
CPSC 223 - Fall 2018 - Exam #1

Write your name and NetID on only this page of this exam package in the boxes provided and write your
answers on the front of the provided sheets no closer than 1

2 inch from the edges of the pages.

Name

NetID

Problem 1 (16 points): Write the declarations and initializations to reflect the memory diagram shown
below. For this and subsequent diagrams, there should be no local variables other than a, b, c, d, e, and f,
everything not labelled with a local variable name is dynamically allocated, the numeric values are doubles,
the character values are chars, there is a struct location with typedef-ed alias location, that struct has
double fields lat and lon, and you may assume that the appropriate header files have been included.

Problem 2 (4 points): Write the calls to free required so that there are no memory leaks after the local
variables in the diagram from Problem 1 go out of scope (again, assume that there are no other variables
aside from those shown in the diagram).

Problem 3 (14 points): Assuming that local variables a through f have been set up according to the
diagram in Problem 1, indicate for each of the following groups of statements whether one or more of the
statements are invalid (will not compile without warnings or errors), or if all are valid then give the output
of the printf or state that the behavior is undefined (for example, when pointers are used dangerously).
Consider the groups of statements in isolation; do not consider the effects of previous pairs of statements.

a) (*b)++;

printf("%s\n", a);

b) b--;

printf("%s\n", b);

c) d = &f;

printf("%f\n", *d);

d) d = f[1];

printf("%f\n", *d);

e) f = &d;

printf("%d\n", *f[0]);

f) c = e[2];

printf("%f\n", c.lat);

g) d--;

printf("%f\n", d[1]);

Problem 4 (12 points): Assuming that local variables a through f have been set up according to the
diagram below (with the initial state of the pointers shown with the solid lines), write the statements to

(a) change the 8.91 to the value represented by “???” (whatever it is)

(b) copy the values marked “?” and “??” into c

(c) change e as indicated by the dashed line

(d) change the original copy of the “???” to 10.0 (assume that the changes from (a)-(c) have taken effect)

Problem 5 (16 points): Modify the following program so that location is an opaque struct. Show the
changes to main.c and location.h. You may omit the changes to location.c, but if you add functions
you should describe them briefly in the appropriate place in natural language, leaving out descriptions of
error handling. Your finished program should have no memory leaks or other errors that would be reported
by valgrind.

// --------------------- location.h ---------------------

#ifndef __LOCATION_H__

#define __LOCATION_H__

struct location { double lat; double lon; };

typedef struct location location;

// WRITE ADDITIONS TO location.h ON THE FOLLOWING PAGE

// copies to the struct pointed to by mid the point halfway between from and to

void location_midway(const location *from, const location *to, location *mid);

#endif

// --------------------- location.c ---------------------

#include <math.h>

#include "location.h"

void location_midway(const location *from, const location *to, location *mid) {

// HEAVY-DUTY MATH OMITTED FOR BREVITY

}

// --------------------- main.c ---------------------

#include <stdio.h>

#include "location.h"

int main() {

double lat1, lon1, lat2, lon2;

// INITIALIZATIONS AND ERROR HANDLING AND OMITTED FOR BREVITY

location hq1 = { lat1, lon1 };

location hq2 = { lat2, lon2 };

location mid;

location_midway(&hq1, &hq2, &mid);

printf("%f %f\n", mid.lat, mid.lon);

}

Write additions to location.h here. Indicate what is removed from location.h on the previous page.

Problem 6 (20 points): The following function reads the given number of doubles from standard input.
For each value it reads, it transforms the value using the normalize function and saves the transformed
value in the array. The array is returned at the end of the function. Modify the function so that it

(a) performs error checking on the scanf call so that it stops reading when it becomes impossible to read
a double and in all cases returns the number of values it actually read through a new (simulated)
reference parameter along with the array containing the values read through the returned pointer;

(b) performs error checking on the memory allocation (returning NULL and 0 if there was an error);

(c) reads from a file whose name is given by an additional string parameter instead of standard input,
closing the file any time the function ends, and returning NULL and 0 if there was an error opening
the file (and modify whatever error checking you added from (a) to now work with the file); and

(d) transforms the values read by calling a function passed as an additional argument, where normalize

should be one of the functions possible to pass as that argument (no error checking is necessary on this
additional argument).

After all of your changes, the call vals = read(10, &count, "infile", normalize); should be legal,
assuming that vals is declared as a pointer to a double and count is an int.

double normalize(double x) {

x = x - 360.0 * (int)(x / 360.0);

return x >= 0.0 ? x : x + 360.0;

}

double *read(int n) {

double *values = malloc(sizeof(double) * n);

for (int i = 0; i < n; i++) {

double x;

scanf("%lf", &x);

values[i] = normalize(x);

}

return values;

}

Problem 7 (18 points):

(a) Complete the following function concat all that takes two arguments: an non-empty array of strings
and its size. The function returns a new string containing all the strings in the array concatenated
together with single space characters between them. The space allocated to the string should be the
smallest possible. For each blank in the function choose one of items A-O to fill the blank and write the
corresponding letter. Each item may be used zero, one, or more times. Write up to three statements
at the end of the function to complete it. You may not add other code. You may assume that the
array passed to concat all is not NULL, is non-empty, that none of the strings are NULL, that n is the
correct length of the array, and that the concatenated string is not too long to fit in memory.

char *concat_all(_____________arr[], int n) {

int tot_size = 0;

// determine the length of the result

for (int i = 0; i < n; i++)

{

tot_size += ______(_______) + _____;

}

tot_size += ______ + _______;

// create an array to hold the result

_____ result[tot_size];

// initialize the result

______(result, ____);

// concatenate each string in the array to the end of the result

for (int i = 0; i < n; i++)

{

if (i > 0)

{

_______(result, ______);

}

______(result, ______);

}

// WRITE UP TO THREE LINES HERE TO FINISH THE FUNCTION CORRECTLY

}

A: char D: strlen G: 0 M: arr K: ""

B: char * E: strcat H: 1 N: arr + i L: " "

C: char ** F: strcpy I: -1 O: arr[i]

J: n

(b) Assuming that there are n strings each of length between n and 2n, what is the asymptotic (big-O)
running time of your completed concat all function in terms of n?

