YOUR NAME PLEASE: _, 4[*

SO LUTIAAS

Computer Science 201b
Practice Final Exam
Spring 2015
2.5 hour exam + .5 hour of writing up

Closed book and closed notes. Show ALL work you want gradéd on the test itself.
For problems that do not ask you to justify the answer, an answer alone is suffi-

cient. However, if the answer is wrong and no derivation or supporting reasoning is
given, there will be no partial credit.

GOOD LUCK!

problem | points | actual
12
12
12
12
12
12
12
12
12
0 12
total 120

HIQI00 || O x| Wi+

1.(a) (6 points)

Write a Racket procedure (insert x 1lst) that takes as input a number x

and a list lst of numbers in non-decreasing order, and returns a list of
numbers in non-decreasing order that includes x and all the elements of lst.
There may be duplicates in the lists.

Examples:
(insert 7 (1 4 5 10 12)) => (1 4 5 7 10 12)
(insert 3 ()) => ’(3)

(insert 2 (1 2 4)) => (1 2 2 4)
(imsert 2 (1 2 2 4)) => (1 22 2 4)

(define ((nsevt X At
(cond
[(vmll’? Lo+ (Mr w'l
Lv:‘“ w (firer Lot
(Cons X J{g{-)—_&
[el -

{cons

v*
ul*
(-\:y
x/
ki

Vi P 8

w, , S
'g oy - ‘\x Y | £
- Co : 1
2 sy e ¢ L e f 3 } .
sy K (2t . L
\é’i%wf ~ <

1.(b) (4 points)

Assuming that the insert procedure works as in part (a),

use it to write a procedure (isort lst) that takes a list 1st
of numbers and returns the list of numbers sorted into
non-decreasing order. There may be duplicates.

Examples:

(isort ’(6 3 10 1 5)) => (1 3 5 6 10)
(isort 7)) => Q)

(isort (4 221 2)) =>'(122 2 4)

(defve (iSoﬂ" Ast)
(\g (wul\2 At
O

[insert (fiear 4ot
Gisovd (rest L1701

&/
.

i.(c) (2 points)
Give an example of a number x and a list lst of n elements in non-decreasing
order that make your insert procedure from part (a) run for

(i) the shortest time (best case):
N TR
(ii) the longest time (worst case):

4] s ey 2 5 . # ."‘«,_‘

2. An and/or expression is recursively defined. The base case is a Boolean
value or a symbol. The recursive case is a list containing three elements:
1. the left operand, which is an and/or expression, '

2. the operation symbol, ’+ or ’*,

3. the right operand, which is an and/or expressiom.

Examples: ’x, #t, '(#t + #£), "(((x + y) * (u + v)) + (a + b))

2.(a) (3 points)

If exp is an and/or expression that is not a symbol or
a Boolean value, what Racket expressions will give the
following parts of exp (the first one is done):

(i) the left operand: (first exp)
N .
(ii) the operation symbol: (gQQQ\g\(}\ ,Q’\C.\:)

(iii) the right operand: ("Y \’\\TC)\ QY\P >

2.(b) (6 points)

Write a Racket procedure (reformat exp) that takes an and/or expression

exp and reformats it so that the operation symbol comes first in the list,

followed by the left operand and then the right operand.

Examples: ’

(reformat #t) => #t ' |
(reformat ’hi) => ’hi E
(reformat ’(x + y)) => "(+ x y)

(reformat *(((x +y) * (W+ v)) + (a + b)) => '(+ (+ (+xy) (+uv) (+ab))

(dekne (reformal exp)

(if (aot (Aist? 2xp)
Q:f\g?
(AisT
(second QKFQ
(r@_&;r‘\mq?‘ ‘\!‘?!’(‘35“ QYPYB

¢refocvaat (Fhivd ex@)))

2.(b) (more space)

2.(c) (3 points)
Draw the tree of recursive calls (and no return values) for the procedure call:
(reformat ’({a + b) * (c + (d + e)))).

~ %
}
4

(v o vaat ! ((oo + b (¢ + (e QD))

o+ (d % eM)

P /N

|
b arnal +2)
(\’&‘(‘G\I 'N\O:r \Q, w (\"ﬁ f{ﬁ‘\[\’h"\C\i‘ !C > (\—e‘-go—(\(v\o:f IC w ((‘Q/I’CJ(AMEE ! (Ql >

;b
(‘ﬁf@»‘ﬁu\gﬂ\" Q(,)]

, ‘
4 o B - = My)
C o L\ de \' canl o Pl A R SR .

