
'sssississstiswsasssas:

248 STANDARD LIBRARY APPENDIX B

B 1.6 File Positioning Functions

int fseek(FILE ^stream, long offset, int origin)

f seek sets the file position for stream; a subsequent read or write will access data

beginning at the new position. For a binary file, the position is set to offset char-

acters from origin, which may be SEEK_SET (beginning), SEEK_CUR (current

position), or SEEK_END (end of file). For a text stream, offset must be zero, or a

value returned by ftell (in which case origin must be SEEK_SET). fseek

returns non-zero on error.

long ftell(FILE *stream)

f tell returns the current file position for stream, or -1L on error.

void rewind(FILE *stream)

rewind(fp) is equivalent to f seek (£p, OL,SEEK_SET) ; clearerr(fp).

int fgetpos(FILE *stream, fpos_t *ptr)
fgetpos records the current position in stream in *ptr, for subsequent use by

fsetpos. The type fpos_t is suitable for recording such values. fgetpos

returns non-zero on error.

int fsetpos(FILE *stream, const fpos_t *ptr)
fsetpos positions stream at the position recorded by fgetpos in *ptr.

fsetpos returns non-zero on error.

B 1.7 Error Functions

Many of the functions in the library set status indicators when error or end of file

occur. These indicators may be set and tested explicitly. In addition, the integer expres-

sion errno (declared in <errno,h>) may contain an error number that gives further

information about the most recent error.

void clearerr(FILE *stream)
clearerr clears the end of file and error indicators for stream.

int £eof(FILE *stream)

feof returns non-zero if the end of file indicator for stream is set.

int £error(FILE ^stream)
f error returns non-zero if the error indicator for stream is set.

void perror(const char *s)

perror (s) prints s and an implementation-defined error message corresponding to

the integer in errno, as if by

£printf(stderr, "%s: %s\n" , s, "error message"}

See strerror in Section B3.

B2. Character Class Tests: <ctype.h>

The header <ctype.h> declares functions for testing characters. For each function,

the argument is an int, whose value must be EOF or representable as an unsigned

3IXB

data

char-

rrent

, or a

seek

se by
tpos

tptr.

>f file
cpres-

irther

ing to

SECTION B3 STRING FUNCTIONS: <STRING.H> 249

char, and the return value is an int. The functions return non-zero (true) if the argu-
ment c satisfies the condition described, and zero if not.

isalnum(c) isalpha(c) or isdigit(c) is true

isalpha(c) isupper(c)orislower(c)istrue '

iscntrl(c) control character

isdigit (c) decimal digit
isgraph(c) printing character except space

i slower(c) lower-case letter

isprint(c) printing character including space

ispunct(c) printing character except space or letter or digit

isspace (c) space, formfeed, newline, carriage return, tab, vertical tab

i supper(c) upper-case letter

isxdigit(c) hexadecimal digit

In the seven-bit ASCII character set, the printing characters .are 0x20 (' ') to Ox7E

('-'); the control characters are 0 (NUL) to OxlF (US), and Ox7F (DEL).

In addition, there are two functions that convert the case of letters:

int tolower(int c) convert c to lower case

int toupper(int c) convert c to upper case

If c is an upper-case letter, tolower(c) returns the corresponding lower-case letter;

otherwise it returns c. If c is a lower-case letter, toupper (c) returns the correspond-

ing upper-case letter; otherwise it returns c.

B3. String Functions: <string.h>

There are two groups of string functions defined in the header <string.h>. The

first have names beginning with str; the second have names beginning with mem.

Except for memmove, the behavior is undefined if copying takes place between overlap-

ping objects.

In the following table, variables s and t are of type char *; os and ct are of type

const char *; n is of type size_t; and c is an int converted to char.

iction,

gned

char *strcpy(s,ct)

char *strncpy(s,ct,n)

char *strcat(s,ct)

char *strncat(s,ct,n)

int strcmp(cs,ct)

int strncmp(cs,ct,n)

char *strchr(as,c)

char *strrchr(cs,c)

copy string ct to string s, including '\0'; return s.

copy at most n characters of string ct to s; return s.
Pad with '\0 's if t has fewer than n characters.

concatenate string ct to end of string s; return s.

concatenate at most n characters of string ct to string

s, terminate s with ' \0'; return s.

compare string os to string ct; return <0 if cs<ct, 0

if cs==ct, or >0 if cs>ct.

compare at most n~characters of string cs to string ct;

return <0 if cs<ct, 0 if cs==ct, or >0 if cs>ct.

return pointer to first occurrence of c in as or NULL if

not present.

return pointer to last occurrence of c in cs or NULL if

not present.

250 STANDARD LIBRARY APPENDIX B

size,.t strspn(cs,ct)

size_t strcspn(cs,ct)

char *strpbrk(cs,ct)

char *strstr(as,ct)

size_t strlen(cs)

char *strerror(n)

char *strtok(s,ct)

return length of prefix of as consisting of characters in

ct.

return length of prefix of cs consisting of characters

not in at.

return pointer to first occurrence in string cs of any

character of string ct, or NTJLL if none are present.

return pointer to first occurrence of string ct in cs, or

NULL if not present.

return length of cs.

return pointer to implementation-defined string

corresponding to error n.

strtok searches s for tokens delimited by characters

from ct; see below.

A sequence of calls of strtok(s,ct) splits s into tokens, each delimited by a

character from ct. The first call in a sequence has a non-NULL s. It finds the first

token in s consisting of characters not in ct; it terminates that by overwriting the next
character of s with '\0' and returns a pointer to the token. Each subsequent call, indi-

cated by a NULL value of s, returns the next such token, searching from just past the

end of the previous one. strtok returns NULL when no further token is found. The

string ct may be different on each call.

The mem... functions are meant for manipulating objects as character arrays; the

intent is an interface to efficient routines. In the following table, s and t are of type

void *; cs and ct are of type const void *; n is of type size_t; and c is an int

converted to an unsigned char.

void *memcpy(s,ct,n)
void *memmove(s,ct,n)

int memcmp(cs,ct,n)

void *memchr(cs,c,n)

void *memset(s,c,n)

copy n characters from ct to s, and return s.

same as memcpy except that it works even if the

objects overlap.
compare the first n characters of cs with ct; return as

with strcmp.

return pointer to first occurrence of character c in cs,

or NULL if not present among the first n characters.

place character c into first n characters of s, return s.

B4. Mathematical Functions: <math.h>

The header <math.h> declares mathematical functions and macros.

The macros EDOM and ERANGt. (found in <errno.h>) are non-zero integral con-

slants that are used to signal domain and range errors for the functions; HUGE_VAL is a

positive double value. A domain error occurs if an argument is outside the domain

over which the function is defined. On a domain error, errno is set to EDOM; the return

value is implemeatation-dependent. A range error occurs if the result of the function

cannot be represented as a double. If the result overflows, the function returns

HUGE_VAL with the right sign, and errno is set to ERANGE. If the result underflows,

the function returns zero; whether errno is set to ERANGE is implementation-defined.

In the following table, x and y are of type double, n is an int, and all functions

return double. Angles for trigonometric functions are expressed in radians.

