
 Part 1 � Cryptography 1

Part I: Crypto

Chapter 2: Crypto Basics
MXDXBVTZWVMXNSPBQXLIMSCCSGXSCJXBOVQX

CJZMOJZCVC
TVWJCZAAXZBCSSCJXBQCJZCOJZCNSPOXBXSBTV

WJC
JZDXGXXMOZQMSCSCJXBOVQXCJZMOJZCNSPJZH

GXXMOSPLH
JZDXZAAXZBXHCSCJXTCSGXSCJXBOVQX

� plaintext from Lewis Carroll, Alice in Wonderland

The solution is by no means so difficult as you might
be led to imagine from the first hasty inspection of the characters.

These characters, as any one might readily guess,
form a cipher � that is to say, they convey a meaning…

� Edgar Allan Poe, The Gold Bug
 Part 1 � Cryptography 2

 Part 1 � Cryptography 3

Crypto
❑ Cryptology � The art and science of

making and breaking “secret codes”
❑ Cryptography � making “secret codes”
❑ Cryptanalysis � breaking “secret

codes”
❑ Crypto � all of the above (and more)

 Part 1 � Cryptography 4

How to Speak Crypto
❑ A cipher or cryptosystem is used to encrypt

the plaintext
❑ The result of encryption is ciphertext
❑ We decrypt ciphertext to recover plaintext
❑ A key is used to configure a cryptosystem
❑ A symmetric key cryptosystem uses the same

key to encrypt as to decrypt
❑ A public key cryptosystem uses a public key

to encrypt and a private key to decrypt

 Part 1 � Cryptography 5

Crypto
❑ Basic assumptions

o The system is completely known to the attacker
o Only the key is secret
o That is, crypto algorithms are not secret

❑ This is known as Kerckhoffs’ Principle
❑ Why do we make such an assumption?

o Experience has shown that secret algorithms
tend to be weak when exposed

o Secret algorithms never remain secret
o Better to find weaknesses beforehand

 Part 1 � Cryptography 6

Crypto as Black Box

plaintext

keykey

plaintext

ciphertext

A generic view of symmetric key crypto

encrypt decrypt

 Part 1 � Cryptography 7

Simple Substitution
❑ Plaintext: fourscoreandsevenyearsago
❑ Key:

a b c d e f g h i j k l m n o p q r s t u v w x y

D E F G H I J K L M N O P Q R S T U V W X Y Z A B

z

C

❑ Ciphertext:
IRXUVFRUHDQGVHYHQBHDUVDJR

❑ Shift by 3 is “Caesar’s cipher”

Plaintext

Ciphertext

 Part 1 � Cryptography 8

Ceasar’s Cipher Decryption

❑ Plaintext: spongebobsquarepants

a b c d e f g h i j k l m n o p q r s t u v w x y

D E F G H I J K L M N O P Q R S T U V W X Y Z A B

z

C

Plaintext

Ciphertext

❑ Suppose we know a Caesar’s cipher is
being used:

❑ Given ciphertext:
VSRQJHEREVTXDUHSDQWV

 Part 1 � Cryptography 9

Not-so-Simple Substitution
❑ Shift by n for some n ∈ {0,1,2,…,25}

❑ Then key is n
❑ Example: key n = 7

a b c d e f g h i j k l m n o p q r s t u v w x y

H I J K L M N O P Q R S T U V W X Y Z A B C D E F

z

G

Plaintext

Ciphertext

 Part 1 � Cryptography 10

Cryptanalysis I: Try Them All
❑ A simple substitution (shift by n) is used

o But the key is unknown
❑ Given ciphertext: CSYEVIXIVQMREXIH

❑ How to find the key?
❑ Only 26 possible keys � try them all!
❑ Exhaustive key search
❑ Solution: key is n = 4

 Part 1 � Cryptography 11

Simple Substitution: General Case
❑ In general, simple substitution key can be

any permutation of letters
o Not necessarily a shift of the alphabet

❑ For example

a b c d e f g h i j k l m n o p q r s t u v w x y

J I C A X S E Y V D K W B Q T Z R H F M P N U L G

z

O

Plaintext

Ciphertext

❑ Then 26! > 288 possible keys

 Part 1 � Cryptography 12

Cryptanalysis II: Be Clever
❑ We know that a simple substitution is used
❑ But not necessarily a shift by n
❑ Find the key given the ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOX
BTFXQWAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQ
WAEBIPBFXFQVXGTVJVWLBTPQWAEBFPBFHCVLXBQUFEVWLXGD
PEQVPQGVPPBFTIXPFHXZHVFAGFOTHFEFBQUFTDHZBQPOTHXTY
FTODXQHFTDPTOGHFQPBQWAQJJTODXQHFOQPWTBDHHIXQV
APBFZQHCFWPFHPBFIPBQWKFABVYYDZBOTHPBQPQJTQOTOGHF
QAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFFACFCCFHQWAUVWF
LQHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFHFQAITIXPFH
XAFQHEFZQWGFLVWPTOFFA

 Part 1 � Cryptography 13

Cryptanalysis II
❑ Cannot try all 288 simple substitution keys
❑ Can we be more clever?
❑ English letter frequency counts…

 Part 1 � Cryptography 14

Cryptanalysis II
❑ Ciphertext:

PBFPVYFBQXZTYFPBFEQJHDXXQVAPTPQJKTOYQWIPBVWLXTOXBTFXQ
WAXBVCXQWAXFQJVWLEQNTOZQGGQLFXQWAKVWLXQWAEBIPBFXFQ
VXGTVJVWLBTPQWAEBFPBFHCVLXBQUFEVWLXGDPEQVPQGVPPBFTIXPFH
XZHVFAGFOTHFEFBQUFTDHZBQPOTHXTYFTODXQHFTDPTOGHFQPBQW
AQJJTODXQHFOQPWTBDHHIXQVAPBFZQHCFWPFHPBFIPBQWKFABVYY
DZBOTHPBQPQJTQOTOGHFQAPBFEQJHDXXQVAVXEBQPEFZBVFOJIWFF
ACFCCFHQWAUVWFLQHGFXVAFXQHFUFHILTTAVWAFFAWTEVOITDHFH
FQAITIXPFHXAFQHEFZQWGFLVWPTOFFA

A B C D E F G H I J K L M N O P Q R S T U V W X Y
21 26 6 10 12 51 10 25 10 9 3 10 0 1 15 28 42 0 0 27 4 24 22 28 6

Z
8

Ciphertext frequency counts:

❑ Analyze this message using statistics below

 Part 1 � Cryptography 15

Cryptanalysis: Terminology
❑ Cryptosystem is secure if best know

attack is to try all keys
o Exhaustive key search, that is

❑ Cryptosystem is insecure if any
shortcut attack is known

❑ But then insecure cipher might be
harder to break than a secure cipher!
o What the … ?

 Part 1 � Cryptography 16

Double Transposition
❑ Plaintext: attackxatxdawn

Permute rows
and columns

⇒
❑ Ciphertext: xtawxnattxadakc
❑ Key is matrix size and permutations:

(3,5,1,4,2) and (1,3,2)

 Part 1 � Cryptography 17

One-Time Pad: Encryption
e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

h e i l h i t l e r

00

1

00

0

01

0

10

0

00

1

01

0

111

10

0

00

0

101

111 101 110 101 111

10

0

00

0

101 110

00

0

110 101

10

0

00

1

110 110 111

00

1

110 101

s r l h s s t h s r

Encryption: Plaintext ⊕ Key = Ciphertext

Plaintext:
Key:

Ciphertext:

 Part 1 � Cryptography 18

One-Time Pad: Decryption
e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

s r l h s s t h s r

110 101

10

0

00

1

110 110 111

00

1

110 101

111 101 110 101 111

10

0

00

0

101 110

00

0

00

1

00

0

01

0

10

0

00

1

01

0

111

10

0

00

0

101

h e i l h i t l e r

Decryption: Ciphertext ⊕ Key = Plaintext

Ciphertext:
Key:

Plaintext:

 Part 1 � Cryptography 19

One-Time Pad

e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

s r l h s s t h s r

110 101

10

0

00

1

110 110 111

00

1

110 101

101 111

00

0

101 111

10

0

00

0

101 110

00

0

011

01

0

10

0

10

0

00

1

01

0

111

10

0

00

0

101

k i l l h i t l e r

Ciphertext:
“key”:

“Plaintext”:

Double agent claims following “key” was used:

 Part 1 � Cryptography 20

One-Time Pad

e=000 h=001 i=010 k=011 l=100 r=101 s=110 t=111

s r l h s s t h s r

110 101

10

0

00

1

110 110 111

00

1

110 101

111 101

00

0

011 101 110

00

1

011 101 101

00

1

00

0

10

0

01

0

011

00

0

110

01

0

011

00

0

h e l i k e s i k e

Ciphertext:
“key”:

“Plaintext”:

Or claims the key is…

 Part 1 � Cryptography 21

One-Time Pad Summary
❑ Provably secure

o Ciphertext gives no useful info about plaintext
o All plaintexts are equally likely

❑ BUT, only when be used correctly
o Pad must be random, used only once
o Pad is known only to sender and receiver

❑ Note: pad (key) is same size as message
❑ So, why not distribute msg instead of pad?

 Part 1 � Cryptography 22

Real-World One-Time Pad
❑ Project VENONA

o Soviet spies encrypted messages from U.S. to
Moscow in 30’s, 40’s, and 50’s

o Nuclear espionage, etc.
o Thousands of messages

❑ Spy carried one-time pad into U.S.
❑ Spy used pad to encrypt secret messages
❑ Repeats within the “one-time” pads made

cryptanalysis possible

 Part 1 � Cryptography 23

VENONA Decrypt (1944)
[C% Ruth] learned that her husband [v] was called up by the army but

he was not sent to the front. He is a mechanical engineer and is now
working at the ENORMOUS [ENORMOZ] [vi] plant in SANTA FE, New
Mexico. [45 groups unrecoverable]
detain VOLOK [vii] who is working in a plant on ENORMOUS. He is a

FELLOWCOUNTRYMAN [ZEMLYaK] [viii]. Yesterday he learned that
they had dismissed him from his work. His active work in progressive
organizations in the past was cause of his dismissal. In the
FELLOWCOUNTRYMAN line LIBERAL is in touch with CHESTER [ix].
They meet once a month for the payment of dues. CHESTER is
interested in whether we are satisfied with the collaboration and
whether there are not any misunderstandings. He does not inquire
about specific items of work [KONKRETNAYa RABOTA]. In as much
as CHESTER knows about the role of LIBERAL's group we beg
consent to ask C. through LIBERAL about leads from among people
who are working on ENOURMOUS and in other technical fields.