/ \ (\"Q \(-\ﬁ\/w‘\ﬂj {G'k‘>

3, Recall that the TC-201 assembly-language instructions are:
halt, load address, store address, add address, sub address,
input, output, jump address, skipzero, skippos, skiperr,
loadi address, storei address

and the directive: data number, which reserves one memory location

and stores the number in it.

3.(a) (10 points)

Write a TC-201 program in assembly language that reads in a number, n

and then prints out the first n odd positive integers, in increasing order,
and then halts. You may assume that n is between 1 and 5000, inclusive.
You may use symbolic addresses. An example of the behavior of the program:

input = 4 ,i/\ P“H’

output = 1

output = 3 Store W
output = 5 awne
output = 7 "QOQ‘CL

Shoee. @ded
ﬁ,c»::P“ dosh odeh
ocutput
add Twe
Stove ocheh
Aped 1N
Sup one
SKfr pos
halt
Store W
jLLW\P .{ca P
h: deba O
gk data O
ove dota 1.
4w e Aevta. 2.

€ r

[

g1

3.(b) (1 point)

What is the largest value of n for which we could expect to have a TC-201
program output the first n odd positive integers in increasing order.
Exponential notation is fine. Please justify your amswer.

el ,

w2 (= 16384 ‘

. ot J-" ~ A ;-' 'e -
Voot Yea b rcu Rue (w fﬁi%@»f (e 20|

awdd 2.2 = 20 which g +Hae

\WSQ'*J“ \wnl"ejef ver?m@‘mva Lo w [he TC- JC)!

3.(c) (1 point)

Could there exist a Racket program that takes as input a configuration config
of the TC-201 computer and correctly decides whether starting in config the
machine would eventually reach a configuration with the run-flag equal to 07
Assume that the user types O in response to every input instruction.

Please justify your answer. :

\/€.5> Ll G Prcsfmm could e Wi H e
T+ wouwdd cimudate Ha TC~20| Loy AN
Cown ﬁa) K@ﬁ}'ﬁ(\fuj a st of ol T‘Cz,,e_
C!:M(xfswahmg reee hecd.

LE a Cavx(;c;ju'fa.ﬁ“l vty fum'acfaj =0
(S veaihed , e e 1ES

L a cow ‘G‘ﬁmm,h'am o peached Fhad

1S é,z(»gd o a tum,u{a%_g\j — e ned o chwm,hm

(Wit Y‘“’L—s\m_«-é{f&g =15, tlew Hag TC-20\
Proqlavwh W (L fG'O(J {we\/@..w) eo peftin Y 0.
13 2cause fhe ffo‘iay() Nuw hev ab

QU»\rnjuJ.ﬁc fhons (g Ta ’Trl.@ on e or /’{LQ,
O Halar al mete pust Q\jegﬁua \\j "l‘{/ €44

7

4,

You are to design a combinational circuit with

four inputs: al, a0, bl, b0, and two outputs: cl, cO.

al and a0 are interpreted as a 2-bit binary number A,

bl and b0 are interpreted as a 2-bit binary number B, and
¢l and c0 are interpreted as a 2-bit binary number C.

The value of C should be the minimum of A and B.

For example, if al = 1 and a0 = O then A = 2 because 10
in binary is 2.

4.(a) (6 points)
Complete the rows of the truth table giving cl and cO as
a function of al, a0, bi, b0:

al a0 bl B0 | cl ¢cO
o o o o | OO
o 0o o0 1| OO
o 0 1 o | ¢
o 0 1 11 ao
o 1 0 o | @O
0o 1 o 1 | o }\
o 1 1 o | o 1
o 1 1 11 o |
1t o 0o o0 | O ©
1 0 o 1 | © |\
i 0o 1 0| | o
i 0 1 i | \ C)
1 1 0 o | ©O0
1 1 0 1 | ©Y)
1 1 1 o | YO
11 1 1]y

Note that for the row shown, al and a0 are O and 1, so A 1,
and bl and b0 are i1 and 0, so B =2, Thus, C = min(A,B) =
so ¢l =0and cO = 1.

|
—-
M

4,
4.(b) (2 points)
Give Boolean expressions for cl and cO.

al - b

cl

/
. [v b
c0 = a0 -ho + &, %o A= EQ

4.(c) (4 points)

Draw a combinational circuit for computing outputs ci and cO
from inputs al, a0, bl, b0. You may use AND and OR gates of
any number of inputs, NOT gates of ome input, and XOR gates of
two inputs. You may draw gates as simple boxes; be sure to
label your input and output wires and your gates (if you don’t
use the standard symbols.)

