boolean> | <lambda exp>

| <procedure call> | <if exp>

<id> ::= "x" | "y" | "z" | "+" | "*" | "="

<number> ::= "0" | "1" | "3" | "7" | "43"

<boolean> ::= "#t" | "#f"

<lambda exp> ::= "(" "lambda" <formals> <exp> ")"

<formals> ::= "(" <exp>* ")"

<procedure call> ::= "(" <exp> <exp>* ")"

<if exp> ::= "(" "if" <exp> <exp> <exp> ")"

5.(a) (3 points each)

For each expression below, draw a parse tree showing how it can be

derived from <exp> using the rules above.

(i) 43

(ii) (if (= y z) 1 0)

10

5.(a) continued.

(iii) ((lambda (x) (+ x 7)) 3)

5.(b) (3 points)

If L is a context-free language and reverse(L)

is the set of all reverses of strings in L, must reverse(L)

also be a context-free language? Please briefly justify your answer.

11

6. Consider a Racket procedure (make-set name) that takes a symbol name

as input and returns a Racket procedure that implements a set object with

local storage which can process the following commands:

name -- returns the name of the set

contains? value -- returns #t if value is a member of the

set, or #f if value is not a member of the set

include value -- changes the set so that value is a member of

the set, and returns the symbol ’ok

Initially the set has no members. Examples of using (make-set name):

> (define s1 (make-set ’first-set))

> (s1 ’name)

’first-set

> (s1 ’contains? 2)

#f

> (s1 ’include 2)

’ok

> (s1 ’include 3)

’ok

> (s1 ’contains? 2)

#t

> (define s2 (make-set ’second-set))

> (s2 ’contains? 2)

#f

> (s2 ’contains? ’second-set)

#f

> (s1 ’contains? 3)

#t

> (s2 ’name)

’second-set

>

12

6.(a) (9 points)

Write a Racket procedure to implement (make-set name).

No error checking is necessary.

6.(b) (3 points)

Describe or draw the accessible environments immediately

after the completion of the (s1 ’include 3) command above.

Include and label the search pointer of each environment

and the birth pointers of the procedures make-set and s1.

13

7.(a) (2 points)

Draw the box and pointer representation of the list x

constructed as follows.

> (define x (cons 13 (cons 17 (cons 14 ’()))))

> x

’(13 17 14)

>

x:

7.(b) (2 points)

Suppose x is as in 7(a) and we define y as follows

> (define y (cons 99 x))

> y

’(99 13 17 14)

>

Draw a new box and pointer diagram showing the resulting structure

of x and y.

x:

y:

7.(c) (2 points)

Explain why we can consider the Racket procedures rest (or cdr) and cons

to be constant time, that is, O(1).

14

7.(d) (3 points)

Consider the following Racket procedure.

(define (rev lst rlst)

(if (null? lst)

rlst

(rev (rest lst) (cons (first lst) rlst))))

Draw the tree of recursive calls (and no returns) for the procedure

call (rev ’(a b c) ’()).

7.(e) (3 points)

For the procedure in 7(d) suppose we call (rev lst ’()) where the

list lst contains n numbers. Give a "Big Theta" bound in terms of n for

the running time of this procedure call, and explain why it is correct.

15

8. For each of the following pairs consisting of a string and a regular

expression, determine whether the string is in the language of the regular

expression or not, answering YES or NO. Recall that | stands for "or"

and * for "Kleene star", that is, zero or more repetitions.

In each case the alphabet is {a,b,c}.

(2 points each)

8.(a) aaccc (a)*(b)*(c)*

8.(b) abaacbcc (a|b)*(b|c)*

8.(c) abcbc ((ab | ba)* | (bbc | cbc)*)

8.(d) bccbacba (bc | bcc)(bac | cba)(cba | aa)

16

8.(e) accbcc ((a | b)c(c)*)*

8.(f) cabacbbbb (ca | ba | aa | cb | bb | ab)*

17

9. Answer each question briefly. (2 points each)

9.(a) What is the main thing a compiler does?

9.(b) Give an example of a set of strings that is not regular.

9.(c) What is memoization, and when is it useful?

9.(d) Give a small example of a sequential (not combinational) circuit.

18

9.(e) We proved that there can be no program to solve the Halting Problem.

State the Halting Problem for Racket programs.

9.(f) Is the following procedure tail recursive? Why or why not?

(define (proc lst n)

(if (null? lst)

n

(proc (cdr lst) (+ n 1))))

19

10. A *rewriting system* R consists of a finite alphabet of symbols and

a finite set of rules. Each rule is of the form s1 -> s2, where s1 and

s2 are strings of symbols. The lefthand side of the rule is s1 and the

righthand side of the rule is s2.

A *derivation step* is a pair of strings (t,u) such that for

some rule s1 -> s2, u is obtained from t by replacing one occurrence

of s1 as a substring of t by s2. A *completed derivation* is a

finite sequence of strings (t1, t2, ..., tn) such that

(1) each consecutive pair forms a derivation step, and

(2) no rule applies to the last string, tn.

In this case, we say t1 *may yield* tn.

As an example, consider a rewriting system with alphabet {x,y} and

the single rule yx -> xy. For this system, we have a completed derivation:

yyxyx, yxyyx, yxyxy, yxxyy, xyxyy, xxyyy.

Note that no rule applies to the last string. Thus, yyxyx may yield xxyyy.

10.(a) (3 points)

In the example one-rule system above, if a string s may yield a string t,

describe how are s and t related.

20

10.(b) (6 points)

For the alphabet {0,1} construct rules for a rewriting system such that

for every non-empty string s, s may yield exactly one of 0 or 1, and

s may yield 1 if and only if the number of 1’s in s is odd.

(You’ll need more than one rule.)

Examples of the behavior of this system:

101110 may yield 0, but not 1.

1101101 may yield 1, but not 0.

0000 may yield 0, but not 1.

10.(c) (3 points)

We define a decision problem as follows. The input is a rewriting

system R and a string s. (We assume the alphabet of R contains 1.)

The output is "yes" if s may yield 1 in the system R, and "no" otherwise.

Is this a computable problem or not? Please briefly justify your answer.

21

