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A Lower Bound for Sorting

If we restrict the kind of sorting algorithms we consider, we can give a lower bound of Ω(n log n) on the
number of operations to sort.

Comparison algorithms and decision trees

A comparison algorithm to sort uses *only* comparisons between pairs of elements to decide on a correct
ordering. That is, we assume the inputs are x1, x2, . . . , xn and the only type of operation the algorithm
does that involves the inputs is to compare two of them, which we denote by the query (xi ≤ xj)?, which is
answered either Y or N. Suppressing all the other operations done by the sorting algorithm, we can represent
a comparison algorithm by a decision tree, in which each internal node represents a pairwise comparison and
each leaf node gives a correct ordering of the inputs. For example, here is a decision tree that represents an
algorithm that sorts three inputs x1, x2, x3.

(x1<=x2)?
/ \

Y N
/ \

(x2<=x3)? (x1<=x3)?
/ \ / \
Y N Y N

/ \ / \
order: (x1<=x3)? order: (x2<=x3)?

x1,x2,x3 / \ x2,x1,x3 / \
Y N Y N
/ \ / \

order: order: order: order:
x1,x3,x2 x3,x1,x2 x2,x3,x1 x3,x2,x1

The first comparison made by the algorithm is the one at the root (top node) of the tree: (x1 ≤ x2)?.
Depending on whether the answer is Y or N, the algorithm follows the left or right branch from that node. If
the answer is Y, the algorithm proceeds to make the comparison (x2 ≤ x3)?. If the answer to that comparison
is also Y, then a correct ordering is x1 ≤ x2 ≤ x3, so the algorithm halts and outputs this ordering. However,
if the answer to the (x2 ≤ x3)? comparison is N, the algorithm knows that x1 ≤ x2 and x3 < x2, but it
doesn’t know how to order x1 and x3 yet. Hence, it makes an additional comparison (x1 ≤ x3)? to determine
the ordering of x1 and x3, and then halts and outputs the ordering x1, x3, x2 or the ordering x3, x1, x2 as
appropriate. If instead the answer to the initial comparison (x1 ≤ x2)? is N, the algorithm follows the steps
specified in the right hand part of the tree.

This representation ignores all the other computation that is done by the sorting algorithm, and focuses
just on the comparisons the algorithm does to determine a correct ordering of the inputs. Thus, both insertion
sort and merge sort can be understood as comparison algorithms, by just focusing on the comparisons they
do to determine the correct output.

A lower bound

The sorting algorithm represented by the decision tree above does 3 comparisons in the worst case to sort its
3 inputs. In particular, 4 of the 6 outcomes require 3 comparisons, and 2 of them require 2 comparisons. Is
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there any comparison algorithm to sort 3 inputs using only 2 comparisons in the worst case? No, because the
decision tree of any algorithm to sort 3 elements must have 3! = 6 possible outcomes, one for each possible
ordering of 3 elements. However, if the decision tree has a worst case of 2 comparisons, then it can have at
most 22 = 4 leaves. But 4 < 6, so there would not be enough leaves to accomodate the 6 different outcomes.

This idea generalizes immediately to give a lower bound on the number of comparisons used by any
comparison algorithm to sort n inputs. There are n! possible different outcomes (one for each possible
ordering of n things.) If the worst case number of comparisons in the decision tree is d, then there are at
most 2d leaves in the decision tree. In order to have at least one leaf for each possible outcome, we need

2d ≥ n!,

or, taking the logarithm base 2 of both sides:

d ≥ log2(n!).

To deal with log2(n!), we’d like an approximation (or at least a lower bound) on n! that involves operations
of addition, subtraction, multiplication, division, and exponentiation.

One way to get a lower bound (assuming n is even) is to observe that in

n! = n · (n− 1) · (n− 2) · · · (n/2) · · · 2 · 1,

the first n/2 terms in this product are at least n/2, and the rest of them are at least 1, so we have

n! ≥ (n/2)n/2.

Taking the logarithm base 2 of both sides (using the monotonicity of log), we get

log2(n!) ≥ (n/2) log2(n/2),

or
log2(n!) ≥ (n/2)(log2(n)− 1).

This is enough to show that the worst case number of comparisons done by any comparison algorithm
that sorts n inputs is bounded below by Ω(n log n). (Note that because we are ignoring multiplicative
constants, the base of the logarithm does not need to be specified.) Thus, no comparison algorithm can use
asymptotically fewer comparisons than mergesort uses.

For a more accurate lower bound, we can use an inequality based on Stirling’s approximation to the
factorial. In particular, the limit as n goes to infinity of the quotient of n! and the expression

√
2πn(n/e)n is

1. Taking the logarithm of this expression, we get a lower bound of the form n log2(n)− nlog2(e) plus lower
order terms.

A non-comparison sorting algorithm

To see the kinds of things we can do if we don’t limit ourselves to pairwise comparisons, consider the following
case. We need to sort n integers whose values are between 1 and 2n. We initialize an array A[i] = 0 for
i = 1, 2, . . . , 2n. Then we read in the inputs x1, x2, . . . , xn, and increment A[xi] by 1 when we read in xi.
(Here we are using the input as an index into an array rather than comparing two inputs.) Finally, for
i = 1, . . . , 2n, we output A[i] copies of i. This gives an O(n) time algorithm to sort n numbers in this case.
This is not a comparison algorithm for sorting, so the lower bound does not apply to it. It also makes rather
restrictive assumptions about the numbers to be sorted.