5. The following is a context-free grammar in BNF for a small subset

of syntactically correct Racket expressions.

<exp> ::= <id> | <number> | <boolean> | <1ambda exp>
| <procedure call> | <if exp>

<ig> = 'yt I ||y|| | AL | yn | Wyl | n=n
<number> sz IIOII | ||1|| | ||3|| | ||7|| | I|43II
<boolean> ::= "#t" | "#f"

<lambda exp> ::= "(" "lambda" <formals> <exp> ")"
<formals> ::= "(" <exp>* ")"

<procedure call> ::= "(" <exp> <exp>* ")"

<if exp> ::= "(" "if" <exp> <exp> <exp> ")"

5.(a) (3 points each)

For each expression below, draw a parse tree showing how it can be

derived from <exp> using the rules above.

(1) 43

4@&?5
\
Lnavaor Y
\
43
{enp?
(ii) (if (=y 2z) 10) {

{“ V§ Lexp> Lewp¥ Lexpr);

——

o L
(w“‘/gf//f”(//, <f@quw%3@V:? <TWﬂAVAk}Q(>>

peotadt call

/‘\\‘\m

(<ex(a> LexwP> 4@@7)
\

< d>» Y- <‘e\}
\ \ \
= 9 4 =z

\)

{ o

<Cexp>

5.(a) continued.

l
(iii) ((lambda (x) (+ x 7)) 3)
(('amcultu’t cd»U\>'
’)J___,,.—"“";; "““'m\&(w» }
s / \/ -~)
{ 46?(3 p LERP/ g
Llambda exp | SRl

¢ Lexp> D < peocadhmart codh
t -~ \ \\\w h@%%f«if%ii%‘“mmh
e

3 (cii@irxi?‘;;n ifﬁT = S x((‘?*)
l

v, Cd> QD Lauwber
\ \ \
4 X

5.(b) (3 points)

If L. is a context—free language and reverse(L)

is the set of all reverses of strings in L, must reverse(L)

also be a context-free language? Please briefly justify your answer.

N-es .

Given a contant fvee gvavamar bor -
1 owe revense the 1 4 Wt haud Side

ol evenf wule, we qeb o ConbRXT

g [i ;;\M Vid g ?@‘f \‘ﬁe" wCVs e (Lﬂ) g

11

6. Consider a Racket procedure (make-set name) that takes a symbol name
as input and returns a Racket procedure that implements a set object with
local storage which can process the following commands:

name -— returns the name of the set
contains? value -- returns #t if value is a member of the

set, or #f if value is not a member of the set
include value -- changes the set so that value is a member of

the set, and returns the symbol ’ok
Initially the set has no members. Examples of using (make-set name) :

> (define s1 (make-set ’first-set))
> (si ’name)

*first-set
> (sl ’contains? 2)

#f
> (81 ’include 2)

’ok
> (s1 ’include 3)

Yok
> (sl ’contains? 2)

#t
> (define s2 (make-set ’second-set))
> (82 ’contains? 2)

#f

> (82 ’contains? ’second-set)
#1f :

> (s1 ’contains? 3)

#t

. > (s2 ’name)
’second-set-
>

12

6.(a) (9 points)

Write a Racket procedure to implement (make-set name).
No error checking is necessary.

