
1

Sorting



Sorting

One of the most fundamental problems in CS

Still many questions open!

Given a list of objects we want to put in order

Alphabetical, word length, by score in the exam, sickness level,… 

We assume we have a comparison 

How fast can we do it?



Speed is not the only concern

How much extra memory do we use?

Can we handle repeated numbers?

Is information destroyed?

Easy to implement?

What computation model?

…



Algorithm 1: selection sort

Most intuitive algorithm

Look for smallest value

Place it in first position

Look for second smallest value

Place it second

Etc



Example

Look for smallest value

9 5 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Example

Look for smallest value

9 5 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Example

Place first place, now look for second smallest

2 5 10 8 12 11 14 9 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Example

Already in second place we do nothing

2 5 10 8 12 11 14 9 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Example

Third one to third position

2 5 8 10 12 11 14 9 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Example

And so on…

2 5 8 9 12 11 14 10 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Runtime

Two nested loops

Quadratic runtime!

Let’s prove it!

Outer loop n times

Inner loop n-j

Constant number of operations inside

TOTAL?



Big O bound

Two nested loops

Quadratic runtime!

Let’s prove it!

Outer loop at most n times

Inner loop n-j (at most n times)

Constant number of operations inside

O(N2)



Algorithm 2: insertionSort

Assume the first i elements have been sorted

Insert the i+1 in its proper place

Start with i=1 and stop when i=n

9 5 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

The first position is always sorted with itself (progress!)

9 5 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

Second position is smaller: we swap

9 5 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

Second position is smaller: we swap

5 9 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

Third position is largest: nothing to do

5 9 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

Fourth position is smaller than third: we swap with previous position

5 9 10 8 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

8 is still too big, we need another swap

5 9 8 10 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

8 is still finally in place. Let’s look for next number

5 8 9 10 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

Already sorted, nothing to do

5 8 9 10 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

Next position almost sorted 

5 8 9 10 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]



Algorithm 2: insertionSort

5 8 9 10 12 11 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Swap with previous number



Algorithm 2: insertionSort

5 8 9 10 11 12 14 2 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

Done! Is it always this easy?



Algorithm 2: insertionSort

No! The j-th position may travel j-1 positions in worst case

5 8 9 10 11 12 14 22 43 15 72 31 15 42 16
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

2



Code?
VOID INSERTIONSORT(INT ARR[], INT N)
{

INT I, KEY, J;
FOR (I = 1; I < N; I++) {

KEY = ARR[I];
J = I - 1;

/* MOVE ELEMENTS OF ARR[0..I-1], THAT ARE
GREATER THAN KEY, TO ONE POSITION AHEAD
OF THEIR CURRENT POSITION */

WHILE (J >= 0 && ARR[J] > KEY) {
ARR[J + 1] = ARR[J];
J = J - 1;

}
ARR[J + 1] = KEY;

}
}



Introducing Mergesort

Partition the array of n elements into two arrays of size n/2

Recursively sort them

Merge the two solutions into one



Combining two sorted lists

Keep 3 pointers

Current positions in the three arrays

Start at rightmost positions

3 5 1
1

1 8 1
0

L1: L2:

Result:



Combining two sorted lists

While arrays have not been fully explored

Add smallest to Result. 

Advance Result and the array containing smallest

3 5 1
1

1 8 1
0

L1: L2:

Result:



Combining two sorted lists

While arrays have not been fully explored

Add smallest to Result. 

Advance Result and the array containing smallest

3 5 11 1 8 10L1: L2:

1Result:



Combining two sorted lists

While arrays have not been fully explored

Add smallest to Result. 

Advance Result and the array containing smallest

3 5 1
1

1 8 1
0

L1: L2:

1 3Result:



Combining two sorted lists

While arrays have not been fully explored

Add smallest to Result. 

Advance Result and the array containing smallest

3 5 1
1

1 8 1
0

L1: L2:

1 3 5Result:



Combining two sorted lists

While arrays have not been fully explored

Add smallest to Result. 

Advance Result and the array containing smallest

3 5 1
1

1 8 1
0

L1: L2:

1 3 5 8Result:



Combining two sorted lists

While arrays have not been fully explored

Add smallest to Result. 

Advance Result and the array containing smallest

3 5 1
1

1 8 1
0

L1: L2:

1 3 5 8 1
0

Result:



Combining two sorted lists

While arrays have not been fully explored

Add smallest to Result. 