❑ “Ruth” == Ruth Greenglass
❑ “Liberal” == Julius Rosenberg
❑ “Enormous” == the atomic bomb

 Part 1 � Cryptography 24

Codebook Cipher
❑ Literally, a book filled with “codewords”
❑ Zimmerman Telegram encrypted via codebook

Februar 13605
fest 13732
finanzielle 13850
folgender 13918
Frieden 17142
Friedenschluss 17149

: :

❑ Modern block ciphers are codebooks!
❑ More about this later…

http://www.nsa.gov/venona/index.cfm
http://library.thinkquest.org/28005/flashed/timemachine/courseofhistory/zimmerman.shtml?tqskip1=1&tqtime=1029

Codebook Cipher: Additive
❑ Codebooks also (usually) use additive
❑ Additive � book of “random” numbers

o Encrypt message with codebook
o Then choose position in additive book
o Add in additives to get ciphertext
o Send ciphertext and additive position (MI)
o Recipient subtracts additives before

decrypting
❑ Why use an additive sequence?
 Part 1 � Cryptography 25 Part 1 � Cryptography 26

Zimmerman
Telegram

❑ Perhaps most
famous codebook
ciphertext ever

❑ A major factor in
U.S. entry into
World War I

 Part 1 � Cryptography 27

Zimmerman
Telegram
Decrypted
❑ British had

recovered
partial
codebook

❑ Then able to
fill in missing
parts

 Part 1 � Cryptography 28

Random Historical Items

❑ Crypto timeline
❑ Spartan Scytale � transposition

cipher
❑ Caesar’s cipher
❑ Poe’s short story: The Gold Bug
❑ Election of 1876

http://world.std.com/~cme/html/timeline.html

 Part 1 � Cryptography 29

Election of 1876
❑ “Rutherfraud” Hayes vs “Swindling” Tilden

o Popular vote was virtual tie

❑ Electoral college delegations for 4 states
(including Florida) in dispute

❑ Commission gave all 4 states to Hayes
o Voted on straight party lines

❑ Tilden accused Hayes of bribery
o Was it true?

 Part 1 � Cryptography 30

Election of 1876
❑ Encrypted messages by Tilden supporters

later emerged
❑ Cipher: Partial codebook, plus transposition
❑ Codebook substitution for important words

ciphertext plaintext
Copenhagen Greenbacks
Greece Hayes
Rochester votes
Russia Tilden
Warsaw telegram
 : :

 Part 1 � Cryptography 31

Election of 1876
❑ Apply codebook to original message
❑ Pad message to multiple of 5 words (total

length, 10,15,20,25 or 30 words)
❑ For each length, a fixed permutation

applied to resulting message
❑ Permutations found by comparing several

messages of same length
❑ Note that the same key is applied to all

messages of a given length

 Part 1 � Cryptography 32

Election of 1876
❑ Ciphertext: Warsaw they read all

unchanged last are idiots can’t situation
❑ Codebook: Warsaw == telegram
❑ Transposition: 9,3,6,1,10,5,2,7,4,8
❑ Plaintext: Can’t read last telegram.

Situation unchanged. They are all idiots.
❑ A weak cipher made worse by reuse of key
❑ Lesson? Don’t overuse keys!

 Part 1 � Cryptography 33

Early 20th Century
❑ WWI � Zimmerman Telegram
❑ “Gentlemen do not read each other’s mail”

o Henry L. Stimson, Secretary of State, 1929

❑ WWII � golden age of cryptanalysis
o Midway/Coral Sea
o Japanese Purple (codename MAGIC)
o German Enigma (codename ULTRA)

 Part 1 � Cryptography 34

Post-WWII History
❑ Claude Shannon � father of the science of

information theory
❑ Computer revolution � lots of data to protect
❑ Data Encryption Standard (DES), 70’s
❑ Public Key cryptography, 70’s
❑ CRYPTO conferences, 80’s
❑ Advanced Encryption Standard (AES), 90’s
❑ The crypto genie is out of the bottle…

 Part 1 � Cryptography 35

Claude Shannon
❑ The founder of Information Theory
❑ 1949 paper: Comm. Thy. of Secrecy Systems

❑ Fundamental concepts
o Confusion � obscure relationship between

plaintext and ciphertext
o Diffusion � spread plaintext statistics through

the ciphertext
❑ Proved one-time pad is secure
❑ One-time pad is confusion-only, while double

transposition is diffusion-only
 Part 1 � Cryptography 36

Taxonomy of Cryptography
❑ Symmetric Key

o Same key for encryption and decryption
o Modern types: Stream ciphers, Block ciphers

❑ Public Key (or “asymmetric” crypto)
o Two keys, one for encryption (public), and one

for decryption (private)
o And digital signatures � nothing comparable in

symmetric key crypto
❑ Hash algorithms

o Can be viewed as “one way” crypto

http://www.cs.ucla.edu/~jkong/research/security/shannon1949.pdf

 Part 1 � Cryptography 37

Taxonomy of Cryptanalysis
❑ From perspective of info available to Trudy…

o Ciphertext only � Trudy’s worst case scenario
o Known plaintext
o Chosen plaintext

▪ “Lunchtime attack”
▪ Some protocols will encrypt chosen data

o Adaptively chosen plaintext
o Related key
o Forward search (public key crypto)
o And others…

 Part 1 � Cryptography 38

Chapter 3:
Symmetric Key Crypto

The chief forms of beauty are order and symmetry…
� Aristotle

“You boil it in sawdust: you salt it in glue:
You condense it with locusts and tape:

Still keeping one principal object in view �
To preserve its symmetrical shape.”

� Lewis Carroll, The Hunting of the Snark

 Part 1 � Cryptography 39

Symmetric Key Crypto
❑ Stream cipher � generalize one-time pad

o Except that key is relatively short
o Key is stretched into a long keystream
o Keystream is used just like a one-time pad

❑ Block cipher � generalized codebook
o Block cipher key determines a codebook
o Each key yields a different codebook
o Employs both “confusion” and “diffusion”

 Part 1 � Cryptography 40

Stream Ciphers

 Part 1 � Cryptography 41

Stream Ciphers
❑ Once upon a time, not so very long ago…

stream ciphers were the king of crypto
❑ Today, not as popular as block ciphers
❑ We’ll discuss two stream ciphers:
❑ A5/1

o Based on shift registers
o Used in GSM mobile phone system

❑ RC4
o Based on a changing lookup table
o Used many places

 Part 1 � Cryptography 42

A5/1: Shift Registers
❑ A5/1 uses 3 shift registers

o X: 19 bits (x0,x1,x2,
 …,x18)

o Y: 22 bits (y0,y1,y2,
 …,y21)

o Z: 23 bits (z0,z1,z2,
 …,z22)

 Part 1 � Cryptography 43

A5/1: Keystream
❑ At each iteration: m = maj(x8, y10, z10)

o Examples: maj(0,1,0) = 0 and maj(1,1,0) = 1
❑ If x8 = m then X steps

o t = x13 ⊕ x16 ⊕ x17 ⊕ x18
o xi = xi−1 for i = 18,17,…,1 and x0 = t

❑ If y10 = m then Y steps
o t = y20 ⊕ y21
o yi = yi−1 for i = 21,20,…,1 and y0 = t

❑ If z10 = m then Z steps
o t = z7 ⊕ z20 ⊕ z21 ⊕ z22
o zi = zi−1 for i = 22,21,…,1 and z0 = t

❑ Keystream bit is x18 ⊕ y21 ⊕ z22

 Part 1 � Cryptography 44

A5/1

❑ Each variable here is a single bit
❑ Key is used as initial fill of registers
❑ Each register steps (or not) based on maj(x8, y10, z10)
❑ Keystream bit is XOR of rightmost bits of registers

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15 y16 y17 y18 y19 y20 y21

z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17 z18 z19 z20 z21 z22

X

Y

Z

⊕

⊕

⊕

⊕

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

 Part 1 � Cryptography 45

A5/1

❑ In this example, m = maj(x8, y10, z10) = maj(1,0,1) = 1
❑ Register X steps, Y does not step, and Z steps
❑ Keystream bit is XOR of right bits of registers
❑ Here, keystream bit will be 0 ⊕ 1 ⊕ 0 = 1

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1

1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1

X

Y

Z

⊕

⊕

⊕

⊕

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

 Part 1 � Cryptography 46

Shift Register Crypto
❑ Shift register crypto efficient in hardware
❑ Often, slow if implemented in software
❑ In the past, very, very popular
❑ Today, more is done in software due to

fast processors
❑ Shift register crypto still used some

o Especially in resource-constrained devices

 Part 1 � Cryptography 47

RC4
❑ A self-modifying lookup table
❑ Table always contains a permutation of the

byte values 0,1,…,255
❑ Initialize the permutation using key
❑ At each step, RC4 does the following

o Swaps elements in current lookup table
o Selects a keystream byte from table

❑ Each step of RC4 produces a byte
o Efficient in software

❑ Each step of A5/1 produces only a bit
o Efficient in hardware

 Part 1 � Cryptography 48

RC4 Initialization
❑ S[] is permutation of 0,1,...,255
❑ key[] contains N bytes of key

for i = 0 to 255
S[i] = i
K[i] = key[i (mod N)]

next i
j = 0
for i = 0 to 255

j = (j + S[i] + K[i]) mod 256
swap(S[i], S[j])

next i
i = j = 0

 Part 1 � Cryptography 49

RC4 Keystream
❑ At each step, swap elements in table and

select keystream byte
i = (i + 1) mod 256
j = (j + S[i]) mod 256
swap(S[i], S[j])
t = (S[i] + S[j]) mod 256
keystreamByte = S[t]

❑ Use keystream bytes like a one-time pad
❑ Note: first 256 bytes should be discarded

o Otherwise, related key attack exists

 Part 1 � Cryptography 50

Stream Ciphers
❑ Stream ciphers were popular in the past

o Efficient in hardware
o Speed was needed to keep up with voice, etc.
o Today, processors are fast, so software-based

crypto is usually more than fast enough

❑ Future of stream ciphers?
o Shamir declared “the death of stream ciphers”
o May be greatly exaggerated…

 Part 1 � Cryptography 51

Block Ciphers

 Part 1 � Cryptography 52

(Iterated) Block Cipher
❑ Plaintext and ciphertext consist of

fixed-sized blocks
❑ Ciphertext obtained from plaintext

by iterating a round function
❑ Input to round function consists of

key and output of previous round
❑ Usually implemented in software

 Part 1 � Cryptography 53

Feistel Cipher: Encryption
❑ Feistel cipher is a type of block cipher

o Not a specific block cipher
❑ Split plaintext block into left and right

halves: P = (L
0
,

R

0
)

❑ For each round i = 1, 2, ..., n, compute
L

i
= R

i−1

R
i
= L

i−1
 ⊕ F(R

i−1
,

K

i
)

where F is round function and K
i
 is subkey

❑ Ciphertext: C = (L
n
,

R

n
)

 Part 1 � Cryptography 54

Feistel Cipher: Decryption
❑ Start with ciphertext C = (L

n
,

R

n
)

❑ For each round i = n, n−1, …, 1, compute
R

i−1
= L

i
L

i−1
= R

i
 ⊕ F(R

i−1
,

K

i
)

where F is round function and K
i
 is subkey

❑ Plaintext: P = (L
0
,

R

0
)

❑ Decryption works for any function F
o But only secure for certain functions F

 Part 1 � Cryptography 55

Data Encryption Standard
❑ DES developed in 1970’s
❑ Based on IBM’s Lucifer cipher
❑ DES was U.S. government standard
❑ Development of DES was controversial

o NSA secretly involved
o Design process was secret
o Key length reduced from 128 to 56 bits
o Subtle changes to Lucifer algorithm

 Part 1 � Cryptography 56

DES Numerology
❑ DES is a Feistel cipher with…

o 64 bit block length
o 56 bit key length
o 16 rounds
o 48 bits of key used each round (subkey)