[CJ‘ e luee. [make-set nd e)
,((sd’ (C Rst L)) |
(lambda (cwmeh - aV9s)
(cose Cwd
C (@inae. \f\cfu-w-e:;
[(contains 2
(% (W“*‘ZWDW ($irstavgs)) fs4)

T &
)

I\r\d,ud.e_\
(sedl, xf,, + (6@\«’\3 (jrm*c;%u

ek 1))

6.(b) (3 points)

Describe or draw the accessible environments immediately
after the completion of the (si ’include 3) command above.
Include and label the search pointer of each environment
and the birth pointers of the procedures make-set and si.

fop ~leve] avivoa unent

, 3 g@,cu’t:k‘\
| T e Tt |
| b (< ébj .%:o‘)\;) e
i 5\ (mdf@ﬁ”w‘“k\\ :;i ‘{*‘1 ‘(3 a)
cogts -y P
\t‘ i‘}‘f\f;h) M“\‘\ﬂ (o

ot ~SER
. ['
(\N\% éi%lem\k oW }JMQ—\J

\\’\\ \}i_q WA ‘}”CU;“\ R) 13

As4))

7.(a) (2 points)
Draw the box and pointer representation of the list x
constructed as follows. :

> (define x (cons 13 (cons 17 (cons 14 ()))))
> X

1 (13 17 14)

>

o — [EE—- = [0l

7.(b) (2 points)
Suppose x is as in 7(a) and we define y as follows

> (define y (cons 99 x))

>y
1 (99 13 17 14)
>

Draw a new box and pointer diagram showing the resulting structure
of x and y.

"N

7.(c) (2 points)
Explain why we can consider the Racket procedures rest (or cdr) and cons
to be constant time, that is, 0(1).

E54ac,aﬂgx2£;
re.ot E;‘\\f@l\«’é& Qa cf,,c)"vxg)ﬁm# V\(AMLQW
6 b asseahly- language Vo e froms 1o
Gewes the Value i ta vight ha l#
ol & ctons cell - |
CoNs avolves a Cougfanmt MWt bey
ob asseu E}lj - ‘m&«\j tmﬁ ¢t shvreftonl 10

oWocate a cows cell awdd du;;;wsiw
e vakies of e avgumeats 14 e

e 14 L e
Ve L aand mﬁbﬁﬂ &(\m veeo of Hw ecomd celf,

7.(d) (3 points)
Consider the following Racket procedure.

(define (rev lst rlst)
(if (null? 1st)
rlst _
(rev (rest lst) (coms (first 1st) rlst))))

Draw the tree of recursive calls (and no returns) for the procedure
call (rev ’(abc) ().

(Y‘C\f \ (6\ (3 [t) '(7 3
\
(rev l(l_'s C» \(a))

! \(C} \(b 9\)3

(v

\
(rev 'O (o b °q>

7.(e) (3 points)

For the procedure in 7(d) suppose we call (rev 1st ’()) where the

list 1st contains n numbers. Give a "Big Theta" bound .in terms of n for
the running time of this procedure call, and explain why it is correct.

Tiwme & O becanse cach

Colh does x wull? +eet (# SIEDY

Gawct 10 Ha Wet & woed natl

o vecuxsive call (@) widh ’H’\Q» e
ot of Ast (O awd (cons (fiakff) it/
(aloe @C1Y, AL | lks,

)
(e WA D CLg (W e C oLk
‘H‘\Q \‘ét Qv"“!\r’k&:a»ﬁ; Q ? -"ji{ \:‘74 fH WL i “ {ij :

tton

e value ol ¢le? ‘
et : i T ks l
1 ltarg ; oo doted L

&

8. For each of the following pairs consisting of a string and a regular
expression, determine whether the string is in the language of the regular
expression or not, answering YES or NO. Recall that | stands for "or"

and * for "Kleene star", that is, zero or more repetitions.

In each case the alphabet is {a,b,c}.

(2 points each)

8.(a) aaccc

NES
8.(b) abaacbcc

YES
8.(c) abcbc

NO

8.(d) Dbccbacba

S_E e

e
L

(a)*(b)*(c)*

(alb)*(blc)*

~((ab | ba)* | (bbc | cbe)*)

(bc | bec)(bac | cba)(cba | aa)

16

8. (e)

8.(f)

accbcc

NES

cabacbbbb

N O

((a | DIc(e)*)*

(ca | ba | aa | ¢cb | bb | -ab)*

17

9. Answer each question briefly. (2 points each)

9.(a) What is the main thing a compiler does?

~

T‘(CW\S‘Q"!Q “ P(OSMLW\ LA G
\MS\A.&%& wto Lﬁuj\;’ab&m%‘ aseuakly ~

\,.\ \;éj' \P\C\f (,2\4 £ \
| ang gt (or wrechine - (Mju*&‘i{) ey Pragrava,

9.(b) Give an example of a set of strings that is not regular.

