
Music and Computation
Stephen Slade
Yale Computer Science Department

Video - Title of the Song https://www.youtube.com/watch?v=734wnHnnNR4
DaVinci’s Notebook

Abstraction

A fundamental principle of Computer Science is abstraction - creating artifacts from primitive
elements and successive layers of high level constructs. For example, a typical digital computer
might comprise the following successive layers of hardware and software:

https://softwareg.com.au/blogs/computer-hardware/hardware-layer-in-computer-architecture

1

https://www.youtube.com/watch?v=734wnHnnNR4
https://softwareg.com.au/blogs/computer-hardware/hardware-layer-in-computer-architecture

Numbers

Spoiler alert: everything in the computer boils down to zeros and ones – binary numbers. A
single zero or one is a binary digit or bit. All digital data comprises a string of bits: numbers,
text, images, sounds, video - everything.

Moreover, the fundamental theoretical definition of computation is simply a process that
converts one string of bits to another string of bits. The Turing Machine is the epitome of this
model. See https://en.wikipedia.org/wiki/Turing_machine

We start with binary numbers - base 2. Here are some examples of positive integers in binary
and decimal:

Binary Number
(base 2)

Decimal Number
(base 10)

1 1

10 2

100 4

101 5

1010 10

100001 33

1000001 65

1100100 100

Though computers excel at binary or true/false logical representations, most people find it
difficult to process binary numbers. We can employ base 8 or octal to group binary digits. The
octal digits range from 0 to 7. The octal number 10 represents 8. See
https://en.wikipedia.org/wiki/Octal Below we add a column of octal to the previous table.

Binary Number
(base 2)

Decimal Number
(base 10)

Octal Number
(base 8)

1 1 1

10 2 2

100 4 4

2

https://en.wikipedia.org/wiki/Turing_machine
https://en.wikipedia.org/wiki/Octal

101 5 5

1010 10 12

100001 33 41

1000001 65 101

1100100 100 144

We can go one step up by a power of 2 to base 16 or hexadecimal. In this case, we need
additional digits for the numbers 10, 11, 12, 13, 14, and 15. We use the initial letters of the
alphabet, namely, A, B, C, D, E, and F - either upper or lower case. See
https://en.wikipedia.org/wiki/Hexadecimal Below we add another column of hexadecimal to the
previous table.

Binary Number
(base 2)

Decimal Number
(base 10)

Octal Number
(base 8)

Hexadecimal
Number (base 16

1 1 1 1

10 2 2 2

100 4 4 4

101 5 5 5

1010 10 12 A

100001 33 41 21

1000001 65 101 41

1100100 100 144 64

It is important to note that converting an integer from binary to decimal to octal to hexadecimal is
exact. There is no loss of information. You can go back and forth among the bases with no
rounding errors or loss of information. It is a lossless process. See
https://en.wikipedia.org/wiki/Lossless_compression We can view the conversion of the binary
number 1100100 to the hexadecimal number 64 as a lossless compression. We went from 7
digits to 2 digits.

We note that negative integers are usually represented by a sign-bit prefix to the binary
representation. See https://en.wikipedia.org/wiki/Signed_number_representations Again, this is
a lossless process.

3

https://en.wikipedia.org/wiki/Hexadecimal
https://en.wikipedia.org/wiki/Lossless_compression
https://en.wikipedia.org/wiki/Signed_number_representations

There are limits of precision to integer representations largely due to the finite size of computer
words. Common word sizes are 32 bits and 64 bits. A 32 bit computer, with an initial sign bit,
could not represent an integer greater than 231 or 2,147,483,648. A computation that exceeded
that value would cause an integer overflow error. See
https://en.wikipedia.org/wiki/Integer_overflow Similarly, a 64 bit computer with a sign bit would
have an upper limit of 263 or 9,223,372,036,854,775,808. For most applications, you are not
likely to exceed either limit, for example, in calculating your income taxes.

