
CPSC 201: Midterm 2 Review

Spring 2025 😄
Hosted by

Deanna DeCarlo and Miranda Selin

Midterm Exam 2
Tuesday, April 1st at 7:00 PM

in Davies Auditorium (SAS: Becton C031)

Agenda

1. Exam resources and topics

2. Boolean expressions

3. Gates and circuits

4. UNIX Principles 3 & 4

5. Tail recursion

6. Q&A (time permitting)

Agenda

1. Exam resources and topics

2. Boolean expressions

3. Gates and circuits

4. UNIX Principles 3 & 4

5. Tail recursion

6. Q&A (time permitting)

General Class Resources
• Course website

• Lecture notes
• UNIX Guide
• Jupyter Notebook (best resource IMO)

• Practice materials for Midterm 2
• Practice exam and solutions (Ignore problems 3, 4, 5a, and 5e)
• UNIX transcript and solutions

• Racket guide
• UNIX tutorial (more info in a following section)

• ssh into the Zoo; then in your home folder, type the following command:
python3 /c/cs201/www/unixtutorial.py

• Ed Discussion
• cs201help@cs.yale.edu (automatically emails Professor Slade and the ULAs)
• Office hours

https://zoo.cs.yale.edu/classes/cs201/
https://zoo.cs.yale.edu/classes/cs201/spring_2025/lectures.html
http://zoo.cs.yale.edu/classes/cs201/UNIX.html
https://zoo.cs.yale.edu/classes/cs201/spring_2025/lectures/cs201.html
https://zoo.cs.yale.edu/classes/cs201/spring_2025/materials/p-exam2.pdf
https://zoo.cs.yale.edu/classes/cs201/spring_2025/materials/p-exam2-solution.pdf
https://zoo.cs.yale.edu/classes/cs201/spring_2025/lectures/mt2.script
https://zoo.cs.yale.edu/classes/cs201/spring_2025/lectures/mt2.script.answer
https://docs.racket-lang.org/guide/
mailto:cs201help@cs.yale.edu
https://csofficehours.org/CS201/schedule

On the exam: ✅
• Boolean functions

• Gates/circuits

• Tail recursion

• UNIX Principles 1 - 4

• The halting problem

• Writing Turing machines

• TC-201

Not on the exam: 🙏

Relevant Topics from Midterm 1

1. General Racket functions
2. Recursion
3. UNIX Principles 1 & 2

See Owen’s Midterm Exam 1 review slides here.

https://docs.google.com/presentation/d/1r9L6qxyb7Ot9CfP1upmRuBAhQIIo5rml1Y2sHQAQ1IA/edit?slide=id.p1#slide=id.p1

Agenda

1. Exam resources and topics

2. Boolean expressions

3. Gates and circuits

4. UNIX Principles 3 & 4

5. Tail recursion

6. Q&A (time permitting)

Key Ideas

• Truth tables

• Operations:

• and (•)

• or (+)

• not (‘)

• Sum of products algorithm

• (optional) Boolean algebra (NOT ON EXAM)

What is a Truth Table?

• Table of all the possible truth values returned by a boolean

expression from all the possible inputs

• Number of possible sets of inputs doubles for every

variable (every variable can be either 0 or 1)

• You can always find a corresponding boolean expression

for every truth table using the sum of products method

Sum of Products Method

1. Isolate rows where the output is 1/true and ignore rows
where output is 0/false

2. For each true row, write a sub-expression that takes the
AND of all the variables together while taking the NOT for
any variable whose input value is 0

3. Take the OR of all the sub-expressions together to produce
a final expression

4. (Optional) Simplify the expression if possible

Sum of Products

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:

Sum of Products

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:
1. Find all the true values in the output

column

Sum of Products

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

x’•y•z

x•y’•z

x•y•z’

x•y•z

How I approach truth tables:
1. Find all the true values in the output

column
2. Write Boolean expressions for the

corresponding rows

x y z f(x,y,z)

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

How I approach truth tables:
1. Find all the true values in the output

column
2. Write Boolean expressions for the

corresponding rows
3. Add these expressions together to get

your final sum of products:
(x’•y•z)+(x•y’•z)+(x•y•z’)+(x•y•z)

Equivalently:
(x•y)+(y•z)+(x•z)

x’•y•z

x•y’•z

x•y•z’

x•y•z

Sum of Products

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Sum of Products Practice

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 0

1 1 1 0

Solution:

(x’•y’•z’)+(x’•y•z’)+(x•y’•z’)+(x•y’•z)

OR

(x’•z’)+(x•y’)

Sum of Products Practice

Boolean Algebra (NOT ON EXAM)