❑ Round function is simple (for block cipher)
❑ Security depends heavily on “S-boxes”

o Each S-box maps 6 bits to 4 bits

 Part 1 � Cryptography 57

L R

expand shiftshift

key

key

S-boxes

compress

L R

2828

2828

2828

48

32

48

32

32

32

32

One
Round

 of
DES

48

32

K

i

P box

⊕

⊕

 Part 1 � Cryptography 58

DES Expansion Permutation
❑ Input 32 bits

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31

❑ Output 48 bits
31 0 1 2 3 4 3 4 5 6 7 8

 7 8 9 10 11 12 11 12 13 14 15 16

15 16 17 18 19 20 19 20 21 22 23 24

23 24 25 26 27 28 27 28 29 30 31 0

 Part 1 � Cryptography 59

DES S-box
❑ 8 “substitution boxes” or S-boxes
❑ Each S-box maps 6 bits to 4 bits
❑ Here is S-box number 1
input bits (0,5)
↓ input bits (1,2,3,4)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
00 | 1110 0100 1101 0001 0010 1111 1011 1000 0011 1010 0110 1100 0101 1001 0000 0111
01 | 0000 1111 0111 0100 1110 0010 1101 0001 1010 0110 1100 1011 1001 0101 0011 1000
10 | 0100 0001 1110 1000 1101 0110 0010 1011 1111 1100 1001 0111 0011 1010 0101 0000
11 | 1111 1100 1000 0010 0100 1001 0001 0111 0101 1011 0011 1110 1010 0000 0110 1101

 Part 1 � Cryptography 60

DES P-box
❑ Input 32 bits

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
31

❑ Output 32 bits
15 6 19 20 28 11 27 16 0 14 22 25 4 17 30
9

 1 7 23 13 31 26 2 8 18 12 29 5 21 10 3
24

 Part 1 � Cryptography 61

DES Subkey
❑ 56 bit DES key, numbered 0,1,2,…,55
❑ Left half key bits, LK

49 42 35 28 21 14 7
 0 50 43 36 29 22 15
 8 1 51 44 37 30 23
16 9 2 52 45 38 31

❑ Right half key bits, RK
55 48 41 34 27 20 13
 6 54 47 40 33 26 19
12 5 53 46 39 32 25
18 11 4 24 17 10 3

 Part 1 � Cryptography 62

DES Subkey
❑ For rounds i=1,2,...,16

o Let LK = (LK circular shift left by r
i
)

o Let RK = (RK circular shift left by r
i
)

o Left half of subkey K
i
 is of LK bits

13 16 10 23 0 4 2 27 14 5 20 9

22 18 11 3 25 7 15 6 26 19 12 1

o Right half of subkey K
i
 is RK bits

12 23 2 8 18 26 1 11 22 16 4 19

15 20 10 27 5 24 17 13 21 7 0 3

 Part 1 � Cryptography 63

DES Subkey
❑ For rounds 1, 2, 9 and 16 the shift r

i
 is 1,

and in all other rounds r
i
 is 2

❑ Bits 8,17,21,24 of LK omitted each round
❑ Bits 6,9,14,25 of RK omitted each round
❑ Compression permutation yields 48 bit

subkey K
i
 from 56 bits of LK and RK

❑ Key schedule generates subkey

 Part 1 � Cryptography 64

DES Last Word (Almost)
❑ An initial permutation before round 1
❑ Halves are swapped after last round
❑ A final permutation (inverse of initial

perm) applied to (R
16

,

L

16
)

❑ None of this serves any security
purpose

 Part 1 � Cryptography 65

Security of DES
❑ Security depends heavily on S-boxes

o Everything else in DES is linear
❑ 35+ years of intense analysis has revealed

no back door
❑ Attacks, essentially exhaustive key search
❑ Inescapable conclusions

o Designers of DES knew what they were doing
o Designers of DES were way ahead of their time

(at least wrt certain cryptanalytic techniques)

 Part 1 � Cryptography 66

Block Cipher Notation
❑ P = plaintext block
❑ C = ciphertext block
❑ Encrypt P with key K to get ciphertext C

o C = E(P, K)

❑ Decrypt C with key K to get plaintext P
o P = D(C, K)

❑ Note: P = D(E(P, K), K) and C = E(D(C, K), K)
o But P ≠ D(E(P, K

1
), K

2
) and C ≠ E(D(C, K

1
), K

2
) when

K
1
 ≠ K

2

 Part 1 � Cryptography 67

Triple DES
❑ Today, 56 bit DES key is too small

o Exhaustive key search is feasible
❑ But DES is everywhere, so what to do?
❑ Triple DES or 3DES (112 bit key)

o C = E(D(E(P,K
1
),K

2
),K

1
)

o P = D(E(D(C,K
1
),K

2
),K

1
)

❑ Why Encrypt-Decrypt-Encrypt with 2 keys?
o Backward compatible: E(D(E(P,K),K),K) = E(P,K)

o And 112 is a lot of bits

 Part 1 � Cryptography 68

3DES
❑ Why not C = E(E(P,K),K) instead?

o Trick question � still just 56 bit key
❑ Why not C = E(E(P,K

1
),K

2
) instead?

❑ A (semi-practical) known plaintext attack
o Pre-compute table of E(P,K

1
) for every possible

key K
1
 (resulting table has 256 entries)

o Then for each possible K
2
 compute D(C,K

2
) until

a match in table is found
o When match is found, have E(P,K

1
) = D(C,K

2
)

o Result gives us keys: C = E(E(P,K
1
),K

2
)

 Part 1 � Cryptography 69

Advanced Encryption Standard
❑ Replacement for DES
❑ AES competition (late 90’s)

o NSA openly involved
o Transparent selection process
o Many strong algorithms proposed
o Rijndael Algorithm ultimately selected

(pronounced like “Rain Doll” or “Rhine Doll”)
❑ Iterated block cipher (like DES)
❑ Not a Feistel cipher (unlike DES)

 Part 1 � Cryptography 70

AES: Executive Summary
❑ Block size: 128 bits (others in Rijndael)
❑ Key length: 128, 192 or 256 bits

(independent of block size in Rijndael)
❑ 10 to 14 rounds (depends on key length)
❑ Each round uses 4 functions (3 “layers”)

o ByteSub (nonlinear layer)
o ShiftRow (linear mixing layer)
o MixColumn (nonlinear layer)
o AddRoundKey (key addition layer)

 Part 1 � Cryptography 71

AES ByteSub

❑ ByteSub is AES’s “S-box”
❑ Can be viewed as nonlinear (but invertible)

composition of two math operations

❑ Treat 128 bit block as 4x4 byte array

 Part 1 � Cryptography 72

AES “S-box”

First 4
bits of
input

Last 4 bits of input

 Part 1 � Cryptography 73

AES ShiftRow
❑ Cyclic shift rows

 Part 1 � Cryptography 74

AES MixColumn

❑ Implemented as a (big) lookup table

❑ Invertible, linear operation applied to
each column

 Part 1 � Cryptography 75

AES AddRoundKey

❑ RoundKey (subkey) determined by key
schedule algorithm

❑ XOR subkey with block

Block Subkey

 Part 1 � Cryptography 76

AES Decryption
❑ To decrypt, process must be invertible
❑ Inverse of MixAddRoundKey is easy, since

“⊕” is its own inverse
❑ MixColumn is invertible (inverse is also

implemented as a lookup table)
❑ Inverse of ShiftRow is easy (cyclic shift

the other direction)
❑ ByteSub is invertible (inverse is also

implemented as a lookup table)

 Part 1 � Cryptography 77

A Few Other Block Ciphers
❑ Briefly…

o IDEA
o Blowfish
o RC6

❑ More detailed…
o TEA

 Part 1 � Cryptography 78

IDEA
❑ Invented by James Massey

o One of the giants of modern crypto
❑ IDEA has 64-bit block, 128-bit key
❑ IDEA uses mixed-mode arithmetic
❑ Combine different math operations

o IDEA the first to use this approach
o Frequently used today

 Part 1 � Cryptography 79

Blowfish
❑ Blowfish encrypts 64-bit blocks
❑ Key is variable length, up to 448 bits
❑ Invented by Bruce Schneier
❑ Almost a Feistel cipher

R
i
 = L

i−1
 ⊕ K

i
L

i
 = R

i−1
 ⊕ F(L

i−1
 ⊕ K

i
)

❑ The round function F uses 4 S-boxes
o Each S-box maps 8 bits to 32 bits

❑ Key-dependent S-boxes
o S-boxes determined by the key

 Part 1 � Cryptography 80

RC6
❑ Invented by Ron Rivest
❑ Variables

o Block size
o Key size
o Number of rounds

❑ An AES finalist
❑ Uses data dependent rotations

o Unusual for algorithm to depend on plaintext

 Part 1 � Cryptography 81

Time for TEA…
❑ Tiny Encryption Algorithm (TEA)
❑ 64 bit block, 128 bit key
❑ Assumes 32-bit arithmetic
❑ Number of rounds is variable (32 is

considered secure)
❑ Uses “weak” round function, so large

number of rounds required

 Part 1 � Cryptography 82

TEA Encryption
Assuming 32 rounds:

(K[0],

K[1],

K[2],

K[3]) = 128 bit key

(L,R) = plaintext (64-bit block)
delta = 0x9e3779b9
sum = 0
for i = 1 to 32
 sum += delta
 L += ((R<<4)+K[0])^(R+sum)^((R>>5)+K[1])

 R += ((L<<4)+K[2])^(L+sum)^((L>>5)+K[3])
next i
ciphertext = (L,R)

 Part 1 � Cryptography 83

TEA Decryption
Assuming 32 rounds:

(K[0],

K[1],

K[2],

K[3]) = 128 bit key

(L,R) = ciphertext (64-bit block)
delta = 0x9e3779b9
sum = delta << 5
for i = 1 to 32
 R −= ((L<<4)+K[2])^(L+sum)^((L>>5)+K[3])
 L −= ((R<<4)+K[0])^(R+sum)^((R>>5)+K[1])

 sum −= delta
next i
plaintext = (L,R)

 Part 1 � Cryptography 84

TEA Comments
❑ “Almost” a Feistel cipher

o Uses + and - instead of ⊕ (XOR)
❑ Simple, easy to implement, fast, low

memory requirement, etc.
❑ Possibly a “related key” attack
❑ eXtended TEA (XTEA) eliminates related

key attack (slightly more complex)
❑ Simplified TEA (STEA) � insecure version

used as an example for cryptanalysis

 Part 1 � Cryptography 85

Block Cipher Modes

 Part 1 � Cryptography 86

Multiple Blocks
❑ How to encrypt multiple blocks?
❑ Do we need a new key for each block?

o If so, as impractical as a one-time pad!

❑ Encrypt each block independently?
❑ Is there any analog of codebook “additive”?

❑ How to handle partial blocks?
o We won’t discuss this issue

 Part 1 � Cryptography 87

Modes of Operation
❑ Many modes � we discuss 3 most popular
❑ Electronic Codebook (ECB) mode

o Encrypt each block independently
o Most obvious approach, but a bad idea

❑ Cipher Block Chaining (CBC) mode
o Chain the blocks together
o More secure than ECB, virtually no extra work

❑ Counter Mode (CTR) mode
o Block ciphers acts like a stream cipher
o Popular for random access

 Part 1 � Cryptography 88

ECB Mode
❑ Notation: C = E(P,

K)

❑ Given plaintext P
0
, P

1
, …, P

m
, …

❑ Most obvious way to use a block cipher:
Encrypt Decrypt
C

0
= E(P

0
, K) P

0
= D(C

0
, K)

C
1
= E(P

1
, K) P

1
= D(C

1
, K)

C
2
= E(P

2
, K) … P

2
= D(C

2
, K) …

❑ For fixed key K, this is “electronic” version
of a codebook cipher (without additive)
o With a different codebook for each key

 Part 1 � Cryptography 89

ECB Cut and Paste
❑ Suppose plaintext is

Alice digs Bob. Trudy digs Tom.
❑ Assuming 64-bit blocks and 8-bit ASCII:

P
0
= “Alice di”, P

1
= “gs Bob. ”,

P
2
= “Trudy di”, P

3
= “gs Tom. ”

❑ Ciphertext: C
0
, C

1
, C

2
, C

3
❑ Trudy cuts and pastes: C

0
, C

3
, C

2
, C

1
❑ Decrypts as

Alice digs Tom. Trudy digs Bob.

