
CPSC 223 - Fall 2018 - Exam #2

Write your name and NetID on only this page of this exam package in the boxes provided and write your
answers on the front of the provided sheets no closer than 1

2 inch from the edges of the pages.

Name

NetID



Problem 0 (1 point):

(a) What is the opposite of “to embiggen”?

(b) You learned a lot about C, data structures, and programming techniques this semester. You are happy.
Draw a picture of your happy face.

Problem 1 (6 points): Show the end result of adding the following values in the given order into a plain
(unbalanced) binary search tree. 30 50 40 10 20 25

Problem 2 (4 points): Show the result of searching for 5 in the following splay tree.



Problem 3 (10 points):

(a) For each of the following AVL trees, show the AVL tree that results from adding 47.

(i)

(ii)

(b) Show the AVL tree that results from deleting 9 from the following AVL tree.



Problem 4 (12 points):

(a) Show the Red-Black tree that results from adding 3 to the following Red-Black tree (the cross-hatched
nodes are red).

(b) Show the Red-Black tree that results from deleting 22 from the following Red-Black tree.



Problem 5 (12 points): Below is an illustration of a set of keys first stored in a hash table using open
addressing and then in a hash table using chaining. For each implementation, draw the diagram that results
after doubling the number of slots in the hash table, adding the old keys to the new hash table, and then
adding keys EAT and UST, assuming the hash values are as shown in the table below.

Key Value Key Value
ACC 15 PAE 8
BOG 23 SJU 64
DTW 18 TUL 34
EAT 20 UST 31



Problem 6 (15 points): Consider the following subset of an ADT for a list of 3-letter strings.

// returns the size of the list

int apl_size(const apl *l);

// returns a pointer to the string at the given index in the list

const char *apl_get(const apl *l, int i);

// creates a new iterator at the beginning of the list

apl_it *apl_start(const apl *l);

// returns a pointer to the string at the current position of the iterator and

// advances the iterator; returns NULL when past the end of the list

const char *apl_it_get(apl_it *i);

// destroys an iterator

void apl_it_destroy(apl_it *i);

The following function determines whether two lists are equal: whether they are the same length and each
string on the first list compares equal to the string at the same index on the second list.

bool lists_equal(const apl* l1, const apl* l2)

{

if (l1 == NULL || l2 == NULL || apl_size(l1) != apl_size(l2)) return false;

int i = 0;

while (i < apl_size(l1) && strcmp(apl_get(l1, i), apl_get(l2, i)) == 0)

i++;

return i == apl_size(l1);

}

(a) What is the worst-case asymptotic (big-O) running time of lists equal when the list is implemented
with a doubly-linked list? (For this and subsequent parts, assume that malloc and free run in O(1)
time.)

(b) What is the worst-case asymptotic running time when the list is implemented with an array?

(c) Rewrite lists equal so it uses an iterator and runs in worst-case O(n) time for both list implemen-
tations. There should be no memory leaks. You needn’t rewrite the header or the first line.



Problem 7 (20 points): Consider the following subset of an ADT for a map from length-3 strings to arrays
of integers and a function that determines if two maps contain the same set of keys.

bool smap_contains_key(const smap *m, const char *key);

void smap_for_each(smap *m, void (*f)(const char *, int *, void *, void *), void *arg1, void *arg2);

void check_membership(const char *key, int *value, void *arg1, void *arg2) {

smap *m2 = arg1;

int *count = arg2;

if (smap_contains_key(m2, key))

(*count)++;

}

bool same_keys(smap *m1, smap *m2) {

if (m1 == NULL || m2 == NULL || smap_size(m1) != smap_size(m2)) return false;

int match_count = 0;

smap_for_each(m1, check_membership, m2, &match_count);

return match_count == smap_size(m1);

}

(a) (i) What is the worst-case asymptotic (big-O) running time of same keys when the maps are both
implemented using hash tables, in terms of n, the total number of keys in the map, and m, the
number of slots in the hash table?

(ii) What is the expected asymptotic running time in terms of n and m, assuming the hash function
is good?

(b) What is the worst-case asymptotic (big-O) running time of same keys in terms of n when the maps
are implemented using the following kinds of binary search tree? (smap for each iterates through the
keys in sorted order in these cases.)

(i) both are unbalanced binary search trees

(ii) both are AVL trees

(iii) both are red-black trees

(iv) both are splay trees

(c) On the next page, write pseudocode for an implementation of same keys that improves the asymptotic
worst-case running time for all the above implementations and explain briefly what that running time
is. (Your worst-case improvement may come at the expense of worse expected running time in some
cases.)



Pseudocode for same keys goes here.



Problem 8 (12 points): Consider the following partial implementation of an undirected graph using
adjacency lists.

typedef struct

{

int n; // the number of vertices

int *list_size; // the size of each adjacency list

int *list_cap; // the capacity of each adjacency list

int **adj; // the adjacency lists

} lugraph;

typedef struct

{

int *status; // UNSEEN, PROCESSING, or DONE (see enum below)

int num; // the number of connected components

int *size; // the size of each connected component

int **vertices; // the vertices in each connected component

} lu_search;

enum {UNSEEN, PROCESSING, DONE};

// creates an lu_search struct with all vertices initialized to UNSEEN,

// number and sizes of all connected components initialized to 0,

// and room for the largest possible number of connected components

// and the number of vertices in each of those components

lu_search *lu_search_create(int n);

On the following page, complete the code to find all the connected components of an undirected graph
using depth-first search. Your completed code should run in O(n + m) time on an graph represented
with an adjacency matrix. A connected component is a maximal non-empty set of vertices so that for
every pair of vertices in the set there is at least one path between the pair. For example, in the graph
below the connected components are {0, 1, 3}, {2, 5}, and {4}, and so the lu search struct returned from
lugraph connected components should be set so that the num field is 3, the size field is the array {3, 2,

1}, and the vertices field is the ragged 2-D array { {0, 1, 3}, {2, 5}, {4} } (the vertices in each row
may be in any order, and the rows may be in any order as long as the sizes are in the corresponding order
too).

(Hint: think about where in the DFS algorithm you will be finished with one connected component and
where you should add a vertex to the current connected component.)



lu_search *lugraph_connected_components(const luraph *g)

{

lu_search *s = lu_search_create(g->n);

for (int i = 0; i < g->n; i++)

{

if (s->status[i] == UNSEEN)

{

lugraph_dfs_visit(g, s, i);

}

}

return s;

}

void lugraph_dfs_visit(const lugraph* g, lu_search *s, int from)

{

s->status[from] = PROCESSING;

// iterate over outgoing edges

for (int i = 0; i < g->list_size[from]; i++)

{

int to = g->adj[from][i];

if (s->status[to] == UNSEEN)

{

// found an edge to a new vertex -- explore it

lugraph_dfs_visit(g, s, to);

}

}

// record current vertex finished

s->status[from] = DONE;

}



Problem 9 (8 points): Below is a recursive implementation of a function to compute the nth Catalan
number.

// computes the nth catalan number for nonnegative integers n

long catalan_rec(int n)

{

if (n < 0) return 0; // check that n is nonnegative

if (n == 0) return 1;

long sum = 0;

for (int i = 0; i < n; i++) {

sum += catalan_rec(i) * catalan_rec(n - 1 - i);

}

return sum;

}

(a) Explain briefly why the recursive solution is inefficient.

(b) Rewrite the implementation using dynamic programming.

long catalan_dp(int n)

{

// create a memo to hold all the values

// initialize the value corresponding to the base case

// loop over all the other entries in the memo...

for ( )

{

// ...computing the value of that entry

// record that value

}

// return the entry we’re interested in

}