• Sum of products is reliable but not always efficient
• Writing a sub-expression for every valid truth table row

can get messy if there are many true rows
• Luckily boolean algebra has many laws and rules that work

similar to normal algebra to help reduce large expressions
to shorter, equivalent statements

• Order of operations: NOT, AND, OR
• NOTE: The next 4 slides are NOT tested on the exam but

knowing it makes life much easier (especially for circuits)

Useful Laws to Know (NOT ON EXAM)

Annulment Law:

X • 0 = 0 X + 1 = 1

Identity Law:

X • 1 = X X + 0 = X

Idempotent Law:

X • X = X X + X = X

Complement Law:

X • X’ = 0 X + X’ = 1

Double Negation Law:

(X’)’ = X

XOR Gate:

X XOR Y = X’Y + XY’

Useful Laws to Know (NOT ON EXAM)

Commutative Law:

X • Y = Y • X

X + Y = Y + X

Associative Law:

X • (Y • Z) = (X • Y) • Z

X + (Y + Z) = (X + Y) + Z

Distributive Law:

X • (Y + Z) = XY + XZ

X + (Y • Z) = (X + Y) • (X + Z)

Redundancy Law:

(X + Y’) • Y = X • Y

(X • Y’) + Y = X + Y

Reducing an Expression Example

x’yz + xy’z + xyz

x’yz + xy’z + xyz = (x’ + x)(yz) + xy’z

(x’ + x)(yz) + xy’z = 1(yz) + xy’z

1(yz) + xy’z = yz + xy’z

yz + xy’z = z(y + xy’)

z(y + y’x) = z(x + y)

z(x + y) OR zx + zy

Distributive Law

Complement Law

Identity Law

Distributive Law

Redundancy Law

Final Answer

Extra Resources for Boolean Expressions

Truth Table Generator: gives a truth table for a given
boolean/logic expression

Boolean Algebra Calculator: reduce a given boolean
expression to its simplest form with steps

Boolean Algebra Laws: short table to reference general
boolean algebra rules and laws

https://www.emathhelp.net/en/calculators/discrete-mathematics/truth-table-calculator/
https://www.emathhelp.net/en/calculators/discrete-mathematics/boolean-algebra-calculator/?f=%28%7Ex%E2%88%A7%7Ey%E2%88%A7%7Ez%29%2B%28x%E2%88%A7y%E2%88%A7z%29%2B%28x%E2%88%A7%7Ey%E2%88%A7z%29%2B%28x%E2%88%A7y%E2%88%A7%7Ez%29
https://www.mi.mun.ca/users/cchaulk/misc/boolean.htm

You don’t always have to use sum-of-products

x y z f(x,y,z) g(x,y,z) h(x,y,z)

0 0 0 1 0 0

0 0 1 1 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 1 1

1 0 1 1 1 1

1 1 0 0 1 1

1 1 1 0 1 1

Find an expression for each of the following: f, g, and h

You don’t always have to use sum-of-products

x y z y’ x + yz x + y + z

0 0 0 1 0 0

0 0 1 1 0 1

0 1 0 0 0 1

0 1 1 0 1 1

1 0 0 1 1 1

1 0 1 1 1 1

1 1 0 0 1 1

1 1 1 0 1 1

Find an expression for each of the following: f, g, and h

Agenda

1. Exam resources and topics

2. Boolean expressions

3. Gates and circuits

4. UNIX Principles 3 & 4

5. Tail recursion

6. Q&A (time permitting)

Circuits

Circuits are basically Boolean logic expressions with an additional

dimension of time (aka gate delays).

In combinational circuits (no “loops”) that additional dimension only

matters for figuring out how long it will take the circuit to produce its final

output.

In sequential circuits, wherein the output is determined by both the

current input and prior states of the circuit, time really does matter.

Combinational vs. Sequential Circuits
Combinational circuits:

• No loops of wires and gates

• In a combinational circuit, the
eventual final outputs of the
circuit are completely
determined by the values of
the circuit inputs

Examples:

• Full-adder

• Half-adder

Sequential circuits:

• “Loop-y”

• The outputs of a sequential circuit
may depend on both the inputs and
the past values of the wires of the
circuit

Examples:

• “Garden of Eden” circuit

• NAND latch

Combinational Circuits

Half-Adder Full-Adder

Sequential Circuits
NAND Latch

Garden of Eden

Full-Adder

Practice designing circuits (from sample exam)

Draw a combinational circuit with

• inputs r, a, b
• outputs x, y

that computes the following:

• if r = 0 then x = a and y = b
• if r = 1 then x = b and y = a

You may use NOT and 2-input AND, OR, XOR. Make sure you label the input and
output wires of your circuit, and label your NOT, AND, OR and XOR gates (which can
be represented by rectangles with the correct labels.)