 Part 1 � Cryptography 90

ECB Weakness
❑ Suppose P

i
= P

j

❑ Then C
i
= C

j
 and Trudy knows P

i
= P

j

❑ This gives Trudy some information,
even if she does not know P

i
 or P

j

❑ Trudy might know P
i

❑ Is this a serious issue?

 Part 1 � Cryptography 91

Alice Hates ECB Mode
❑ Alice’s uncompressed image, and ECB encrypted (TEA)

❑ Why does this happen?
❑ Same plaintext yields same ciphertext!

 Part 1 � Cryptography 92

CBC Mode
❑ Blocks are “chained” together
❑ A random initialization vector, or IV, is

required to initialize CBC mode
❑ IV is random, but not secret

Encryption Decryption
C

0
= E(IV ⊕ P

0
, K), P

0
= IV ⊕ D(C

0
, K),

C
1
= E(C

0
⊕ P

1
, K), P

1
= C

0
⊕ D(C

1
, K),

C
2
= E(C

1
⊕ P

2
, K),… P

2
= C

1
⊕ D(C

2
, K),…

❑ Analogous to classic codebook with additive

 Part 1 � Cryptography 93

CBC Mode
❑ Identical plaintext blocks yield different

ciphertext blocks � this is very good!
❑ But what about errors in transmission?

o If C
1
 is garbled to, say, G then

P
1
≠ C

0
⊕ D(G, K), P

2
≠ G ⊕ D(C

2
, K)

o But P
3
= C

2
⊕ D(C

3
, K), P

4
= C

3
⊕ D(C

4
, K), …

o Automatically recovers from errors!
❑ Cut and paste is still possible, but more

complex (and will cause garbles)

 Part 1 � Cryptography 94

Alice Likes CBC Mode
❑ Alice’s uncompressed image, Alice CBC encrypted (TEA)

❑ Why does this happen?
❑ Same plaintext yields different ciphertext!

 Part 1 � Cryptography 95

Counter Mode (CTR)
❑ CTR is popular for random access
❑ Use block cipher like a stream cipher

Encryption Decryption
C

0
= P

0
⊕ E(IV, K), P

0
= C

0
⊕ E(IV, K),

C
1
= P

1
⊕ E(IV+1, K), P

1
= C

1
⊕ E(IV+1, K),

C
2
= P

2
⊕ E(IV+2, K),… P

2
= C

2
⊕ E(IV+2, K),…

❑ Note: CBC also works for random access
o But there is a significant limitation…

 Part 1 � Cryptography 96

Integrity

 Part 1 � Cryptography 97

Data Integrity
❑ Integrity � detect unauthorized writing

(i.e., detect unauthorized mod of data)
❑ Example: Inter-bank fund transfers

o Confidentiality may be nice, integrity is critical
❑ Encryption provides confidentiality

(prevents unauthorized disclosure)
❑ Encryption alone does not provide integrity

o One-time pad, ECB cut-and-paste, etc., etc.

 Part 1 � Cryptography 98

MAC

❑ Message Authentication Code (MAC)
o Used for data integrity
o Integrity not the same as confidentiality

❑ MAC is computed as CBC residue
o That is, compute CBC encryption, saving

only final ciphertext block, the MAC

o The MAC serves as a cryptographic
checksum for data

 Part 1 � Cryptography 99

MAC Computation
❑ MAC computation (assuming N blocks)

C
0
= E(IV ⊕ P

0
, K),

C
1
= E(C

0
⊕ P

1
, K),

C
2
= E(C

1
⊕ P

2
, K),…

C
N−1

= E(C
N−2

⊕ P
N−1

, K) = MAC

❑ Send IV, P
0
, P

1
, …, P

N−1
 and MAC

❑ Receiver does same computation and
verifies that result agrees with MAC

❑ Both sender and receiver must know K
 Part 1 � Cryptography 100

Does a MAC work?
❑ Suppose Alice has 4 plaintext blocks
❑ Alice computes

C0
= E(IV⊕P

0
, K), C1

= E(C0⊕P
1
, K),

C2
= E(C1⊕P

2
, K), C3

= E(C2⊕P
3
, K) = MAC

❑ Alice sends IV, P
0
, P

1
, P

2
, P

3
 and MAC to Bob

❑ Suppose Trudy changes P
1
 to X

❑ Bob computes
C0

= E(IV⊕P
0
, K), C1

= E(C0⊕X, K),
C2

= E(C1⊕P
2
, K), C3

= E(C2⊕P
3
, K) = MAC ≠ MAC

❑ It works since error propagates into MAC
❑ Trudy can’t make MAC == MAC without K

 Part 1 � Cryptography 101

Confidentiality and Integrity
❑ Encrypt with one key, MAC with another key
❑ Why not use the same key?

o Send last encrypted block (MAC) twice?
o This cannot add any security!

❑ Using different keys to encrypt and compute
MAC works, even if keys are related
o But, twice as much work as encryption alone
o Can do a little better � about 1.5 “encryptions”

❑ Confidentiality and integrity with same work
as one encryption is a research topic

 Part 1 � Cryptography 102

Uses for Symmetric Crypto
❑ Confidentiality

o Transmitting data over insecure channel
o Secure storage on insecure media

❑ Integrity (MAC)
❑ Authentication protocols (later…)
❑ Anything you can do with a hash

function (upcoming chapter…)

 Part 1 � Cryptography 103

Chapter 4:
Public Key Cryptography

You should not live one way in private, another in public.
� Publilius Syrus

Three may keep a secret, if two of them are dead.
� Ben Franklin

 Part 1 � Cryptography 104

Public Key Cryptography
❑ Two keys, one to encrypt, another to decrypt

o Alice uses Bob’s public key to encrypt
o Only Bob’s private key decrypts the message

❑ Based on “trap door, one way function”
o “One way” means easy to compute in one direction,

but hard to compute in other direction
o Example: Given p and q, product N = pq easy to

compute, but hard to find p and q from N
o “Trap door” is used when creating key pairs

 Part 1 � Cryptography 105

Public Key Cryptography
❑ Encryption

o Suppose we encrypt M with Bob’s public key
o Bob’s private key can decrypt C to recover M

❑ Digital Signature
o Bob signs by “encrypting” with his private key
o Anyone can verify signature by “decrypting”

with Bob’s public key
o But only Bob could have signed
o Like a handwritten signature, but much better…

 Part 1 � Cryptography 106

Knapsack

 Part 1 � Cryptography 107

Knapsack Problem
❑ Given a set of n weights W

0
,W

1
,...,W

n-1
 and a

sum S, find a
i
 ∈ {0,1} so that

S = a
0
W

0
+a

1
W

1
 + ... + a

n-1
W

n-1

(technically, this is the subset sum problem)
❑ Example

o Weights (62,93,26,52,166,48,91,141)

o Problem: Find a subset that sums to S = 302

o Answer: 62 + 26 + 166 + 48 = 302

❑ The (general) knapsack is NP-complete
 Part 1 � Cryptography 108

Knapsack Problem
❑ General knapsack (GK) is hard to solve
❑ But superincreasing knapsack (SIK) is easy
❑ SIK � each weight greater than the sum of

all previous weights
❑ Example

o Weights (2,3,7,14,30,57,120,251)

o Problem: Find subset that sums to S = 186

o Work from largest to smallest weight
o Answer: 120 + 57 + 7 + 2 = 186

 Part 1 � Cryptography 109

Knapsack Cryptosystem

1. Generate superincreasing knapsack (SIK)
2. Convert SIK to “general” knapsack (GK)
3. Public Key: GK
4. Private Key: SIK and conversion factor
❑ Goal…

o Easy to encrypt with GK
o With private key, easy to decrypt (solve SIK)
o Without private key, Trudy has no choice but

to try to solve GK

 Part 1 � Cryptography 110

Example
❑ Start with (2,3,7,14,30,57,120,251) as the SIK
❑ Choose m = 41 and n = 491 (m, n relatively

prime, n exceeds sum of elements in SIK)
❑ Compute “general” knapsack

2 ⋅ 41 mod 491 = 82
3 ⋅ 41 mod 491 = 123
7 ⋅ 41 mod 491 = 287
14 ⋅ 41 mod 491 = 83
30 ⋅ 41 mod 491 = 248
57 ⋅ 41 mod 491 = 373
120 ⋅ 41 mod 491 = 10
251 ⋅ 41 mod 491 = 471

❑ “General” knapsack: (82,123,287,83,248,373,10,471)

 Part 1 � Cryptography 111

Knapsack Example
❑ Private key: (2,3,7,14,30,57,120,251)

 m−1 mod n = 41−1 mod 491 = 12

❑ Public key: (82,123,287,83,248,373,10,471), n=491

❑ Example: Encrypt 10010110
82 + 83 + 373 + 10 = 548

❑ To decrypt, use private key…
o 548 · 12 = 193 mod 491
o Solve (easy) SIK with S = 193
o Obtain plaintext 10010110

 Part 1 � Cryptography 112

Knapsack Weakness
❑ Trapdoor: Convert SIK into “general”

knapsack using modular arithmetic
❑ One-way: General knapsack easy to

encrypt, hard to solve; SIK easy to solve
❑ This knapsack cryptosystem is insecure

o Broken in 1983 with Apple II computer
o The attack uses lattice reduction

❑ “General knapsack” is not general enough!
o This special case of knapsack is easy to break

 Part 1 � Cryptography 113

RSA

 Part 1 � Cryptography 114

RSA
❑ Invented by Clifford Cocks (GCHQ) and

Rivest, Shamir, and Adleman (MIT)
o RSA is the gold standard in public key crypto

❑ Let p and q be two large prime numbers
❑ Let N = pq be the modulus
❑ Choose e relatively prime to (p−1)(q−1)

❑ Find d such that ed = 1 mod (p−1)(q−1)

❑ Public key is (N,e)

❑ Private key is d

 Part 1 � Cryptography 115

RSA
❑ Message M is treated as a number
❑ To encrypt M we compute

C = Me mod N
❑ To decrypt ciphertext C, we compute

M = Cd mod N
❑ Recall that e and N are public
❑ If Trudy can factor N = pq, she can use e

to easily find d since ed = 1 mod (p−1)(q−1)
❑ So, factoring the modulus breaks RSA

o Is factoring the only way to break RSA?