There are many other flavors of numbers, including rationals, reals, decimals, floating point,
complex, imaginary, and irrational. Some languages, like racket, have exact representations for
rationals, like ⅓, which is represented by the integers 1 and 3. However, many languages will
convert rationals to their decimal approximations, such as .3333. Note that .3333 does not
equal ⅓. There is a rounding error. In racket, .3333 is an inexact number, while ⅓ is an exact
number.

Decimal numbers are commonly represented using floating point notation. See
https://en.wikipedia.org/wiki/Floating-point_arithmetic As in scientific notation, floating point
numbers have a sign, a base, a mantissa, and an exponent. Floating points numbers are a
subset of the real numbers, and often are inexact, that is, they have rounding errors. As such,
conversion to floating point can be lossy. See https://en.wikipedia.org/wiki/Lossy_compression
We will encounter lossy compression again in images, audio, and video.

Text
Text is ubiquitous in the digital world. Think of email, text messages, pdf documents, and web
pages. The document you are reading now consists of digital text. Holy Recursion, Batman!

The digital representation of text is, wait for it, numbers. Each letter of the alphabet is encoded
as a unique number, more precisely, a positive integer. In addition, the numerical encoding also
imposes an order on the alphabet such that if you sort the text numerically, you also sort the text
alphabetically, except for upper / lower case differences.

Before computers, there were punched cards. See https://en.wikipedia.org/wiki/Punched_card
IBM dominated this technology. Below is a sample 80 column card.

4

https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Lossy_compression
https://en.wikipedia.org/wiki/Punched_card

Text on punched cards was represented by the patterns of holes punched in the card, left to
right. See https://en.wikipedia.org/wiki/Punched_card This code is also known as Hollerith
Code, for its inventor, Hermann Hollerith, who was the founder of the company that became
IBM. See https://en.wikipedia.org/wiki/Herman_Hollerith The idea of machines controlled by
punched cards goes back to 1804 and the Jacquard Loom, invented by Joseph Marie Jacquard.
See https://en.wikipedia.org/wiki/Joseph_Marie_Jacquard

One of the earliest text encodings was Binary Coded Decimal or BCD, promulgated by IBM for
punch card devices before the advent of computers. Also known as Binary Coded Decimal
Interchange Code or BCDIC. See
https://en.wikipedia.org/wiki/Binary-coded_decimalhttps://en.wikipedia.org/wiki/BCD_(character_
encoding)

BCDIC was limited. For example, it had only upper case letters. IBM extended the encoding to
create EBCDIC (Extended Binary Coded Decimal Interchange Code) which was used in the
IBM 360 family of computers which dominated the mainframe computer market starting in the
1960’s. See https://en.wikipedia.org/wiki/EBCDIC

5

https://en.wikipedia.org/wiki/Punched_card
https://en.wikipedia.org/wiki/Herman_Hollerith
https://en.wikipedia.org/wiki/Joseph_Marie_Jacquard
https://en.wikipedia.org/wiki/Binary-coded_decimal
https://en.wikipedia.org/wiki/BCD_(character_encoding)
https://en.wikipedia.org/wiki/BCD_(character_encoding)
https://en.wikipedia.org/wiki/EBCDIC

An 80-column punched card with the extended character set introduced with EBCDIC in 1964.

ASCII and Unicode
The main alternative to EBCDIC was ASCII (American Standard Code for Information
Interchange). See https://en.wikipedia.org/wiki/ASCII IBM was actually an advocate for ASCII,
but was not able fully to support it in the IBM 360 rollout. However, when IBM brought out its
personal computer or PC, it used ASCII. UNIX had already been in the ASCII camp.