Step 1: Draw out the corresponding truth table

r a b x y

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Step 1: Draw out the corresponding truth table

r a b x y

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Recall: if r = 0 then x = a and y = b

Step 1: Draw out the corresponding truth table

r a b x y

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 0

1 1 0 0 1

1 1 1 1 1

Recall: if r = 1 then x = b and y = a

Step 2: use sum-of-products algorithm to find
expression for x

r a b x y

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 0

1 1 0 0 1

1 1 1 1 1

r’a

rb

 x = r’a + rb

Step 3: use sum-of-products algorithm to find
expression for y

r a b x y

0 0 0 0 0

0 0 1 0 1

0 1 0 1 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 0

1 1 0 0 1

1 1 1 1 1
ra

r’b

 y = r’b + ra

Step 4: translate your expressions for x and y
into a circuit!

 x = r’a + rb
 y = r’b + ra

Gate Delays

• For every combinational circuit, there is a set number of gate

delays before the circuit outputs the final values

• The total gate delays required does NOT depend on the total

number of gates

• This is because gates can run in parallel

• Instead it depends on the number of gates in the longest path

between any input wire and any output wire

Gate Delays

How many gate delays
are required to solve
the final output?

Remember to find the
longest path first

Gate Delays

Answer: 3 gate delays

Longest path is from r to
either x or y and passes
through a NOT, AND, and
OR gate

Good circuits to know

• D flip-flop and NAND latch
• Half-adder, full-adder, and ripple-carry adder

NAND Latches/D Flip-Flop

Your key takeaway should be that a D Flip Flop enables the storage of

information through the use of a NAND latch.

How?

NAND Latches/D Flip-Flop

Your key takeaway should be that this type of circuitry enables the storage of
information.
How?

There are 5 stable states in a NAND latch. If we only move between some subset of
them in a well-defined way, we can ensure that we never reach an unstable
state—and, as such, we can store information. The D flip-flop is a bit of extra
circuitry that allows us to use a selector wire to adjust the state of the NAND latch.
If the selector is high, the NAND latch will change state in accordance with the
input wire. If the selector is low, the NAND latch will not change state.
*Stable: wires are not different after one gate delay.

NAND Latches/D Flip-Flop

Basically, when s=0, the D-flip flop just remembers the previous value of q.

And, when s=1, q is set to the value of d.

Main Takeaway: Equivalent Forms

Boolean
Expression

Combinational*
Circuits

*Not sequential

Truth Table

Questions?

Extra Practice Problem (Booleans and Circuits)

Write an expression for f(x,y,z). Translate your expression into a circuit.

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Answer - Part 1

x y z f(x,y,z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

Sum of Products:
(X’Y’Z’) + (XY’Z) + (XYZ)

Or simplified:
(X’Y’Z’) + (XZ)(Y’ + Y)

 =
(X’Y’Z’) + (XZ)

Identity Law:
X + X’ = 1

Answer - Part 2

(X’Y’Z’) + (XY’Z) + (XYZ) (X’Y’Z’) + (XZ)

Agenda

1. Exam resources and topics

2. Boolean expressions

3. Gates and circuits

4. UNIX Principles 3 & 4

5. Tail recursion

6. Q&A (time permitting)

How can I get better at UNIX?

1. UNIX tutorial on the Zoo! ssh into the Zoo; then in your home
folder, type the following command:

python3 /c/cs201/www/unixtutorial.py

1. Practice typing commands on the Zoo

General tips:

• Be familiar with the output of each command (important in
context of the transcript!)

Useful UNIX commands (Principles 3)

• diff
• grep
• file
• --help

UNIX Highlight: diff

• Find difference between 2 files

UNIX Highlight: grep

• Search an input with a given regular expression and return lines
that match the pattern

UNIX Highlight: file

• Returns the file type of a given file or files

UNIX Highlight: --help

• Similar to man, but gives a
succinct summary of the
command’s functionality

Other commands (Principle 3)

• whoami
• id
• uptime
• who
• w
• last
• info

• uname
• lsb_release
• du
• quota
• free
• finger

A few scenarios
We will mostly focus on Principle 3 during this review session, but be sure to review
principles 1-2 as well!

scenario 1

scenario 1

scenario 2

scenario 2

scenario 3

scenario 3

scenario 4

scenario 4

scenario 5

scenario 5

scenario 6

scenario 6

scenario 7

scenario 7

scenario 8

scenario 8

scenario 9

scenario 9

scenario 10

scenario 10

Extra UNIX 1
[crb84@scorpion tmp]$ ls
Friday test test_01 test_02
[crb84@scorpion tmp]$ XXXX1
[crb84@scorpion tmp]$ ls
files Friday test test_01 test_02
[crb84@scorpion tmp]$ ls > files_new
[crb84@scorpion tmp]$ XXXX2
0a1,3
> files
> files_new
> Friday
[crb84@scorpion tmp]$

