

Table Of Contents
1. Zoo Information

a. Logging in
b. Transferring files

2. Unix Basics
3. Homework Commands

Getting onto the Zoo
Type “​ssh <netid>@node.zoo.cs.yale.edu ​”, and enter your netID password when
prompted. Your password won’t show up and the cursor won’t move, but it knows what you’re
typing.

Getting Files onto the Zoo
Use the “​scp ​” command to transfer files onto the Zoo. Type “​scp filename1 filename2
<netid>@node.zoo.cs.yale.edu:~/mydirectory/mysubdirectory ​”
You should be on your local machine in the same directory as the two files. This will copy the
two local files, ​filename1 ​and​ filename2 ​into the directory ​mysubdirectory ​(which is
located inside ​mydirectory ​in your home directory on the Zoo). You will be prompted to
enter your netID password, just like when you ssh in.

Unix Basics
What is a directory? ​A directory is simply a folder, which can contain any mixture of files and
subdirectories.
What is different about a file versus a directory? ​A directory contains other files and directories,
but does not contain information itself -- for example, you can’t use emacs to view a directory.
However, you can often use a text editor to view the contents of a file. Sometimes directories
and files have different colors when you look at what’s in your current directory, depending on
your terminal settings, which can help you tell which is which.
What about an executable?​ An executable is a special type of file that can be run by your
computer. In the case of examples from class, executables include “​Distance ​” and “​Split ​”.
To run an executable, type “./” before the name. For example, to run ​Distance ​ without any
input arguments, you could type “​./Distance ​”. With command-line arguments, it might look
something like “​./Distance 52.0 0.0 42.0 -72.9 ​”. Note that if you try viewing an
executable with a text editor, it will look like nonsense! Executables are created by compiling
your source files (for example, ​distance.c ​).

Essential Commands
pwd​ - print working directory. This command will tell you the exact file path of your current
location, and requires no further arguments
ls​ - list the files in your current directory. For example:

-bash-4.3$​ pwd
/c/cs223/hw1

-bash-4.3$​ ls
final Makefile t1 t2 t5 test Tests Total Total.c

Total.o Totalx

Special options​:
1. “ls -l” allows you to use a long listing format, which provides extra information (such as

the file permissions, owner, date and time of last edit, etc.) Rows with start with d, such
as the row corresponding to “​Tests ​” below, are directories!
-bash-4.3$​ pwd
/c/cs223/hw1

-bash-4.3$​ ls -l
total 76

drwxrws--- 4 sbs5 cs223ta 4096 Feb 3 10:14 final

-rw-r--r-- 1 sbs5 cs223ta 5582 Jan 3 12:47 Makefile

-rw-rw-r-- 1 sbs5 cs223ta 35 Jan 3 12:47 t1

-rw-rw-r-- 1 sbs5 cs223ta 44 Jan 3 12:47 t2

-rw-rw-r-- 1 sbs5 cs223ta 11 Jan 23 14:09 t5

-rwxrwxr-x 1 sg686 cs223ta 8872 Jan 22 19:37 test

drwxrwsr-x 2 sg686 cs223ta 4096 Feb 2 20:23 Tests

-rwxrwxr-x 1 sbs5 cs223ta 8872 Jan 25 16:05 Total

-rw-rw-r-- 1 sbs5 cs223ta 866 Jan 25 16:05 Total.c

-rw-rw-r-- 1 sbs5 cs223ta 2112 Jan 25 16:05 Total.o

-rwxrwxr-x 1 sbs5 cs223ta 13208 Jan 22 14:51 Totalx

cd - ​cd, or “change directory”, allows you to move from one directory to another. For example, if
you are on the zoo and want to get to the cs223 folder, you could type: “​cd /c/cs223 ​”
Special options​:

1. “​cd ​”, with no extra arguments, will bring you to your home directory: on the zoo, this
would be “​/home/accts/<netid> ​”

2. “​cd .. ​”, with precisely two periods, will move you “up” one directory. See the following
example:
-bash-4.3$​ cd /c/cs223/hw1
-bash-4.3$​ pwd
/c/cs223/hw1

-bash-4.3$​ cd ..
-bash-4.3$​ pwd
/c/cs223

mv ​- move a file from one location to another. You have a few options with mv:
1. “​mv origfile directory ​” will move origfile from your current directory to directory.