 Part 1 � Cryptography 116

Does RSA Really Work?
❑ Given C = Me mod N we want to show that

 M = Cd mod N = Med mod N
❑ We’ll need Euler’s Theorem:

 If x is relatively prime to n then xϕ(n) = 1 mod n

❑ Facts:
1) ed = 1 mod (p − 1)(q − 1)
2) By definition of “mod”, ed = k(p − 1)(q − 1) + 1
3) ϕ(N) = (p − 1)(q − 1)

❑ Then ed − 1 = k(p − 1)(q − 1) = kϕ(N)
❑ So, Cd = Med = M(ed − 1) + 1 = M⋅Med − 1 = M⋅Mkϕ(N)

= M⋅(Mϕ(N))k mod N = M⋅1k mod N = M mod N

 Part 1 � Cryptography 117

Simple RSA Example

❑ Example of textbook RSA
o Select “large” primes p = 11, q = 3
o Then N = pq = 33 and (p − 1)(q − 1) = 20
o Choose e = 3 (relatively prime to 20)

o Find d such that ed = 1 mod 20
▪ We find that d = 7 works

❑ Public key: (N, e) = (33, 3)

❑ Private key: d = 7

 Part 1 � Cryptography 118

Simple RSA Example
❑ Public key: (N, e) = (33, 3)
❑ Private key: d = 7

❑ Suppose message to encrypt is M = 8

❑ Ciphertext C is computed as
C = Me mod N = 83 = 512 = 17 mod 33

❑ Decrypt C to recover the message M by
M = Cd mod N = 177 = 410,338,673 =

12,434,505 ∗ 33 + 8 = 8 mod 33

 Part 1 � Cryptography 119

More Efficient RSA (1)
❑ Modular exponentiation example

o 520 = 95367431640625 = 25 mod 35

❑ A better way: repeated squaring
o 20 = 10100 base 2
o (1, 10, 101, 1010, 10100) = (1, 2, 5, 10, 20)
o Note that 2 = 1⋅ 2, 5 = 2 ⋅ 2 + 1, 10 = 2 ⋅ 5, 20 = 2 ⋅ 10
o 51= 5 mod 35
o 52= (51)2 = 52 = 25 mod 35
o 55= (52)2 ⋅ 51 = 252 ⋅ 5 = 3125 = 10 mod 35
o 510 = (55)2 = 102 = 100 = 30 mod 35
o 520 = (510)2 = 302 = 900 = 25 mod 35

❑ No huge numbers and it’s efficient!

 Part 1 � Cryptography 120

More Efficient RSA (2)
❑ Use e = 3 for all users (but not same N or d)

+ Public key operations only require 2 multiplies
+ Private key operations remain expensive
+ If M < N1/3 then C = Me = M3 and cube root attack
+ For any M, if C

1
, C

2
, C

3
 sent to 3 users, cube root

attack works (uses Chinese Remainder Theorem)
❑ Can prevent cube root attack by padding

message with random bits
❑ Note: e = 216 + 1 also used (“better” than e = 3)

 Part 1 � Cryptography 121

Diffie-Hellman

 Part 1 � Cryptography 122

Diffie-Hellman Key Exchange
❑ Invented by Williamson (GCHQ) and,

independently, by D and H (Stanford)
❑ A “key exchange” algorithm

o Used to establish a shared symmetric key
o Not for encrypting or signing

❑ Based on discrete log problem
o Given: g, p, and gk mod p
o Find: exponent k

 Part 1 � Cryptography 123

Diffie-Hellman
❑ Let p be prime, let g be a generator

o For any x ∈ {1,2,…,p-1} there is n s.t. x = gn mod p

❑ Alice selects her private value a
❑ Bob selects his private value b
❑ Alice sends ga mod p to Bob
❑ Bob sends gb mod p to Alice
❑ Both compute shared secret, gab mod p

❑ Shared secret can be used as symmetric key
 Part 1 � Cryptography 124

Diffie-Hellman
❑ Public: g and p
❑ Private: Alice’s exponent a, Bob’s exponent b

Alice, a Bob, b

ga mod p

gb mod p

❑ Alice computes (gb)a = gba = gab mod p
❑ Bob computes (ga)b = gab mod p
❑ They can use K = gab mod p as symmetric key

 Part 1 � Cryptography 125

Diffie-Hellman
❑ Suppose Bob and Alice use Diffie-Hellman

to determine symmetric key K = gab mod p

❑ Trudy can see ga mod p and gb mod p

o But… ga gb mod p = ga+b mod p ≠ gab mod p

❑ If Trudy can find a or b, she gets K
❑ If Trudy can solve discrete log problem,

she can find a or b

 Part 1 � Cryptography 126

Diffie-Hellman
❑ Subject to man-in-the-middle (MiM) attack

Alice, a Bob, b

ga mod p

gb mod p

Trudy, t

gt mod p

gt mod p

❑ Trudy shares secret gat mod p with Alice
❑ Trudy shares secret gbt mod p with Bob
❑ Alice and Bob don’t know Trudy is MiM

 Part 1 � Cryptography 127

Diffie-Hellman
❑ How to prevent MiM attack?

o Encrypt DH exchange with symmetric key
o Encrypt DH exchange with public key
o Sign DH values with private key
o Other?

❑ At this point, DH may look pointless…
o …but it’s not (more on this later)

❑ You MUST be aware of MiM attack on
Diffie-Hellman

 Part 1 � Cryptography 128

Elliptic Curve Cryptography

 Part 1 � Cryptography 129

Elliptic Curve Crypto (ECC)
❑ “Elliptic curve” is not a cryptosystem
❑ Elliptic curves provide different way

to do the math in public key system
❑ Elliptic curve versions of DH, RSA, …
❑ Elliptic curves are more efficient

o Fewer bits needed for same security
o But the operations are more complex,

yet it is a big “win” overall
 Part 1 � Cryptography 130

What is an Elliptic Curve?
❑ An elliptic curve E is the graph of

an equation of the form
y2 = x3 + ax + b

❑ Also includes a “point at infinity”
❑ What do elliptic curves look like?
❑ See the next slide!

 Part 1 � Cryptography 131

Elliptic Curve Picture

❑ Consider elliptic curve
E: y2 = x3 - x + 1

❑ If P
1
 and P

2
 are on E, we

can define addition,
P
3
 = P

1
 + P

2

as shown in picture
❑ Addition is all we need…

P
1

P
2

P
3

x

y

 Part 1 � Cryptography 132

Points on Elliptic Curve
❑ Consider y2 = x3 + 2x + 3 (mod 5)

x = 0 ⇒ y2 = 3 ⇒ no solution (mod 5)
x = 1 ⇒ y2 = 6 = 1 ⇒ y = 1,4 (mod 5)
x = 2 ⇒ y2 = 15 = 0 ⇒ y = 0 (mod 5)
x = 3 ⇒ y2 = 36 = 1 ⇒ y = 1,4 (mod 5)
x = 4 ⇒ y2 = 75 = 0 ⇒ y = 0 (mod 5)

❑ Then points on the elliptic curve are
(1,1) (1,4) (2,0) (3,1) (3,4)
(4,0) and the point at infinity: ∞

 Part 1 � Cryptography 133

Elliptic Curve Math
❑ Addition on: y2 = x3 + ax + b (mod p)

P
1
=(x

1
,y

1
), P

2
=(x

2
,y

2
)

P
1
 + P

2
 = P

3
 = (x

3
,y

3
) where

x
3
 = m2 - x

1
 - x

2
(mod p)

y
3
 = m(x

1
 - x

3
) - y

1
(mod p)

And m = (y
2
-y

1
)∗(x

2
-x

1
)-1 mod p, if P

1
≠P

2
 m = (3x

1
2+a)∗(2y

1
)-1 mod p, if P

1
 = P

2
Special cases: If m is infinite, P

3
 = ∞, and

∞ + P = P for all P

 Part 1 � Cryptography 134

Elliptic Curve Addition
❑ Consider y2 = x3 + 2x + 3 (mod 5).

Points on the curve are (1,1) (1,4)
(2,0) (3,1) (3,4) (4,0) and ∞

❑ What is (1,4) + (3,1) = P
3
 = (x

3
,y

3
)?

m = (1-4)∗(3-1)-1 = -3∗2-1

 = 2(3) = 6 = 1 (mod 5)
x
3
 = 1 - 1 - 3 = 2 (mod 5)

y
3
 = 1(1-2) - 4 = 0 (mod 5)

❑ On this curve, (1,4) + (3,1) = (2,0)

 Part 1 � Cryptography 135

ECC Diffie-Hellman
❑ Public: Elliptic curve and point (x,y) on curve
❑ Private: Alice’s A and Bob’s B

Alice, A Bob, B

A(x,y)

B(x,y)

❑ Alice computes A(B(x,y))
❑ Bob computes B(A(x,y))

❑ These are the same since AB = BA

 Part 1 � Cryptography 136

ECC Diffie-Hellman
❑ Public: Curve y2 = x3 + 7x + b (mod 37)

and point (2,5) ⇒ b = 3
❑ Alice’s private: A = 4
❑ Bob’s private: B = 7
❑ Alice sends Bob: 4(2,5) = (7,32)
❑ Bob sends Alice: 7(2,5) = (18,35)
❑ Alice computes: 4(18,35) = (22,1)
❑ Bob computes: 7(7,32) = (22,1)

Larger ECC Example
❑ Example from Certicom ECCp-109

o Challenge problem, solved in 2002
❑ Curve E: y2 = x3 + ax + b (mod p)
❑ Where

p = 564538252084441556247016902735257

a = 321094768129147601892514872825668

b = 430782315140218274262276694323197

❑ Now what?
 Part 1 � Cryptography 137

ECC Example
❑ The following point P is on the curve E
(x,y) = (97339010987059066523156133908935,

149670372846169285760682371978898)

❑ Let k =

281183840311601949668207954530684

❑ The kP is given by
(x,y) = (44646769697405861057630861884284,

522968098895785888047540374779097)

❑ And this point is also on the curve E
 Part 1 � Cryptography 138

Really Big Numbers!
❑ Numbers are big, but not big enough

o ECCp-109 bit (32 digit) solved in 2002
❑ Today, ECC DH needs bigger numbers
❑ But RSA needs way bigger numbers

o Minimum RSA modulus today is 1024 bits
o That is, more than 300 decimal digits
o That’s about 10x the size in ECC example
o And 2048 bit RSA modulus is common…

 Part 1 � Cryptography 139 Part 1 � Cryptography 140

Uses for Public Key Crypto

 Part 1 � Cryptography 141

Uses for Public Key Crypto

❑ Confidentiality
o Transmitting data over insecure channel
o Secure storage on insecure media

❑ Authentication protocols (later)
❑ Digital signature

o Provides integrity and non-repudiation
o No non-repudiation with symmetric keys

 Part 1 � Cryptography 142

Non-non-repudiation
❑ Alice orders 100 shares of stock from Bob
❑ Alice computes MAC using symmetric key
❑ Stock drops, Alice claims she did not order
❑ Can Bob prove that Alice placed the order?
❑ No! Bob also knows the symmetric key, so

he could have forged the MAC

❑ Problem: Bob knows Alice placed the order,
but he can’t prove it

 Part 1 � Cryptography 143

Non-repudiation
❑ Alice orders 100 shares of stock from Bob
❑ Alice signs order with her private key
❑ Stock drops, Alice claims she did not order
❑ Can Bob prove that Alice placed the order?
❑ Yes! Alice’s private key used to sign the

order � only Alice knows her private key
❑ This assumes Alice’s private key has not

been lost/stolen

 Part 1 � Cryptography 144

Public Key Notation
❑ Sign message M with Alice’s

private key: [M]
Alice

❑ Encrypt message M with Alice’s
public key: {M}

Alice

❑ Then
{[M]

Alice
}

Alice
= M

[{M}
Alice

]
Alice

= M

 Part 1 � Cryptography 145

Sign and Encrypt
vs

Encrypt and Sign

 Part 1 � Cryptography 146

Confidentiality and
 Non-repudiation?

❑ Suppose that we want confidentiality
and integrity/non-repudiation

❑ Can public key crypto achieve both?
❑ Alice sends message to Bob

o Sign and encrypt: {[M]
Alice

}
Bob

o Encrypt and sign: [{M}
Bob

]
Alice

❑ Can the order possibly matter?

