O(n lign) 0 worst case over all itentions for i= 2-1 outer loop <u>y</u>-1 inver loop O(n²) bokel $O(n^{-})$ find closest pair of cities O(1) start partial tour with that closest pair for i = 2 to n-1 for each city from already in tour for each other city to compute distance, tracking closest/farthest O(n) iterations city to insert is city to that gave closest/farthest distance for each insertion point j = 1 to i O(n); therefore, insert city to insert at position j in tour O(n)calculate distance of that tour, tracking minimum (an la O(n) with loth insertion point is j that gave minimum distance create new partial tour with city to insert inserted at position j O(n) O(n) O(n) O(n) O(n) O(n) O(n) for a do in O(1) by updating distance foO(n2) per iter $\overline{O(n^2+l+n^3)} = O(n^3)$ overall O(n) iterations of for i loop O(nlogn+n)= O(nlogn) per iteration U(n2 log n) overall

				_	
double x; double v:		6	× Y×	Y I	7
scanf("%lf %lf", &x	κ, &γ);				J
		F X		fr 7	
		a la		TX I	
				l	