BCDIC, EBCDIC, and ASCII shared a common failing. They were limited to the Roman or Latin
alphabet required for English. An ASCII character is 7 bits, which means that you can have 27
or 128 different characters. That is sufficient for 10 decimal digits, upper and lower case letters,
and a smattering of punctuation marks and control codes, like new line, tab, or carriage return.
However, languages like French and German have diacritical marks, and other languages like
Greek, Russian, Arabic, and Hebrew have non-Latin alphabets. Moreover, beyond languages
like Chinese, Japanese, and Korean there are a boatload of other writing systems. See
https://en.wikipedia.org/wiki/List_of_writing_systems

People can adapt to technology. It is possible to use the Latin alphabet to encode other
languages. For example, there is a Yale system for encoding Mandarin Chinese.
https://en.wikipedia.org/wiki/Yale_romanization_of_Mandarin

However, it is usually better for computers to adapt to people. Thus, in the 1980’s researchers
at Xerox and Apple developed Unicode, which currently comprises roughly 150,000 characters
(or “code points”) including emojis!
See https://en.wikipedia.org/wiki/Unicode

Unicode characters may be up to 4 bytes (32 bits) wide. The common UTF-8 format can
include up to four bytes. See https://en.wikipedia.org/wiki/UTF-8

Base64
As you may know, bit strings can include non-graphic letters, including whitespace characters
like newline and tab, as well as control characters, such as control-C or control-Z. Sometimes
you want to be able to send a message or create a file in which the non-graphic letters appear
as ink on the page (or pixels on the screen.) That’s where Base64 comes in handy. See
https://en.wikipedia.org/wiki/Base64 The 64 refers to the 64 characters which comprise the
Base64 encoding. You need only 6 bits to represent 64 unique characters (26 = 64). Here is the
translation table:

6

https://en.wikipedia.org/wiki/EBCDIC
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/List_of_writing_systems
https://en.wikipedia.org/wiki/Yale_romanization_of_Mandarin
https://en.wikipedia.org/wiki/Unicode
https://en.wikipedia.org/wiki/UTF-8
https://en.wikipedia.org/wiki/Base64

See https://www.debugpoint.com/bash-base64-encode-decode/

With Base64, you can convert any bit string into a set of printable characters! For example, you
could take a compiled C program and make it text that you could include in an email. The idea
is that you break the bit string into 6 bit numbers which are then replaced with the corresponding
Base64 character.

Here is an example from the Wikipedia entry:

Here is a well-known idiom from distributed computing:

Many hands make light work.

When the quote (without trailing whitespace) is encoded into Base64, it is
represented as a byte sequence of 8-bit-padded ASCII characters encoded in
MIME's Base64 scheme as follows (newlines and white spaces may be present
anywhere but are to be ignored on decoding):

TWFueSBoYW5kcyBtYWtlIGxpZ2h0IHdvcmsu

In the above quote, the encoded value of Man is TWFu. Encoded in ASCII, the
characters M, a, and n are stored as the byte values 77, 97, and 110, which are
the 8-bit binary values 01001101, 01100001, and 01101110. These three
values are joined together into a 24-bit string, producing
010011010110000101101110. Groups of 6 bits (6 bits have a maximum of 26
= 64 different binary values) are converted into individual numbers from start to
end (in this case, there are four numbers in a 24-bit string), which are then
converted into their corresponding Base64 character values.

7

https://www.debugpoint.com/bash-base64-encode-decode/
https://en.wikipedia.org/wiki/Idiom
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/MIME
https://en.wikipedia.org/wiki/Binary_number#Counting_in_binary

There is a UNIX command, base64, which does the conversion.

$ echo Many hands make light work | base64
TWFueSBoYW5kcyBtYWtlIGxpZ2h0IHdvcmsK

The -d option will decode the text.

$ echo Many hands make light work | base64 | base64 -d
Many hands make light work

QR Codes
You are familiar with the ubiquitous quick-response or QR codes. See
https://en.wikipedia.org/wiki/QR_code They are actually another way to encode text, without
loss of information. Here is an example using the Python qrcode module

>>> import qrcode
>>> img = qrcode.make("https://zoo.cs.yale.edu/classes/cs201/index.html")
>>> img.save("qrcs201.png")

The following image is the result. Check it out with your phone.

The graphic layout was inspired by the board game go, with its alternating white and black
stones.