 Part 1 � Cryptography 147

Sign and Encrypt

Alice Bob

{[M]
Alice

}
B

ob

❑ Q: What’s the problem?
❑ A: No problem � public key is public

Charlie

{[M]
Alice

}
Charli

e

❑ M = “I love you”

 Part 1 � Cryptography 148

Encrypt and Sign

Alice Bob

[{M}
Bob

]
Ali

ce

❑ Note that Charlie cannot decrypt M
❑ Q: What is the problem?
❑ A: No problem � public key is public

Charlie

[{M}
Bob

]
Charli

e

❑ M = “My theory, which is mine….”

 Part 1 � Cryptography 149

Public Key Infrastructure

 Part 1 � Cryptography 150

Public Key Certificate
❑ Digital certificate contains name of user and

user’s public key (possibly other info too)
❑ It is signed by the issuer, a Certificate

Authority (CA), such as VeriSign
M = (Alice, Alice’s public key), S = [M]

CA

Alice’s Certificate = (M, S)

❑ Signature on certificate is verified using
CA’s public key

Must verify that M = {S}
CA

 Part 1 � Cryptography 151

Certificate Authority
❑ Certificate authority (CA) is a trusted 3rd

party (TTP) � creates and signs certificates
❑ Verify signature to verify integrity & identity

of owner of corresponding private key
o Does not verify the identity of the sender of

certificate � certificates are public!

❑ Big problem if CA makes a mistake
o CA once issued Microsoft cert. to someone else

❑ A common format for certificates is X.509
 Part 1 � Cryptography 152

PKI
❑ Public Key Infrastructure (PKI): the stuff

needed to securely use public key crypto
o Key generation and management
o Certificate authority (CA) or authorities
o Certificate revocation lists (CRLs), etc.

❑ No general standard for PKI
❑ We mention 3 generic “trust models”

o We only discuss the CA (or CAs)

 Part 1 � Cryptography 153

PKI Trust Models
❑ Monopoly model

o One universally trusted organization is
the CA for the known universe

o Big problems if CA is ever compromised
o Who will act as CA ???

▪ System is useless if you don’t trust the CA!

 Part 1 � Cryptography 154

PKI Trust Models

❑ Oligarchy
o Multiple (as in, “a few”) trusted CAs
o This approach is used in browsers today
o Browser may have 80 or more CA

certificates, just to verify certificates!
o User can decide which CA or CAs to trust

 Part 1 � Cryptography 155

PKI Trust Models
❑ Anarchy model

o Everyone is a CA…
o Users must decide who to trust
o This approach used in PGP: “Web of trust”

❑ Why is it anarchy?
o Suppose certificate is signed by Frank and you

don’t know Frank, but you do trust Bob and Bob
says Alice is trustworthy and Alice vouches for
Frank. Should you accept the certificate?

❑ Many other trust models/PKI issues
 Part 1 � Cryptography 156

Confidentiality
in the Real World

 Part 1 � Cryptography 157

Symmetric Key vs Public Key
❑ Symmetric key +’s

o Speed
o No public key infrastructure (PKI) needed

(but have to generate/distribute keys)

❑ Public Key +’s
o Signatures (non-repudiation)
o No shared secret (but, do have to get

private keys to the right user…)
 Part 1 � Cryptography 158

Notation Reminder
❑ Public key notation

o Sign M with Alice’s private key
[M]

Alice

o Encrypt M with Alice’s public key
{M}

Alice

❑ Symmetric key notation
o Encrypt P with symmetric key K

C = E(P,K)
o Decrypt C with symmetric key K

P = D(C,K)

 Part 1 � Cryptography 159

Real World Confidentiality
❑ Hybrid cryptosystem

o Public key crypto to establish a key
o Symmetric key crypto to encrypt data…

Alice Bob

I’m Alice, {K}
Bob

E(Bob’s data, K)

E(Alice’s data, K)

❑ Can Bob be sure he’s talking to Alice?
 Part 1 � Cryptography 160

Chapter 5: Hash Functions++

“I'm sure [my memory] only works one way.” Alice remarked.
“I can't remember things before they happen.”

“It's a poor sort of memory that only works backwards,”
the Queen remarked.

“What sort of things do you remember best?" Alice ventured to ask.
“Oh, things that happened the week after next,"

the Queen replied in a careless tone.
� Lewis Carroll, Through the Looking Glass

 Part 1 � Cryptography 161

Chapter 5: Hash Functions++

A boat, beneath a sunny sky
Lingering onward dreamily

In an evening of July �
Children three that nestle near,

Eager eye and willing ear,
...

� Lewis Carroll, Through the Looking Glass

 Part 1 � Cryptography 162

Hash Function Motivation
❑ Suppose Alice signs M

o Alice sends M and S = [M]
Alice

 to Bob
o Bob verifies that M = {S}

Alice

o Can Alice just send S?
❑ If M is big, [M]

Alice
 costly to compute & send

❑ Suppose instead, Alice signs h(M), where h(M)
is a much smaller “fingerprint” of M
o Alice sends M and S = [h(M)]

Alice
 to Bob

o Bob verifies that h(M) = {S}
Alice

 Part 1 � Cryptography 163

Hash Function Motivation
❑ So, Alice signs h(M)

o That is, Alice computes S = [h(M)]
Alice

o Alice then sends (M,

S) to Bob

o Bob verifies that h(M) = {S}
Alice

❑ What properties must h(M) satisfy?
o Suppose Trudy finds M’ so that h(M) = h(M’)

o Then Trudy can replace (M, S) with (M’, S)
❑ Does Bob detect this tampering?

o No, since h(M’) = h(M) = {S}
Alice

 Part 1 � Cryptography 164

Crypto Hash Function
❑ Crypto hash function h(x) must provide

o Compression � output length is small
o Efficiency � h(x) easy to compute for any x
o One-way � given a value y it is infeasible to find

an x such that h(x) = y

o Weak collision resistance � given x and h(x),
infeasible to find y ≠ x such that h(y) = h(x)

o Strong collision resistance � infeasible to find
any x and y, with x ≠ y such that h(x) = h(y)

❑ Lots of collisions exist, but hard to find any

 Part 1 � Cryptography 165

Pre-Birthday Problem
❑ Suppose N people in a room
❑ How large must N be before the

probability someone has same
birthday as me is ≥ 1/2 ?
o Solve: 1/2 = 1 − (364/365)N for N
o We find N = 253

 Part 1 � Cryptography 166

Birthday Problem
❑ How many people must be in a room before

probability is ≥ 1/2 that any two (or more)
have same birthday?
o 1 − 365/365 ⋅ 364/365 ⋅ ⋅ ⋅(365−N+1)/365

o Set equal to 1/2 and solve: N = 23

❑ Surprising? A paradox?
❑ Maybe not: “Should be” about sqrt(365)

since we compare all pairs x and y
o And there are 365 possible birthdays

 Part 1 � Cryptography 167

Of Hashes and Birthdays
❑ If h(x) is N bits, then 2N different hash

values are possible
❑ So, if you hash about sqrt(2N) = 2N/2 values

then you expect to find a collision
❑ Implication? “Exhaustive search” attack…

o Secure N-bit hash requires 2N/2 work to “break”
o Recall that secure N-bit symmetric cipher has

work factor of 2N−1
❑ Hash output length vs cipher key length?

 Part 1 � Cryptography 168

Non-crypto Hash (1)
❑ Data X = (X

1
,X

2
,X

3
,…,X

n
), each X

i
 is a byte

❑ Define h(X) = (X
1
+X

2
+X

3
+…+X

n
) mod 256

❑ Is this a secure cryptographic hash?
❑ Example: X = (10101010, 00001111)

❑ Hash is h(X) = 10111001

❑ If Y = (00001111, 10101010) then h(X) = h(Y)

❑ Easy to find collisions, so not secure…

 Part 1 � Cryptography 169

Non-crypto Hash (2)
❑ Data X = (X

0
,X

1
,X

2
,…,X

n-1
)

❑ Suppose hash is defined as
h(X) = (nX

1
+(n−1)X

2
+(n−2)X

3
+…+2⋅X

n-1
+X

n
) mod

256

❑ Is this a secure cryptographic hash?
❑ Note that

h(10101010, 00001111) ≠ h(00001111, 10101010)

❑ But hash of (00000001, 00001111) is same as
hash of (00000000, 00010001)

❑ Not “secure”, but this hash is used in the
(non-crypto) application rsync

 Part 1 � Cryptography 170

Non-crypto Hash (3)
❑ Cyclic Redundancy Check (CRC)
❑ Essentially, CRC is the remainder in a long

division calculation
❑ Good for detecting burst errors

o Such random errors unlikely to yield a collision
❑ But easy to construct collisions

o In crypto, Trudy is the enemy, not “random”
❑ CRC has been mistakenly used where crypto

integrity check is required (e.g., WEP)

 Part 1 � Cryptography 171

Popular Crypto Hashes
❑ MD5 � invented by Rivest (of course…)

o 128 bit output
o MD5 collisions easy to find, so it’s broken

❑ SHA-1 � A U.S. government standard,
inner workings similar to MD5
o 160 bit output

❑ Many other hashes, but MD5 and SHA-1
are the most widely used

❑ Hashes work by hashing message in blocks

 Part 1 � Cryptography 172

Crypto Hash Design
❑ Desired property: avalanche effect

o Change to 1 bit of input should affect about
half of output bits

❑ Crypto hash functions consist of some
number of rounds

❑ Want security and speed
o “Avalanche effect” after few rounds
o But simple rounds

❑ Analogous to design of block ciphers

http://samba.anu.edu.au/rsync/

 Part 1 � Cryptography 173

Tiger Hash
❑ “Fast and strong”
❑ Designed by Ross Anderson and Eli

Biham � leading cryptographers
❑ Design criteria

o Secure
o Optimized for 64-bit processors
o Easy replacement for MD5 or SHA-1

 Part 1 � Cryptography 174

Tiger Hash
❑ Like MD5/SHA-1, input divided into 512 bit

blocks (padded)
❑ Unlike MD5/SHA-1, output is 192 bits

(three 64-bit words)
o Truncate output if replacing MD5 or SHA-1

❑ Intermediate rounds are all 192 bits
❑ 4 S-boxes, each maps 8 bits to 64 bits
❑ A “key schedule” is used

 Part 1 � Cryptography 175

Tiger Outer Round

F
7

F
9

+

W

⊕ −

ca b

ca b

F
5

key schedule

key schedule

❑ Input is X
o X = (X

0
,X

1
,…,X

n-1
)

o X is padded
o Each X

i
 is 512 bits

❑ There are n iterations
of diagram at left
o One for each input block

❑ Initial (a,b,c) constants
❑ Final (a,b,c) is hash
❑ Looks like block cipher!

ca b

W

W

X

i

 Part 1 � Cryptography 176

Tiger Inner Rounds

f
m,0

f
m.1

f
m,2

f
m,7

w
0

w
1

w
2

w
7

ca b

ca b

❑ Each F
m
 consists of

precisely 8 rounds
❑ 512 bit input W to F

m

o W=(w
0
,w

1
,…,w

7
)

o W is one of the input
blocks X

i

❑ All lines are 64 bits
❑ The f

m,i
 depend on the

S-boxes (next slide)