Advance Result and the array containing smallest

3 5 1
1

1 8 1
0

L1: L2:

1 3 5 8 1
0

1
1

Result:



36

99 6 86 15 58 35 86 4 0

Merge Sort Full Example



37

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort Full Example



38

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

Merge Sort Full Example



39

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

99 6 86 15 58 35 86 4 0

4 0

Merge Sort Full Example



40

99 6 86 15 58 35 86 0 4

4 0

Building pieces upwards



41

6 99 15 86 35 58 0 4 86

99 6 86 15 58 35 86 0 4

4 0

Building pieces upwards



42

6 99 15 86 35 58 0 4 86

6 15 86 99 0 4 35 58 86

99 6 86 15 58 35 86 0 4

4 0

Building pieces upwards



43

0 4 6 15 35 58 86 86 99

6 99 15 86 35 58 0 4 86

6 15 86 99 0 4 35 58 86

99 6 86 15 58 35 86 0 4

4 0

Building pieces upwards



44

0 4 6 15 35 58 86 86 99

6 99 15 86 35 58 0 4 86

6 15 86 99 0 4 35 58 86

99 6 86 15 58 35 86 0 4

4 0

Building pieces upwards



Runtime?



Quicksort

46

Very similar in than MergeSort

Divide and Conquer strategy

Worse from a theoretical standpoint

Faster in practice

Does not need extra space



Quicksort

47

Pick an element of the array (the pivot)

Split array into smaller and larger than pivot

NAIVE CHOICE: 
A[0]

6 5 9 12 3 4

pivot



Quicksort

48

Pick an element of the array (the pivot)

Split array into smaller and larger than pivot

Recursively sort both arrays

NAIVE CHOICE: 
A[0]

6 5 9 12 3 4

pivot

5 3 4 9 1
2

6



Execution example

49

5 3 4 9 1
2

< 6 > 6
6 5 9 12 3 4

pivot

Pick an element of the array (the pivot)

Split array into smaller and larger than pivot

Recursively sort both arrays



Execution example

50

6 5 9 12 3 4

pivot

5 3 4 9 1
2

6

pivot pivot

< 5 > 9> 5 < 9

123 4

Pick an element of the array (the pivot)

Split array into smaller and larger than pivot

Recursively sort both arrays



Runtime?

51

Worst case?

Already sorted input!

O(n2) runtime

Easy solution?

Pick a pivot at random

Still O(n2) worst case runtime



52

Part 2: Sorting in Linear Time



CountingSort

Let’s spice things up

Can we do it in a different way?

Not based on usual comparison

Assume input has limited range
0<A[i]<k for all values of I

Can you make an algorithm that uses this property?



Countingsort: phase 1

Scan array, find largest value k

Make array of size k+1, all entries zero

Scan array again, each time increasing count

9 5 10 8 3 6 5 2 5 2 1 3 5 2 6 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

10 IN THIS 
EXAMPLE

0 0 0 0 0 0 0 0 0 0 0
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 1

Scan array, find largest value k

Make array of size k+1, all entries zero

Scan array again, each time increasing count

9 5 10 8 3 6 5 2 5 2 1 3 5 2 6 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

10 IN THIS 
EXAMPLE

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

NOTHING TO DO



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2 3 3
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2 3 3
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2 3 3
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2 3 3 5 5 5 5 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2 3 3 5 5 5 5 5 6 6
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]



Countingsort: phase 2

Scan multiplicity array

For each index I add A[i] many copies into the solution

1 2 2 2 3 3 5 5 5 5 5 6 6
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

ETC



Runtime?

Phase 1:

Scan input array, find max

Create array of size k

Make all entries zero

Scan input array, increase count at each step

O(N)

O(K)
O(N)

O(1)



Runtime?

Phase 2:

For all entries of count array K ITERATIONS

1 2 2 2 3 3 5 5 5 5 5 6 6
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

TOTAL TIME O(N+K)

















9 5 10 8 3 6 5 2 5 2 1 3 5 2 6 5
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15]

0 1 3 2 0 5 2 0 1 1 1
[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10]

WAIT A SECOND: WAS THIS STABLE?










	Sorting
	Sorting
	Speed is not the only concern
	Algorithm 1: selection sort
	Example
	Example
	Example
	Example
	Example
	Example
	Runtime
	Big O bound
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Algorithm 2: insertionSort
	Code?
	Introducing Mergesort
	Combining two sorted lists
	Combining two sorted lists
	Combining two sorted lists
	Combining two sorted lists
	Combining two sorted lists
	Combining two sorted lists
	Combining two sorted lists
	Combining two sorted lists
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Quicksort
	Quicksort
	Quicksort
	Execution example
	Execution example
	Runtime?
	�Part 2: Sorting in Linear Time
	CountingSort
	Countingsort: phase 1
	Countingsort: phase 1
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Countingsort: phase 2
	Runtime?
	Runtime?
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81