While conventional bar codes are capable of storing a maximum of approximately 20 digits, QR
Code is capable of handling several dozen to several hundred times more information.

QR Code is capable of handling all types of data, such as numeric and alphabetic characters,
Kanji, Kana, Hiragana, symbols, binary, and control codes. Up to 7,089 characters can be
encoded in one symbol. See https://www.qrcode.com/en/about/

8

https://en.wikipedia.org/wiki/QR_code
https://www.qrcode.com/en/about/

What does the above QR code represent?

The bottom line: any digital text document of any size is simply a string of bits.

Images
Pictures, drawings, and photographs are commonly represented as dots on a screen or page. If
the image is simply black and white, the dots can be represented inside the computer with a
single bit, which can encode 2 values: black or white. A single dot on the screen is a picture
element, or pixel. A rectangular array of bits is a bitmap. A bitmap that is 800 bits wide and
1,000 bit high would contain 800,000 bits or roughly 100,000 bytes or 100 kilobytes. (Actually, a
kilobyte is 210 bytes or 1024 bytes.)

Images can also be in shades of gray, or color. The available shades or hues is determined by
the number of bits used to represent an individual pixel. This value is known as the color depth
or bits per pixel. See https://en.wikipedia.org/wiki/Color_depth Using one byte per pixel has a
color depth of 8, which could represent up to 256 different colors or shades of gray.

HTML colors used in web pages typically encode colors in RGB format, with either a name, or a
triple specifying the saturation of red, green, and blue separately with 8 bits each. Thus, RGB is
a 24 bit number, usually represented with a name, like “IndianRed”, or hexadecimal values, like
“#CD5C5C”. See https://en.wikipedia.org/wiki/RGB_color_model and
https://htmlcolorcodes.com/

Images with 24 bits per pixel can require massive amounts of memory. This is an issue not only
for storage in memory or on disk, but also for transmission over the network. The larger the
image, the longer it takes to move over the internet. One way to address this issue is to
compress the image.

9

https://en.wikipedia.org/wiki/Color_depth
https://en.wikipedia.org/wiki/RGB_color_model
https://htmlcolorcodes.com/

The original graphical web browser was Mosaic, written largely by Marc Andreesen, who was a
staff programmer at the University of Illinois at Champaign-Urbana. See
https://en.wikipedia.org/wiki/NCSA_Mosaic At the time, 1992, the world wide web was largely
text-based. Existing browsers, like lynx, transmitted text only. Andreesen wanted to add
graphic images and wanted the browser to run on all three primary platforms, namely, Macs,
PC’s, and UNIX X-Windows. Unfortunately, each platform had its own graphics format which
was not supported by the other two. Why should it? However, there was a popular dial-up
information utility, Compuserve, that was cross platform. Compuserve had developed its own
format that ran on all three platforms - the graphics interchange format or GIF. See
https://en.wikipedia.org/wiki/GIF GIF had an 8 bit color depth, but each image could have a
custom color palette chosen from the 24 bit color choices. Andreesen went with GIF for his
Mosaic browser. GIF supported animation, transparent layers, and compression. A large GIF
image could be compressed with Lempel-Ziv-Welch (LZW) without any loss of image quality.
See https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch LZW is a lossless
compression algorithm. As such, it can also be used for compressing computer code, where
any loss could be fatal.

An alternative to GIF is the JPEG standard, developed in 1992 by the Joint Photographic
Experts Group. See https://en.wikipedia.org/wiki/JPEG#:~:text=JPEG Unlike GIF, JPEG is
lossy. That is, you cannot take a JPEG image and recreate the original photograph. However,
JPEG typically achieves a 10:1 compression that is not detectable by the human eye, which is
the typical audience for such images.

The fact is, you can alter an image file drastically without changing how it appears to the human
eye. Can you spot the difference in the following two images?