- A 9
L. = g?-“ahg / nw=o f . |
The et of sPings comsintAg 0L N RS
ﬁkf\/{°h*J‘L°i b:i no qS . (, o #Vtélbi:f a F{xﬁ;wf_b i>

9.(c) What is memoization, and when is it useful?
Mewoizahon Sanes o\@\fﬁuw-u«‘f’
duving a C®M|’>u\'¢,{‘l\o\/\ amd [oolcs up ﬁ"f ,
reoudts wnstead of Feccaw[?qﬁ"ﬁjff’(“-‘?“’*- YERC
wsehd fo avoid refeat edbﬁ r&co»«u{:qdﬂ"kg

vesud f dwﬂh\ft(:j” e ijmqu'awﬁ@ﬂ .

feesudt pairsy

9.(d) Give a small example of a sequential (not combinational) circuit.

(o ouas o e Ovcua b

w b oa ”Em{z i)

18

9.(e) We proved that there can be no program to solve the Halting Problem.
State the Halting Problem for Racket programs.

T Wexe S vo Prouc(wc (I,\Oj-fc }_‘mf enf)
that retwts e o (proc 2xp] hodts
L f (ﬁ\"cc zax/ﬂ dm*“ >

9.(f) Is the following procedure tail recursive? Why or why not?

(define (proc 1lst n)
(if (null? 1st)
n
(proc (cdr lst) (+ n 1))))

Vs,

The a“"%j recursive Cadl does nol
Modihy the value of- (lowoc (e Ast) [+ n
be love e ﬁuv\uﬁ a

19

)

10. A #rewriting system* R consists of a finite alphabet of symbols and
a finite set of rules. Each rule is of the form sl -> s2, where si and
s2 are strings of symbols. The lefthand side of the rule is sl and the
righthand side of the rule is s2.

A *derivation step* is a pair of strings (t,u) such that for

some rule si -> s2, u is obtained from t by replacing one occurrence
of s1 as a substring of t by s2. A *completed derivation* is a
finite sequence of strings (ti, t2, ..., tn) such that

(1) each consecutive pair forms a derivation step, and

(2) no rule applies to the last string, tn.

In this case, we say tl *may yield* tn,.

As an example, consider a rewriting system with alphabet {x,y} and

the single rule yx -> xy. For this system, we have a completed derivation:

YYXy%, yXyyx, yXyXy, yXXyy, XyXyy, XXyyy.

" Note that no rule applies to the last string. Thus, yyxyx may yield xxyyy.

10.(a) (3 points)
In the example one-rule system above, if a string s may yield a string t,

" describe how are s and t related.

SR E-TULM o o Ve avy amge we it of
S Se P%J&Jj CLLA f%kf ?(/5 GAG_
EQ é‘}f’@, sl o j ‘e)

20

10.(b) (6 points) _

For the alphabet {0,1} conmstruct rules for a rewriting system such that
for every non-empty string s, s may yield exactly one of O or 1, and

s may yield 1 if and only if the number of 1’s in s is odd. ‘

(You’ll need more than one rule.)

Examples of the behavior of this system:

101110 may yield O, but not 1.
1101101 may yield 1, but not 0.
0000 may yield 0, but not 1.

Q0 —7 O
Of == |
o -2 |
i1 = U

10.(c) (3 points) |
We define a decision problem as follows. The input is a rewriting :
system R and a string s. (We assume the alphabet of R contains 1.)

The output is "yes" if s may yield 1 in the system R, and "no" otherwise.

Is this a computable problem or not? Please briefly justify your answer.
No .

We could pyesept TU‘WWJ waaChine C(wﬁrjwqﬁ'@wﬁ
s %M\Aj ‘3! ol Tun‘mg wiae hine WS A oS
oS \"(J.Qg JA S\aLCJ'\ a W@AEJ f"’ft\,@\j’ SF&PS Cﬁi-»

Ho Cﬂmdwwﬂmﬁ\‘)w woudd be glwmudafed b
Uelawhons of Hw ruloc We cowld make
St fhe vules would peduce a com Kguvation
T 4 i*?’@_.mﬁ caly L b was e hadted
Conbiguration. flon fha quoghon woudd
59\“? o HaJHm;S Preblowy fow Taving wachis,
which we kudw 2 (¢ not Cow o fabl, ’

