
CPSC 223 - Fall 2017 - Exam #1

Problem 0 (1 point): Write your name on the back of this exam package. What did Prof. Glenn do this
morning before the exam?

Problem 1 (20 points): Write the declarations and initializations to reflect the memory diagram shown
below. For this and subsequent diagrams, there should be no local variables other than a, b, c, d, e, and
f, everything not labelled with a local variable name is dynamically allocated, the numeric values are ints,
the character values are chars, there is a struct point with int fields x and y, and you may assume that
the appropriate header files have been included.

Problem 2 (5 points): Write the calls to free required so that there are no memory leaks after the local
variables in the diagram from Problem 1 go out of scope (again, assume that there are no other variables
aside from those shown in the diagram).

Problem 3 (12 points): Assuming that local variables a through f have been set up according to the
diagram in Problem 1, indicate for each of the following pairs of statements whether one of the statements
is invalid (will not compile without warnings or errors), or if both are valid then give the output of the
printf or state that the behavior is undefined (for example, when pointers are used dangerously). Assume
the results of the valid statements are cumulative and ignore the effects of the invalid statements.

a) (*b)++;

printf("%s\n", a);

b) b++;

printf("%c\n", *b);

c) c = &a;

printf("%c\n", c[0]);

d) d->x = f[1];

printf("%d\n", d->x);

e) *f = e;

printf("%d\n", *f[0]);

f) f[1]--;

printf("%d\n", *f[1]);

Problem 4 (6 points): Assuming that local variables a through f have been set up according to the
diagram below, write the statements to

(a) set up the pointer shown with the dashed line

(b) copy the value marked “??” (whatever it is) to the location marked “?”.

Problem 5 (16 points): The function count spaces in the program below is intended to count the leading
and trailing whitespace characters in the string passed to it; the counts will be returned through (simulated)
reference parameters. As written, the function does not work; main prints leading=0 trailing=0 for any
command-line argument passed to it. Edit the program to make the count spaces function work correctly
and to make main call it correctly. You may edit (delete, modify, or insert) no more than eight lines total
(and you may edit fewer).

#include <stdio.h>

#include <ctype.h>

#include <string.h>

void count_spaces(char *s , int leading, int trailing);

int main(int argc, char **argv)

{

if (argc > 1)

{

int leading = 0, trailing = 0;

count_spaces(argv[1], leading, trailing);

printf("leading=%d trailing=%d\n", leading, trailing);

}

}

void count_spaces(char *s, int leading, int trailing)

{

int len = strlen(s);

char *start = s;

while (isspace(*start))

{

start++;

}

leading = start - s;

char *end = s + len;

while (1 != 0) // FIX THIS TOO!

{

end--;

}

trailing = len - (end - s);

}

Problem 6 (20 points):

(a) Complete the following function increment that takes two arguments: an array of ints and its size.
The function returns a new array of the same size as the given array with the values in the new array
equal to one more than the corresponding value in the one passed in. For example, if a is {1, 2, 3}
then increment(a, 3) returns {2, 3, 4}. For each blank in the function choose one of items A-S to
fill the blank and write the corresponding letter. Each item may be used zero, one, or more times. You
may not add other code.

_____ increment(_____ a, _____ n)

{

______ result = ______(______(______) * ______);

for (int i = 0; i < ______ ; i++)

{

______ = _____ + ______;

}

return ______;

}

A: int J: *a

B: int * K: a++

C: void L: a->i

D: void * M: a[i]

N: *result

E: 1 O: result->i

F: a P: result[i]

G: i

H: n Q: malloc

I: result R: free

S: sizeof

(b) Add some appropriate error-checking to the increment function – there are some implicit preconditions
and you should add a check for at least one of those preconditions and return NULL if it is not met.
Add your code to what you filled out above.

(c) Show below how to modify the header of increment and the line of code in the body of the for loop to
make a function apply that behaves like increment, except the values in the new array are determined
by passing each value in the old array to a function that is passed as the third argument to apply, so
apply(a, n, add one) would have the same effect as increment if add one is defined as

int add_one(int n) { return n + 1; }

Problem 7 (20 points):

(a) Consider a plist ADT with the following functions (note the addition of plist remove end).

plist *plist_create();

void plist_destroy(plist *l);

int plist_size(const plist *l);

bool plist_add_end(plist *l, const point *p);

void plist_remove_end(plist *l);

void plist_get(const plist *l, int i, point *p);

bool plist_contains(const plist *l, const point *p);

void plist_fprintf(FILE *stream, const char *fmt, const plist *l);

(i) Complete the function called truncate plist that has a pointer to a plist as its parameter and
removes the second half of the points from the list (rounding down the number to remove if the
number of points is odd). The plist structure is opaque, so truncate plist cannot access its
members directly.

void truncate_plist()

{

// compute the number of points to remove

int num = ;

// remove that many points

for (int i = 0; i < num; i++)

{

}

}

(ii) What is the asymptotic running time of your truncate plist if plist is implemented using a
dynamically allocated array?

(iii) What is the asymptotic running time of your truncate plist if plist is implemented using a
doubly-linked list?

(b) Write plist truncate to have the same effect as truncate plist, except plist truncate is part of
the plist module (written in plist.c so has access to the members of the structure). Assume that
plist is defined as

struct plist

{

int capacity;

int size;

point *items;

};

with the appropriate typedef. Your implementation should run in O(1) time (do not resize the array).
You may assume that the pointer passed to plist truncate points to a valid plist.

(c) Unscramble the plist truncate function written as part of the plist module, where plist is imple-
mented as a doubly-linked list with dummy head and tail nodes and structs defined as follows

typedef struct plist_node { struct plist {

point data; int size;

struct plist_node *next; plist_node *head;

struct plist_node *prev; plist_node *tail;

} plist_node; }

with the appropriate typedef for plist. Write the sequence of numbers for the lines of code to
complete the body of the function. Some numbers may not be used and some may be used more than
once.

void plist_truncate(plist *l)

{

if (l != NULL)

{

int kill = l->size / 2;

l->size -= kill;

// move curr to first node to remove (select/unscramble 1-9)

// link around second half of list (10-15)

// free the removed nodes (16-23)

}

}

1) plist_node *curr = l->head;

2) plist_node *curr = l->head->next;

3) plist_node *curr = l->tail;

4) plist_node *curr = l->tail->prev;

5) for (int i = 0; i < kill; i++) {

6) curr = *curr;

7) curr = curr->prev;

8) curr = curr->next;

9) }

10) l->tail = curr->prev;

11) l->tail = curr->prev->next;

12) l->tail->prev = curr->prev;

13) curr->prev = l->tail;

14) curr->prev = l->tail->prev;

15) curr->prev->next = l->tail;

16) while (curr != l->tail) {

17) while (curr != NULL) {

18) free(curr);

19) free(curr->prev);

20) curr = curr->next;

21) plist_node *temp = curr->next;

22) curr = temp;

23) }