Note that if you wish to move a file that is not in your current directory, you can simply
replace the file name with its complete file path (eg /homedir/subdirectory/origfile)

2. “​mv origfile newname ​” simply renames origfile to newname. If there is already a
file called newname, mv will clobber that file, replacing it with the contents of origfile.

cp​ - copy a file. There are a few options for cp, as shown below:
1. “​cp origfile newfile ​” creates a new file called ​newfile ​ in your current directory,

with the same contents as ​origfile. ​As with mv, cp will overwrite existing files
without warning.

2. “​cp origfile /directory/subdirectory ​” makes a new copy of ​origfile
(with the same name, ​origfile ​), in​ /directory/subdirectory ​. Note that if there
is already a file called ​origfile ​ in ​/directory/subdirectory ​, it will be
overwritten!

3. “​cp origfile /directory/subdirectory/newname ​” also makes a new copy of
origfile ​ in ​/directory/subdirectory ​, but calls it ​newname ​ instead of
origfile

cat - ​print the content of a file to standard output using “​cat <filename> ​”

rm​ - remove a file using “​rm <filename> ​”. Be very careful with this command - you can’t get
a file back once you have deleted it!

- Use the “-r” option to recursively delete a directory: “​rm -r <directory> ​”.
Again, be careful: this will delete the directory, all the files in the directory, and all
subdirectories (and all the files in those subdirectories, etc.)

echo​ - on its own, echo simply outputs the argument it was passed to standard output.
However, certain characters (“ and \) will be treated irregularly. As such, if you wish to echo a
string that contains either character, it is necessary to either enclose the string in double quotes,
or precede each character by a backslash, \, so that bash will pass echo the desired phrase.
See below:

-bash-4.3$​ echo word
word

-bash-4.3$​ echo "word"
word

-bash-4.3$​ echo \1
1

-bash-4.3$​ echo "\1"
\1

-bash-4.3$​ echo \\1
\1

-bash-4.3$​ echo \"

"
In fact, since this behavior is a feature of bash, you may find escape characters relevant outside
of echo. For example, suppose you wish to create a file called my”file. If you try to just type
touch my”file, it won’t work. Instead, you must either escape the “, or enclose the entire name in
quotes, as shown below:

1. This doesn’t work:
-bash-4.3$​ touch my"file
> ^C

2. Option 1:
-bash-4.3$​ touch my\"file

3. Option 2:
-bash-4.3$​ touch "my\"file"

Special options:
1. “​Echo -n ​” prevents echo from “echoing” the trailing newline character. See below:

-bash-4.3$​ echo sampleword
sampleword

-bash-4.3$​ echo -n sampleword
sampleword ​-bash-4.3$

2. “Echo -e” tells echo to take whatever input it gets from bash, and interpret backslash
escapes. This is a bit subtle, so here’s an explanation of the following three commands.

(1) Bash turns ​word\word ​ into​ wordword ​, so echo doesn’t see any backslashes and the ​-e
flag has no effect

-bash-4.3$​ echo -e word\word
wordword

(2) Bash turns ​word\\word ​ into ​word\word ​, but ​\w ​ is not a known escape character, so the
-e ​ flag has no effect

-bash-4.3$​ echo -e word\\word
word\word

(3) Bash turns ​word\\nword ​ into ​word\nword ​, so echo receives ​word\nword ​. Then,​ -e
notices the ​\n ​, which it recognizes as a newline character thanks to the ​-e ​ flag. Compare this
to the behavior with the ​-e ​ flag, below!