The computer scientist Andrew Tanenbaum is the author of a major text on computer networks.
See https://www.cs.csubak.edu/~jyang/Computer-Networks---A-Tanenbaum---5th-edition.pdf He
is also an amateur photographer. He took the above zebra picture at the left, and then encoded
his entire textbook into the image at the right using steganography. See
https://en.wikipedia.org/wiki/Steganography

10

https://en.wikipedia.org/wiki/NCSA_Mosaic
https://en.wikipedia.org/wiki/GIF
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Welch
https://en.wikipedia.org/wiki/JPEG#:~:text=JPEG
https://www.cs.csubak.edu/~jyang/Computer-Networks---A-Tanenbaum---5th-edition.pdf
https://en.wikipedia.org/wiki/Steganography

The bottom line: any digital image of any size is simply a string of bits.

Code
When you think of computer programs, you may imagine a source code program, like the
following Python procedure which adds 10 to its argument:

def add10(n):
 return n+10

This code is just a sequence of characters, that is, text. However, when you execute the code,
Python must first convert it into byte code, and ultimately, binary machine code. Python lets the
programmer peek behind the scenes and see the internal representation.

>>> dir(add10)
['__annotations__', '__builtins__', '__call__', '__class__',
'__closure__', '__code__', '__defaults__', '__delattr__', '__dict__',
'__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__get__',
'__getattribute__', '__globals__', '__gt__', '__hash__', '__init__',
'__init_subclass__', '__kwdefaults__', '__le__', '__lt__',
'__module__', '__name__', '__ne__', '__new__', '__qualname__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__']
>>> dir(add10.__code__)
['__class__', '__delattr__', '__dir__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',
'__init__', '__init_subclass__', '__le__', '__lt__', '__ne__',
'__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', 'co_argcount',
'co_cellvars', 'co_code', 'co_consts', 'co_filename',
'co_firstlineno', 'co_flags', 'co_freevars', 'co_kwonlyargcount',
'co_lines', 'co_linetable', 'co_lnotab', 'co_name', 'co_names',
'co_nlocals', 'co_posonlyargcount', 'co_stacksize', 'co_varnames',
'replace']
>>> add10.__code__.co_code
b'|\x00d\x01\x17\x00S\x00'

The Python dir() procedure lists the properties of Python objects. The procedure add10
has a __code__ property which itself has a co_code property, whose value is a byte string,
displayed in hexadecimal. Those bytes are Python byte code, which is typically a tuple
comprising a one byte operation code and a one byte argument. The Python dis module
allows us to disassemble the byte code.

11

>>> import dis
>>> dis.dis(add10)
 2 0 LOAD_FAST 0 (n)
 2 LOAD_CONST 1 (10)
 4 BINARY_ADD
 6 RETURN_VALUE

See https://docs.python.org/3/library/dis.html for details about dis and Python byte code.The
Python Virtual Machine interprets the byte code and runs the program on the target machine.
See https://leanpub.com/insidethepythonvirtualmachine/read which goes into a lot of detail.

The bottom line: any computer program of any size is simply a string of bits.

Sound
We have discussed numbers, text, images, and code. We now examine music, or more
generally, sound. How can we represent sound inside a computer?

You may be aware from physics that sound is a wave that travels through a medium, like air,
and creates auditory sensations in our ears, which respond to the wave oscillations. A sound
wave, or any wave for that matter, has a frequency and amplitude.

See https://www.geeksforgeeks.org/what-are-the-characteristics-of-sound-waves/

The frequency determines the pitch of the sound. A high frequency has a high pitch and a low
frequency has a low pitch. Frequency is measured in cycles per second, which is specified
using the scientific unit name hertz, in honor of Heinrich Hertz, a German physicist. Normal

12

https://docs.python.org/3/library/dis.html
https://leanpub.com/insidethepythonvirtualmachine/read
https://www.geeksforgeeks.org/what-are-the-characteristics-of-sound-waves/

human hearing spans the frequency range of 20 to 20,000 hertz. See
https://en.wikipedia.org/wiki/Audio_frequency

The amplitude determines how soft or loud the sound is. See
https://en.wikipedia.org/wiki/Sound

A sound wave is an analog, not digital phenomenon. It is continuous. Though we did not
mention it above, a painting or the subject of a photograph is likewise an analog phenomenon.
Taking a digital photograph converts the analog image into thousands of digital pixels.