 Part 1 � Cryptography 177

Tiger Hash: One Round
❑ Each f

m,i
 is a function of a,b,c,w

i
 and m

o Input values of a,b,c from previous round
o And w

i
 is 64-bit block of 512 bit W

o Subscript m is multiplier
o And c = (c

0
,c

1
,…,c

7
)

❑ Output of f
m,i

 is
o c = c ⊕ w

i
o a = a − (S

0
[c

0
] ⊕ S

1
[c

2
] ⊕ S

2
[c

4
] ⊕ S

3
[c

6
])

o b = b + (S
3
[c

1
] ⊕ S

2
[c

3
] ⊕ S

1
[c

5
] ⊕ S

0
[c

7
])

o b = b ∗ m

❑ Each S
i
 is S-box: 8 bits mapped to 64 bits

 Part 1 � Cryptography 178

Tiger Hash
Key Schedule
❑ Input is X

o X=(x
0
,x

1
,…,x

7
)

❑ Small change in
X will produce
large change in
key schedule
output

x
0
 = x

0
− (x

7
⊕ 0xA5A5A5A5A5A5A5A5)

x
1
 = x

1
⊕ x

0
x

2
 = x

2
+ x

1
x

3
 = x

3
− (x

2
 ⊕ ((~x

1
) << 19))

x
4
 = x

4
⊕

x

3
x

5
 = x

5
+x

4
x

6
 = x

6
− (x

5
 ⊕ ((~x

4
) >> 23))

x
7
 = x

7
⊕ x

6
x

0
 = x

0
+x

7
x

1
 = x

1
− (x

0
 ⊕ ((~x

7
) << 19))

x
2
 = x

2
⊕ x

1
x

3
 = x

3
+x

2
x

4
 = x

4
− (x

3
 ⊕ ((~x

2
) >> 23))

x
5
 = x

5
⊕ x

4
x

6
 = x

6
+x

5
x

7
 = x

7
−(x

6
 ⊕ 0x0123456789ABCDEF)

 Part 1 � Cryptography 179

Tiger Hash Summary (1)
❑ Hash and intermediate values are 192 bits
❑ 24 (inner) rounds

o S-boxes: Claimed that each input bit affects a, b
and c after 3 rounds

o Key schedule: Small change in message affects
many bits of intermediate hash values

o Multiply: Designed to ensure that input to S-box
in one round mixed into many S-boxes in next

❑ S-boxes, key schedule and multiply together
designed to ensure strong avalanche effect

 Part 1 � Cryptography 180

Tiger Hash Summary (2)
❑ Uses lots of ideas from block ciphers

o S-boxes
o Multiple rounds
o Mixed mode arithmetic

❑ At a higher level, Tiger employs
o Confusion
o Diffusion

 Part 1 � Cryptography 181

HMAC
❑ Can compute a MAC of the message M with

key K using a “hashed MAC” or HMAC

❑ HMAC is a keyed hash
o Why would we need a key?

❑ How to compute HMAC?
❑ Two obvious choices: h(K,M) and h(M,K)

❑ Which is better?

 Part 1 � Cryptography 182

HMAC
❑ Should we compute HMAC as h(K,M) ?
❑ Hashes computed in blocks

o h(B
1
,B

2
) = F(F(A,B

1
),B

2
) for some F and constant A

o Then h(B
1
,B

2
) = F(h(B

1
),B

2
)

❑ Let M’ = (M,X)
o Then h(K,M’) = F(h(K,M),X)

o Attacker can compute HMAC of M’ without K
❑ Is h(M,K) better?

o Yes, but… if h(M’) = h(M) then we might have
h(M,K)=F(h(M),K)=F(h(M’),K)=h(M’,K)

 Part 1 � Cryptography 183

Correct Way to HMAC
❑ Described in RFC 2104
❑ Let B be the block length of hash, in bytes

o B = 64 for MD5 and SHA-1 and Tiger

❑ ipad = 0x36 repeated B times
❑ opad = 0x5C repeated B times
❑ Then

HMAC(M,K) = h(K ⊕ opad, h(K ⊕ ipad, M))

 Part 1 � Cryptography 184

Hash Uses
❑ Authentication (HMAC)
❑ Message integrity (HMAC)
❑ Message fingerprint
❑ Data corruption detection
❑ Digital signature efficiency
❑ Anything you can do with symmetric crypto
❑ Also, many, many clever/surprising uses…

 Part 1 � Cryptography 185

Online Bids
❑ Suppose Alice, Bob and Charlie are bidders
❑ Alice plans to bid A, Bob B and Charlie C
❑ They don’t trust that bids will stay secret
❑ A possible solution?

o Alice, Bob, Charlie submit hashes h(A), h(B), h(C)

o All hashes received and posted online
o Then bids A, B, and C submitted and revealed

❑ Hashes don’t reveal bids (one way)
❑ Can’t change bid after hash sent (collision)
❑ But there is a serious flaw here…

 Part 1 � Cryptography 186

Hashing for Spam Reduction
❑ Spam reduction
❑ Before accept email, want proof that

sender had to “work” to create email
o Here, “work” == CPU cycles

❑ Goal is to limit the amount of email
that can be sent
o This approach will not eliminate spam
o Instead, make spam more costly to send

 Part 1 � Cryptography 187

Spam Reduction
❑ Let M = complete email message

 R = value to be determined
 T = current time

❑ Sender must determine R so that
h(M,R,T) = (00…0,X), that is,
initial N bits of hash value are all zero

❑ Sender then sends (M,R,T)

❑ Recipient accepts email, provided that…
h(M,R,T) begins with N zeros

 Part 1 � Cryptography 188

Spam Reduction
❑ Sender: h(M,R,T) begins with N zeros
❑ Recipient: verify that h(M,R,T) begins with

N zeros
❑ Work for sender: on average 2N hashes
❑ Work for recipient: always 1 hash
❑ Sender’s work increases exponentially in N
❑ Small work for recipient, regardless of N
❑ Choose N so that…

o Work acceptable for normal amounts of email
o Work is too high for spammers

 Part 1 � Cryptography 189

Secret Sharing

 Part 1 � Cryptography 190

Shamir’s Secret Sharing

(X
0
,Y

0
)(X

1
,Y

1
)

(0,S)

❑ Two points determine a line
❑ Give (X

0
,Y

0
) to Alice

❑ Give (X
1
,Y

1
) to Bob

❑ Then Alice and Bob must
cooperate to find secret S
❑ Also works in discrete case
❑ Easy to make “m out of n”
scheme for any m ≤ n

X

Y

2 out of 2

 Part 1 � Cryptography 191

Shamir’s Secret Sharing

(X
0
,Y

0
)

(X
1
,Y

1
)

(0,S)

❑ Give (X
0
,Y

0
) to Alice

❑ Give (X
1
,Y

1
) to Bob

❑ Give (X
2
,Y

2
) to Charlie

❑ Then any two can cooperate
to find secret S
❑ No one can determine S
❑ A “2 out of 3” schemeX

Y

(X
2
,Y

2
)

2 out of 3

 Part 1 � Cryptography 192

Shamir’s Secret Sharing

(X
0
,Y

0
)

(X
1
,Y

1
)

(0,S)

❑ Give (X
0
,Y

0
) to Alice

❑ Give (X
1
,Y

1
) to Bob

❑ Give (X
2
,Y

2
) to Charlie

❑ 3 pts determine parabola
❑ Alice, Bob, and Charlie
must cooperate to find S
❑ A “3 out of 3” scheme
❑ What about “3 out of 4”?

X

Y

(X
2
,Y

2
)

3 out of 3

 Part 1 � Cryptography 193

Secret Sharing Use?
❑ Key escrow � suppose it’s required that

your key be stored somewhere
❑ Key can be “recovered” with court order
❑ But you don’t trust FBI to store your keys
❑ We can use secret sharing

o Say, three different government agencies
o Two must cooperate to recover the key

 Part 1 � Cryptography 194

Secret Sharing Example

(X
0
,Y

0
)

(X
1
,Y

1
)

(0,K)

❑ Your symmetric key is K
❑ Point (X

0
,Y

0
) to FBI

❑ Point (X
1
,Y

1
) to DoJ

❑ Point (X
2
,Y

2
) to DoC

❑ To recover your key K,
two of the three agencies
must cooperate
❑ No one agency can get K

X

Y

(X
2
,Y

2
)

 Part 1 � Cryptography 195

Visual Cryptography
❑ Another form of secret sharing…
❑ Alice and Bob “share” an image
❑ Both must cooperate to reveal the image
❑ Nobody can learn anything about image

from Alice’s share or Bob’s share
o That is, both shares are required

❑ Is this possible?

 Part 1 � Cryptography 196

Visual Cryptography
❑ How to “share” a pixel?
❑ Suppose image is black and white
❑ Then each pixel

is either black
or white

❑ We split pixels
as shown

 Part 1 � Cryptography 197

Sharing Black & White Image
❑ If pixel is white, randomly choose a

or b for Alice’s/Bob’s shares
❑ If pixel is

black, randomly
choose c or d

❑ No information
in one “share”

 Part 1 � Cryptography 198

Visual Crypto Example
❑ Alice’s

share
❑ Bob’s

share
❑ Overlaid

shares

 Part 1 � Cryptography 199

Visual Crypto
❑ How does visual “crypto” compare to

regular crypto?
❑ In visual crypto, no key…

o Or, maybe both images are the key?
❑ With encryption, exhaustive search

o Except for the one-time pad
❑ Exhaustive search on visual crypto?

o No exhaustive search is possible!
 Part 1 � Cryptography 200

Visual Crypto

❑ Visual crypto � no exhaustive search…
❑ How does visual crypto compare to crypto?

o Visual crypto is “information theoretically”
secure � also true of secret sharing schemes

o With regular encryption, goal is to make
cryptanalysis computationally infeasible

❑ Visual crypto an example of secret sharing
o Not really a form of crypto, in the usual sense

 Part 1 � Cryptography 201

Random Numbers in
Cryptography

 Part 1 � Cryptography 202

Random Numbers
❑ Random numbers used to generate keys

o Symmetric keys
o RSA: Prime numbers
o Diffie Hellman: secret values

❑ Random numbers used for nonces
o Sometimes a sequence is OK
o But sometimes nonces must be random

❑ Random numbers also used in simulations,
statistics, etc.
o In such apps, need “statistically” random numbers

 Part 1 � Cryptography 203

Random Numbers
❑ Cryptographic random numbers must be

statistically random and unpredictable
❑ Suppose server generates symmetric keys

o Alice: K
A

o Bob: K
B

o Charlie: K
C

o Dave: K
D

❑ Alice, Bob, and Charlie don’t like Dave…
❑ Alice, Bob, and Charlie, working together,

must not be able to determine K
D

 Part 1 � Cryptography 204

Non-random Random Numbers

❑ Random numbers used to shuffle the deck
❑ Program did not produce a random shuffle
❑ A serious problem, or not?

❑ Online version of Texas Hold ‘em Poker
o ASF Software, Inc.

 Part 1 � Cryptography 205

Card Shuffle
❑ There are 52! > 2225 possible shuffles
❑ The poker program used “random” 32-bit

integer to determine the shuffle
o So, only 232 distinct shuffles could occur

❑ Code used Pascal pseudo-random number
generator (PRNG): Randomize()

❑ Seed value for PRNG was function of
number of milliseconds since midnight

❑ Less than 227 milliseconds in a day
o So, less than 227 possible shuffles

 Part 1 � Cryptography 206

Card Shuffle
❑ Seed based on milliseconds since midnight
❑ PRNG re-seeded with each shuffle
❑ By synchronizing clock with server, number

of shuffles that need to be tested • 218

❑ Could then test all 218 in real time
o Test each possible shuffle against “up” cards

❑ Attacker knows every card after the first
of five rounds of betting!