-bash-4.3$​ echo -e word\\nword
word

word

-bash-4.3$​ echo word\\nword
word\nword

< and > ​- these two operators allow you to redirect standard input and output. (Recall that echo
returns your input string to standard output, while Packx read from standard input.) < allows you
to redirect standard input, while > allows you to redirect standard output. See examples below:

1. Standard output redirection: “​echo word1 word2 >filename ​” creates a new file
called filename, which says “​word1 word2 ​” (followed by a newline character). Note
that if you want to use standard output as the input ​to an executable​, you should not use

redirection -- instead, use the pipe command shown below! If there is already a file
named “filename”, output redirection will ​overwrite​ it with the standard input supplied

2. Standard input redirection: “cat <filename” feeds filename as the input to the cat
command, listed above

| ​- known as the “pipe”, this allows you to feed the standard output of the lefthand side
argument, into the standard input of the righthand side argument. For example, you can use this
with the distance calculator example: “​echo 52.1 0.0 42.5 -72.9 | ./Distance ​”

Other Sources of Unix Information
This is far, far from everything Unix can do, and there are likely lots of other commands you
might find that can save you some time as you navigate the Zoo. For Professor Slade’s more
extensive introduction to Unix, click ​here​. For a short list of Unix commands which may be
helpful, click ​here​. Finally, if you ever have questions about what an option for a particular
command does (for example, if you see “​ls -a ​” and aren’t sure what the “​-a ​” option
accomplishes), try the built-in manual page! To access this page for a particular command, use
the man command, followed by the name of the Unix command: for example, you could type
“​man ls ​” and scroll through. Try it!

Homework Testing

1. You must be on the Zoo, and ​in the same folder​ as your completed homework files and
executable. The test script will test the executable in ​your current directory​, not whatever
file you have submitted!

a. To test this: use the ​ls ​ command, and make sure you see your homework files:
the main .c file (comments.c, no_ap.c), the Makefile, and the executable, which
by local convention has the same name as the .c file without a file type and with
the first letter capitalized. Sometimes the executable name is a different color
than the other files, depending on your zoo settings.

b. If you don’t see an executable, that means you haven’t compiled your program.
To create the executable to run your program, use the command “​make ​” or
“​make <program> ​” where <program> is the name of your .c file without the “.c”
part. To understand how makefiles work, you can read ​this​ or the assigned
reading from the Linux Programming book.

c. If you updated your .c file, you have to run the “make” command again to update
the executable, so the changes will appear when you run the test cases.

2. To run all the tests at once, type: “​/c/cs223/hw<#>/Tests/test.<Name> ​” If your
code fails a test, the output of the test script will include the result of running ​diff ​ on
the expected output and your program’s output. See ​StackOverflow​ for an explanation
of ​diff ​ output, or examine the input and output files as described below.

3. To run one test at a time, for hw1: “​./Comments < /c/cs223/hw1/Tests/t01.c ​”
a. This format was necessary for hw1 because your program had to read from

standard input. However, for hw2 (and other programs which depend on
command line arguments), you can simply run the executable t01:
“​/c/cs223/hw2/Tests/t01 ​”

https://zoo.cs.yale.edu/classes/cs201/UNIX.html
http://zoo.cs.yale.edu/classes/cs223/doc/Unix
http://zoo.cs.yale.edu/classes/cs223/doc/Makefile
https://unix.stackexchange.com/questions/81998/understanding-of-diff-output

4. The expected output for each individual test can be found in the .cs files, so to view the
expected output of a test you could type “​cat /c/cs223/hw1/Tests/t01.cs ​”. You
could also use your favorite text editor, eg “​emacs /c/cs223/hw1/Tests/t01.cs ​“

a. For homework 2, the ​.cs ​ extension has been replaced by the ​.p ​ extension. So,
if you wanted to see the expected output of test 3 of homework 2, you could type
“​cat /c/cs223/hw2/Tests/t03.p ​”

b. Remember that you can use the “​ls /c/cs223/hw1/Tests/ ​” command to
see all the files related to testing

Homework Submission

1. To submit your homework, you need to be on the Zoo, and in the same folder as your
completed homework files

a. To test this: use the ​ls ​ command, and make sure you see your homework files
2. Type: “​/c/cs223/bin/submit <homework #> Makefile <.c / .h

homework files> <logfile> ​”
a. Example, for homework 1:

/c/cs223/bin/submit 1 Makefile Total.c time.log