Traditional telephony was analog as well. The sound from the source was represented as an
analog wave that was transmitted along the phone line as an electronic wave and then
converted back to sound at the receiver’s speaker.

To process digital sound, you first need an analog to digital (A-TO-D) converter, which takes an
analog sound wave and converts it into a series of numbers, each of which can be represented
digitally. See https://en.wikipedia.org/wiki/Analog-to-digital_converter When you want to play
back a digitized sound, you use a digital to analog (D-TO-A) converter which reverses the
process. See https://en.wikipedia.org/wiki/Digital-to-analog_converter

See https://www.animemusicvideos.org/guides/avtechbeta/audio1.html

The analog wave is sampled at regular intervals. The higher the sampling rate, the greater the
fidelity of the sound. According to information theory developed by Claude Shannon at Bell
Laboratories, the sampling rate must be twice that of the highest frequency you wish to
represent. See https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
Note that Shannon made significant contributions to many fields. He was among the original AI
and cryptography researchers. See https://en.wikipedia.org/wiki/Claude_Shannon He has been

13

https://en.wikipedia.org/wiki/Audio_frequency
https://en.wikipedia.org/wiki/Sound
https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://en.wikipedia.org/wiki/Digital-to-analog_converter
https://www.animemusicvideos.org/guides/avtechbeta/audio1.html
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Claude_Shannon

compared to both Einstein and Newton. The AI chatBot Claude from Anthropic is named to
honor Shannon. See https://claude.ai/ Note that Yale’s Clarity AI platform now includes Claude
as an option, along with ChatGPT.

As stated above, the upper end of human hearing is 20,000 hz. Given the sampling theorem,
we conclude that the sampling rate for digital sound should be at least 40,000 hz. In fact, audio
compact disc encoding samples at 44,100 hz. See
https://en.wikipedia.org/wiki/Compact_Disc_Digital_Audio This means that one minute of CD
quality sound has 60*44,100 or 2,646,000 samples, or twice that for stereo.

That’s a boatload of data. The audio standard for the iPod and most computer music is MP3,
which uses lossy compression like JPEG, to achieve better storage and transmission limits.
See https://en.wikipedia.org/wiki/MP3

In the early days of the internet, it was common to share digital sound files. In 1993 and 1994,
there was a program called “Geek of the Week” which was similar to a podcast. Each week a
different computer scientist would be interviewed and a copy of the digital audio file was
available for download. See https://town.hall.org/radio/Geek/ However, this was pre-streaming.
You had to download the entire file before you could play it back. With streaming, you can
begin playback before the download is complete. This is a huge win, not only for sound, but
also for video. See https://en.wikipedia.org/wiki/Streaming_media

The bottom line: any digital sound of any size is simply a string of bits.

Video
We can digitize images and sound. Put that together and we have digitized video. Well, that's
pretty much correct.

There is more to it in order to make it feasible to download or stream vast amounts of video
data. As with images and sound, compression is important. Also, even though most video
comprise 24 or 30 frames a second, in practice there is very little that changes from one video
image to another. Thus, video streaming needs to capture only the changes, not entire images.

The video encoding standard is the Motion Picture Expert Group or MPEG. See
https://en.wikipedia.org/wiki/Digital_video

The bottom line: any digital video of any size is simply a string of bits.

14

https://claude.ai/
https://en.wikipedia.org/wiki/Compact_Disc_Digital_Audio
https://en.wikipedia.org/wiki/MP3
https://town.hall.org/radio/Geek/
https://en.wikipedia.org/wiki/Streaming_media
https://en.wikipedia.org/wiki/Digital_video

Music
We have argued that all data processed by a computer can be viewed simply as a string of bits.
Theoretically, all that any computer program does or can do is to convert one string of bits into
another string of bits.

