F2018 X2

Wednesday, December 5, 2018 10:12 PM

Admin Page 1

CPSC 223 - Fall 2018 - Exam #2

Write vour name and NetID on only this page of this exam package in the boxes provided and write your
answers on the front of the provided sheets no closer than é inch from the edges of the pages.

Name

NetlD

Admin Page 2

Problem 0 (1 point):

(a) What is the opposite of “to embiggen”? ‘h‘ LﬁﬂL‘h

(b) You learned a lot about C, data structures, and programming techniques this semester. You are happy.

Draw a picture of your happy face.

Problem 1 (6 points): Show the end result of adding the following values in the given order into a plain
(unbalanced) binary search tree. 30 50 40 10 20 25

1)
lo/ s

\
XL
1s

Problem 2 (4 points): Show the result of searching for 5 in the following splay tree.
© 5
(&) (@ (7/ \[. J Y \
’
oJo - & \ = 9 C
/ 4 y,
O o
5 / T 9
g / \

Admin Page 3

Problem 3 (10 points):

(a) For each of the following AVL trees, show the AVL tree that results from adding 47.

Admin Page 4

Problem 4 (12 points):

1. ([a]) Show the Red-Black tree that results from adding 3 to the following Red-Black tree (the cross-

hatched nodes are red). ' b

(b) Sh()\\'pl{v(l—lilark tree that results from deleting 22 from the following Red-Black tree.

19 (w

Admin Page 5

Problem 5 (12 points): Below is an illustration of a set of keys first stored in a hash table using open
addressing and then in a hash table using chaining. For each implementation, draw the diagram that results
after doubling the number of slots in the hash table, adding the old keys to the new hash table, and then
adding keys EAT and UST, assuming the hash values are as shown in the table below.

Key | Value | Key | Value
ACC 15 PAE 8
BOG 23 SJuU 64
DTW 18 TUL 34
EAT 20 UsT 31
Chaining
Open Addressin
P 8 Sl ACC
0 [SgV :
1 Vv 3
2 PTW
ol 5oc T T 3| —»{ PAE || BOG |—>{ DTW |
4
1| PAE 4 |CAT e SI0
2| DTW 5
JET : T % EAT
ol L 7_|Bob. 1 dsvgy
3 8 |fAE 2
6 9 3 -AB.G
7| ACC 10 4) PVl ~7 STV
11 5| ~dAe
12 6
13 5
1 8| ~OPAR —y b TV
15 Ra- 9

Admin Page 6

Problem 6 (15 points): Consider the following subset of an ADT for a list of 3-letter strings.

// returns the size of the list
int apl_size(const apl *1);

// returns a pointer to the string at the given index in the list
const char *apl_get(const apl #1, int i);

// creates a new iterator at the beginning of the list
apl_it *apl_start(const apl #*1);

// returns a pointer to the string at the current position of the iterator and
// advances the iterator; returns NULL when past the end of the list
const char *apl_it_get(apl_it #*i);

// destroys an iterator
void apl_it_destroy(apl_it *i);

The following function determines whether two lists are equal: whether they are the same length and each
string on the first list compares equal to the string at the same index on the second list.

bool lists_equal(const apl* 11, const apl* 12)

{
if (11 == NULL || 12 == NULL || apl_size(1l1) != apl_size(12)) return false;
int 1 = 0;
while (i < apl_size(1l1) && strcmp(apl_get(1l1l, i), apl_get(12, i)) == 0)

ik

»

return i == apl_size(1l1);

{a) What is the worst-case asymptotic (big-O) running time of lists_equal when the list is implemented
with a doubly-linked list? (For this and subsequent parts, assume that malloc and free are run in

O(1) time.)
oly+)

(b) What is the worst-case asymptotic running time when the list is im]ﬁmented with an array?
L)

(¢} Rewrite lists_equal so it uses an iterator and runs in worst-case O(n) time for both list implemen-
tations. You needn’t rewrite the header or the first line.

&vl-n"" -] = ar‘-d‘/“'(‘,l)}
ﬁr‘-v.— w2 ;&r‘- QLA‘“\;
for (nh 120 il cpl-giwl AN i)
i (hremp (gl 4 b 1) | ep Lt} (1)) ! 0)
‘_fj..l..‘qluw’ (;')
t.'.l 4o e,y (‘u}

Admin Page 7

Problem 7 (24 points): Consider the following subset of an ADT for a map from strings to arrays of
integers and implementation of a function that determines if two maps contain the same set of keys.

bool smap_contains_key(const smap *m, const char *key);
void smap_for_each(smap *m, void (*f) (const char *, int *, void *), void *arg);

(a) (i) What is the worst-case asymptotic (big-O) running time of same keys when the maps are both
implemented using hash tables, in terms of n, the total number of kevs in the map, and m, the

number of slots in the hash table? 1
0 m

(ii) What is the expected asymptotic running time in terms of n and m, assuming the hash function

is good? o l M+ “)

(b) What is the worst-case asymptotic (big-O) running time of same keys in terms of n when the maps
are implemented using the following kinds of binary search tree? (smap_for_each iterates through the
keys in sorted order in these cases.)