Extra UNIX 1 Solution
[crb84@scorpion tmp]$ ls
Friday test test_01 test_02
[crb84@scorpion tmp]$ ls | grep test > files
[crb84@scorpion tmp]$ ls
files Friday test test_01 test_02
[crb84@scorpion tmp]$ ls > files_new
[crb84@scorpion tmp]$ diff files files_new
0a1,3
> files
> files_new
> Friday
[crb84@scorpion tmp]$

Extra UNIX 2
[crb84@scorpion tmp]$ ls -l
total 0
[crb84@scorpion tmp]$ XXXX1
[crb84@scorpion tmp]$ ls -l
total 4
-rw-rw-r-- 1 crb84 crb84 204 Apr 15 21:49 1
[crb84@scorpion tmp]$ XXXX2
 total used free shared buff/cache available

Extra UNIX 2 Solution
[crb84@scorpion tmp]$ ls -l
total 0
[crb84@scorpion tmp]$ free > 1
[crb84@scorpion tmp]$ ls -l
total 4
-rw-rw-r-- 1 crb84 crb84 204 Apr 15 21:49 1
[crb84@scorpion tmp]$ head -n1 1
 total used free shared buff/cache available

Questions?

Agenda

1. Exam resources and topics

2. Boolean expressions

3. Gates and circuits

4. UNIX Principles 3 & 4

5. Tail recursion

6. Q&A (time permitting)

Things to know about tail recursion

You should be able to…
1. Describe tail recursion generally
2. Implement a tail-recursive function
3. Explain the benefits of tail recursion

What is Tail Recursion?

• A style of writing a recursive function to save memory and
increase efficiency
• Uses less memory since recursive calls don’t build up

on the stack
• Faster because you don’t have to push and pop extra

calls
• A function is tail recursive if it executes the recursive call

last in its definition

An Aside on Stacks

• Standard type of linear data
structure

• Last in, First out (LIFO) method
for adding/removing data

• Adding to a stack is called “push”
and removing from a stack is
called “pop”
• Think of a stack of plates

• You can only add/remove
from the top

What is Tail Recursion?

Key Idea: The last call in the function definition is the
recursive call*

In other words, the highest level function inside your recursive
function must be the recursive call. The recursive call cannot
be an argument to another function (except if/cond)

There are some clues you can look for to determine if a
function fulfills these criteria
*Definition taken from lecture notes

https://zoo.cs.yale.edu/classes/cs201/fall_2023/lectures/TailRecursion.html#Tail-Recursion

Identifying Tail Recursion

2 things to check for: top level function and base case return value

1. Top-level function (required)
a. Is the highest level function in the definition the recursive

call? (i.e. are all functions you’re using nested under the
recursive call as arguments?)*

2. Base case (more informal)
a. Are you returning the result at the base case or a starting

value to build on? (i.e. are you returning the final output
you want or something like a list that will be cons’d onto?)

*some minor exceptions to this like if/cond statements

Writing Reverse Function – 2 Styles

Writing Reverse Function – 2 Styles

Basic Recursion
(define (rev1 lst)

(if (empty? lst)

‘()

(append

(rev1 (rest lst))

(list (first lst))

)

)

)

Writing Reverse Function – 2 Styles

Basic Recursion
(define (rev1 lst)

(if (empty? lst)

‘()

(append

(rev1 (rest lst))

(list (first lst))

)

)

)

Tail Recursion
(define (rev2 lst [result ‘()])

(if (empty? lst)

result

(rev2

(rest lst)

(cons (first lst) result)

)

)

)

Writing Reverse Function – 2 Styles

Basic Recursion
(define (rev1 lst)

(if (empty? lst)

‘()

(append

(rev1 (rest lst))

(list (first lst))

)

)

)

Tail Recursion
(define (rev2 lst [result ‘()])

(if (empty? lst)

result

(rev2

(rest lst)

(cons (first lst) result)

)

)

)

Notice what gets
returned at base case

Writing Reverse Function – 2 Styles

Basic Recursion
(define (rev1 lst)

(if (empty? lst)

‘()

(append

(rev1 (rest lst))

(list (first lst))

)

)

)

Tail Recursion
(define (rev2 lst [result ‘()])

(if (empty? lst)

result

(rev2

(rest lst)

(cons (first lst) result)

)

)

)

Notice what function
is at the highest level

Agenda

1. Exam resources and topics

2. Boolean expressions

3. Gates and circuits

4. UNIX Principles 3 & 4

5. Tail recursion

6. Q&A (time permitting)