So what? It sounds like describing all food in terms of calories and nutrients. While that may be
correct, we generally are concerned with other properties of food, such as flavor and taste.

We have shown that sound, and thereby music, can be represented by a string of digital
samples, usually 44,100 samples per second. We now examine music through another process
of abstraction.

Most musicians do not discuss frequencies or hertz, though the orchestra may tune to the pitch
of A 440, which is the note A with a frequency of 440 hz.

Musicians discuss notes and scales and arpeggios and chords and harmonies and melodic
lines. An octave in music is actually an interval in which the higher note is twice the frequency of
the lower note. The other common intervals have similar mathematical properties. These
relations are clearly on view in a pipe organ, where the length of a pipe is inversely proportional
to its frequency. The longer pipes have lower pitches.

15

See https://www.letourneauorgans.com/publication/general-information-about-pipe-organs

As an aside, Donald Knuth, the father of complexity theory as well as the text formatting
systems TeX and Metafont, is himself an accomplished organist. He used the proceeds from his
monumental set of books: The Art of Computer Programming to purchase a pipe organ for his
home. See https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming and
https://www-cs-faculty.stanford.edu/~knuth/organ.html

● Music is like a computer program.
● Musical forms are like programming design patterns.

16

https://www.letourneauorgans.com/publication/general-information-about-pipe-organs
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://www-cs-faculty.stanford.edu/~knuth/organ.html

Full disclosure, the author spent many teenage hours restoring pipe organs as a member of the
American Theatre Organ Society in Atlanta, home to the Fox Theatre’s 3,622 Möller pipe organ,
Mighty Mo. See https://en.wikipedia.org/wiki/American_Theatre_Organ_Society and
https://www.atlantamagazine.com/news-culture-articles/what-makes-the-mighty-mo-the-fox-thea
tres-organ-so-special/

A musical composition is not unlike a computer program. Sheet music, like computer code,
specifies a sequence of events. Below are the opening 4 measures of Bach’s 2 part Invention
number 1, in C major.

It is a sequence of notes that has a starting point and a conclusion, just like a computer program
is a series of instructions that has a starting point and (hopefully) halts. Most computer
programs have a single thread of execution like a melody. However, it is becoming more
common to have parallel computer programs that have multiple threads of execution that are
processed in parallel, like the two parts in the above invention.

Beyond the time-related dimensions of music, like note duration and tempo, music has tonal
and harmonic characteristics, such as major and minor scales, chords, and progressions of
chords. Each of these elements is an abstraction that can be decomposed into its elements,
much like computer programs can be decomposed into instructions, byte codes, and ultimately,
strings of bits.

At a higher level of abstraction, composers use various musical forms to organize their ideas.
Common forms include fugues, theme and variation, rondos, sonata allegro, and dances, such
as a waltz or tango.

Computer programs similarly have forms that organize common and useful structures. See
https://en.wikipedia.org/wiki/List_of_abstractions_(computer_science) There is actually a
hierarchy of abstractions. At a low level, there are entities such as variables, functions,
algorithms, interfaces. Next you have data structures, such as lists, stacks, queues, trees,hash
tables, heaps, and arrays. Functional and concurrent programming have their own abstractions,
as does networking. Programming design patterns, like musical forms, provide structures for

17

https://en.wikipedia.org/wiki/American_Theatre_Organ_Society
https://www.atlantamagazine.com/news-culture-articles/what-makes-the-mighty-mo-the-fox-theatres-organ-so-special/
https://www.atlantamagazine.com/news-culture-articles/what-makes-the-mighty-mo-the-fox-theatres-organ-so-special/
https://en.wikipedia.org/wiki/List_of_abstractions_(computer_science)

organizing code. Examples include the real-eval-print loop used in interpreted languages like
Python or Racket, or for that matter, the Google search bar interface.

18

	Music and Computation
	Abstraction
	Numbers
	Text
	ASCII and Unicode
	Base64
	QR Codes

	Images
	Code
	Sound
	Video
	Music