(i} both are unbalanced binary search trees 0‘ pl)
(ii) both are AVL trees () (" |as ,_)

- 2 redoblae -
(iii) both are red-black trees D (V\. l ‘s ‘)

(iv) both are splay trees o (V\ l % h)

(c) Write pseudocode for an implementation of same_keys that improves the asymptotic worst-case running
time for all the above implementations and explain briefly what that running time is. (Your worst-casce
improvement may come at the expense of worse expected running time in some cases,)

hosn g vwe bov fLCL | 9,1‘ avviyl ! L-,; Lo el w&r

d:,.) [\
o(h 0'\4(“ a"’ Wl’eﬂ

Olwleg) 011 sk Lot
0("\ Oﬂmrnwt avveys

T
9 D(n)T ovA L

-~

Admin Page 8

Problem 8 (12 points): Consider the following partial implementation of an undirected graph using
adjacency lists.

typedef struct
{
int n; // the number of vertices
int *1list_size; // the size of each adjacency list
int *list_cap; // the capacity of each adjacency list
int #**adj; // the adjacency lists
} lugraph;

typedef struct

int *status; // UNSEEN, PROCESSING, or DONE (see enum below)
int num; // the number of connected components
int *size; // the size of each connected component
int **vertices; // the vertices in each connected component
} lu_search;

enum {UNSEEN, PROCESSING, DONE};

// creates an lu_search struct with all vertices initialized to UNSEEN,
// number and sizes of all connected components initialized to 0,

// and room for the largest possible number of connected components

// and the number of vertices in each of those components

lu_search *lu_search_create(int n);

On the following page, complete the code to find all the connected components of an undirected graph
using depth-first search. A connected component is a maximal non-empty set of vertices so that for ev-
ery pair of vertices in the set there is at least one path between the pair. For example, in the graph
below the connected components are {0.1,3}, {2,5}, and {4}, and so the lu_search struct returned from
lugraph connected_components should be set so that the num field is 3, the size field is the array {3, 2,
1}, and the vertices field is the ragged 2-D array { {0, 1, 3}, {2, 5}, {4} } (the vertices in each row
may be in any order, and the rows may be in any order as long as the sizes are in the corresponding order
too).

(Hint: think about where in the DFS algorithm you will be finished with one connected component and
where you should add a vertex to the current connected component.)

OO
OO

Admin Page 9

lu_search *lugraph_connected_components(const luraph *g)

{

lu_search *s = lu_search_create(g->n);

for (int i = 0; i < g->n; i++)
1{
if (s-»status[i] == UNSEEN)
{

lugraph_comp_visit(g, =, i);

($ - nvw\ + -P‘,

}
T
return s;

}

void lugraph_dfs_visit(const lugraph* g, lu_search *s, int from)

{ 5= verduy Gy (g siwéﬂluvaj = Lo

69 ww L§ guem) o4

s->status [from] = PROCESSING;

// iterate over outgoing edges
for (int i = 0; i < g->list_size[from]; i++)
{
int to = g->adj[from] [i];
if (s->status[to] == UNSEEN)
{

// found an edge to a new vertex —- explore it

lugraph_dfs_visit(g, s, to);
}
}

// record current vertex finished
s->status [from] = DONE;

Admin Page 10

Problem 9 (8 points): Below is a recursive implementation of a function to compute the nth Catalan
number.

// computes the nth catalan number for nomnnegative integers n
long catalan_rec(int n)

1{
if (n < 0) return 0; // check that n is nomnnegative
if (n == 0) return 1;
long sum = O;
for (int i = 0; i < n; i++) {
sum += catalan_rec(i) * catalan_rec(n - 1 - i);
T
return sum;
}

(a) Explain briefly why the recursive solution is inefficient.

M‘r’r“‘s [(% Lrvul-tmf

(b) Rewrite the implementation using dynamic programming.

long catalan_dp(int n)

{
// create a memo to hold all the values
h
long mem s (wn &l)
// initialize the value corresponding to the base case
Mam 0 [0 \ z|
// loop over all the other entries in the memo...
\ .
fOE(‘Ql.‘S.‘,,‘“" :")
// ...computing the value of that entry
Eom S Srw S0 y
\- - LY -)
lﬁ/(lhl',c.. 0')L O)Ji'"’ ‘ .
Sywm s e ‘:)w Ve W @ [n -l '\)3.
// record_that value J
}
// return the entry we’re interested in
¢ hbwa Wy [v\] .
3 7

Admin Page 11