 Part 1 � Cryptography 207

Poker Example
❑ Poker program is an extreme example

o But common PRNGs are predictable
o Only a question of how many outputs must be

observed before determining the sequence
❑ Crypto random sequences not predictable

o For example, keystream from RC4 cipher
o But “seed” (or key) selection is still an issue!

❑ How to generate initial random values?
o Keys (and, in some cases, seed values)

 Part 1 � Cryptography 208

What is Random?
❑ True “random” is hard to define
❑ Entropy is a measure of randomness
❑ Good sources of “true” randomness

o Radioactive decay � but, radioactive
computers are not too popular

o Hardware devices � many good ones on
the market

o Lava lamp � relies on chaotic behavior

http://www.lavarnd.org/

 Part 1 � Cryptography 209

Randomness
❑ Sources of randomness via software

o Software is supposed to be deterministic
o So, must rely on external “random” events
o Mouse movements, keyboard dynamics, network

activity, etc., etc.
❑ Can get quality random bits by such methods
❑ But quantity of bits is very limited
❑ Bottom line: “The use of pseudo-random

processes to generate secret quantities can
result in pseudo-security”

 Part 1 � Cryptography 210

Information Hiding

 Part 1 � Cryptography 211

Information Hiding
❑ Digital Watermarks

o Example: Add “invisible” info to data
o Defense against music/software piracy

❑ Steganography
o “Secret” communication channel
o Similar to a covert channel (more later)
o Example: Hide data in an image file

 Part 1 � Cryptography 212

Watermark
❑ Add a “mark” to data
❑ Visibility (or not) of watermarks

o Invisible � Watermark is not obvious
o Visible � Such as TOP SECRET

❑ Strength (or not) of watermarks
o Robust � Readable even if attacked
o Fragile � Damaged if attacked

 Part 1 � Cryptography 213

Watermark Examples
❑ Add robust invisible mark to digital music

o If pirated music appears on Internet, can trace
it back to original source of the leak

❑ Add fragile invisible mark to audio file
o If watermark is unreadable, recipient knows

that audio has been tampered with (integrity)
❑ Combinations of several types are

sometimes used
o E.g., visible plus robust invisible watermarks

 Part 1 � Cryptography 214

Watermark Example (1)
❑ Non-digital watermark: U.S. currency

❑ Image embedded in paper on rhs
o Hold bill to light to see embedded info

 Part 1 � Cryptography 215

Watermark Example (2)
❑ Add invisible watermark to photo
❑ Claim is that 1 inch2 contains enough

info to reconstruct entire photo
❑ If photo is damaged, watermark can

be used to reconstruct it!

 Part 1 � Cryptography 216

Steganography
❑ According to Herodotus (Greece 440 BC)

o Shaved slave’s head
o Wrote message on head
o Let hair grow back
o Send slave to deliver message
o Shave slave’s head to expose a message

warning of Persian invasion
❑ Historically, steganography used by

military more often than cryptography

 Part 1 � Cryptography 217

Images and Steganography
❑ Images use 24 bits for color: RGB

o 8 bits for red, 8 for green, 8 for blue
❑ For example

o 0x7E 0x52 0x90 is this color
o 0xFE 0x52 0x90 is this color

❑ While
o 0xAB 0x33 0xF0 is this color
o 0xAB 0x33 0xF1 is this color

❑ Low-order bits don’t matter…
 Part 1 � Cryptography 218

Images and Stego
❑ Given an uncompressed image file…

o For example, BMP format

❑ …we can insert information into low-order
RGB bits

❑ Since low-order RGB bits don’t matter,
changes will be “invisible” to human eye
o But, computer program can “see” the bits

 Part 1 � Cryptography 219

Stego Example 1

❑ Left side: plain Alice image
❑ Right side: Alice with entire Alice in

Wonderland (pdf) “hidden” in the image
 Part 1 � Cryptography 220

Non-Stego Example

❑ “View source” reveals:
"The time has come," the Walrus

said,

"To talk of many things:

Of shoes and ships and sealing wax

Of cabbages and kings

And why the sea is boiling hot

And whether pigs have wings."

❑ Walrus.html in web browser

 Part 1 � Cryptography 221

Stego Example 2

❑ “View source” reveals:
"The time has come," the Walrus

said,

"To talk of many things:

Of shoes and ships and sealing wax

Of cabbages and kings

And why the sea is boiling hot

And whether pigs have wings."

❑ stegoWalrus.html in web browser

❑ “Hidden” message: 011 010 100 100 000 101
 Part 1 � Cryptography 222

Steganography
❑ Some formats (e.g., image files) are more

difficult than html for humans to read
o But easy for computer programs to read…

❑ Easy to hide info in unimportant bits
❑ Easy to damage info in unimportant bits
❑ To be robust, must use important bits

o But stored info must not damage data
o Collusion attacks are also a concern

❑ Robust steganography is tricky!

 Part 1 � Cryptography 223

Information Hiding:
The Bottom Line

❑ Not-so-easy to hide digital information
o “Obvious” approach is not robust
o Stirmark: tool to make most watermarks in

images unreadable without damaging the image
o Stego/watermarking are active research topics

❑ If information hiding is suspected
o Attacker may be able to make

information/watermark unreadable
o Attacker may be able to read the information,

given the original document (image, audio, etc.)
 Part 1 � Cryptography 224

Chapter 6:
Advanced Cryptanalysis

For there is nothing covered, that shall not be revealed;
neither hid, that shall not be known.

� Luke 12:2

The magic words are squeamish ossifrage
� Solution to RSA challenge problem

posed in 1977 by Ron Rivest, who
estimated that breaking the message
would require 40 quadrillion years.

It was broken in 1994.

 Part 1 � Cryptography 225

Advanced Cryptanalysis
❑ Modern block cipher cryptanalysis

o Differential cryptanalysis
o Linear cryptanalysis

❑ Side channel attack on RSA
❑ Lattice reduction attack on knapsack
❑ Hellman’s TMTO attack on DES

 Part 1 � Cryptography 226

Linear and Differential
Cryptanalysis

 Part 1 � Cryptography 227

Introduction
❑ Both linear and differential cryptanalysis

developed to attack DES
❑ Applicable to other block ciphers
❑ Differential � Biham and Shamir, 1990

o Apparently known to NSA in 1970s
o For analyzing ciphers, not a practical attack
o A chosen plaintext attack

❑ Linear cryptanalysis � Matsui, 1993
o Perhaps not know to NSA in 1970s
o Slightly more feasible than differential
o A known plaintext attack

 Part 1 � Cryptography 228

DES Overview
❑ 8 S-boxes
❑ Each S-box maps

6 bits to 4 bits
❑ Example: S-box 1

L R

S-boxes

XOR K
i

subkey

L R

Linear stuff

Linear stuff

input bits (0,5)
↓ input bits (1,2,3,4)
0 1 2 3 4 5 6 7 8 9 A B C D E F
0 | E 4 D 1 2 F B 8 3 A 6 C 5 9 0 7
1 | 0 F 7 4 E 2 D 1 A 6 C B 9 5 3 4
2 | 4 1 E 8 D 6 2 B F C 9 7 3 A 5 0
3 | F C 8 2 4 9 1 7 5 B 3 E A 0 6 D

 Part 1 � Cryptography 229

Overview of Differential
Cryptanalysis

 Part 1 � Cryptography 230

Differential Cryptanalysis
❑ Recall that all of DES is linear except for

the S-boxes
❑ Differential attack focuses on overcoming

this nonlinearity
❑ Idea is to compare input and output

differences
❑ For simplicity, first consider only one

round and only one S-box

 Part 1 � Cryptography 231

Differential Cryptanalysis
❑ Suppose a cipher has 3-bit to 2-bit S-box

 column
row 00 01 10 11
 0 10 01 11 00
 1 00 10 01 11

❑ Sbox(abc) is element in row a column bc

❑ Example: Sbox(010) = 11

 Part 1 � Cryptography 232

Differential Cryptanalysis
 column
row 00 01 10 11
 0 10 01 11 00
 1 00 10 01 11

❑ Suppose X
1
 = 110, X

2
 = 010, K = 011

❑ Then X
1
 ⊕ K = 101 and X

2
 ⊕ K = 001

❑ Sbox(X
1
 ⊕ K) = 10 and Sbox(X

2
 ⊕ K) = 01

 Part 1 � Cryptography 233

Differential
Cryptanalysis

 column
row 00 01 10 11
 0 10 01 11 00
 1 00 10 01 11

❑ Suppose
o Unknown key: K
o Known inputs: X = 110, X = 010
o Known outputs: Sbox(X ⊕ K) = 10, Sbox(X ⊕ K) = 01

❑ Know X ⊕ K ∈ {000,101}, X ⊕ K ∈ {001,110}
❑ Then K ∈ {110,011} ∩ {011,100} ⇒ K = 011
❑ Like a known plaintext attack on S-box

 Part 1 � Cryptography 234

Differential Cryptanalysis
❑ Attacking one S-box not very useful!

o And Trudy can’t always see input and output
❑ To make this work we must do 2 things
1. Extend the attack to one round

o Have to deal with all S-boxes
o Choose input so only one S-box “active”

2. Then extend attack to (almost) all rounds
o Output of one round is input to next round
o Choose input so output is “good” for next round

 Part 1 � Cryptography 235

Differential Cryptanalysis
❑ We deal with input and output differences
❑ Suppose we know inputs X and X

o For X the input to S-box is X ⊕ K
o For X the input to S-box is X ⊕ K

o Key K is unknown
o Input difference: (X ⊕ K) ⊕ (X

⊕ K) = X ⊕ X

❑ Input difference is independent of key K
❑ Output difference: Y

⊕ Y is (almost) input

difference to next round
❑ Goal is to “chain” differences thru rounds

 Part 1 � Cryptography 236

Differential Cryptanalysis
❑ If we obtain known output difference from

known input difference…
o May be able to chain differences thru rounds
o It’s OK if this only occurs with some probability

❑ If input difference is 0…
o …output difference is 0
o Allows us to make some S-boxes “inactive” with

respect to differences

 Part 1 � Cryptography 237

S-box
Differential

Analysis

 column
row 00 01 10 11
 0 10 01 11 00
 1 00 10 01 11

 Sbox(X) ⊕ Sbox(X)
 00 01 10 11

 000 8 0 0 0
 001 0 0 4 4

 X 010 0 8 0 0
 ⊕ 011 0 0 4 4
 X

 100 0 0 4 4

 101 4 4 0 0
 110 0 0 4 4
 111 4 4 0 0

❑ Input diff 000
not interesting
❑ Input diff 010
always gives
output diff 01
❑ More biased,
the better (for
Trudy)

 Part 1 � Cryptography 238

Overview of Linear
Cryptanalysis

 Part 1 � Cryptography 239

Linear Cryptanalysis

❑ Like differential cryptanalysis, we target
the nonlinear part of the cipher

❑ But instead of differences, we approximate
the nonlinearity with linear equations

❑ For DES-like cipher we need to
approximate S-boxes by linear functions

❑ How well can we do this?

 Part 1 � Cryptography 240

S-box
Linear

Analysis

 column
row 00 01 10 11
 0 10 01 11 00
 1 00 10 01 11

 output
 y

0
 y

1
 y

0
⊕y

1

 0 4 4 4
 i x

0
 4 4 4

 n x
1

 4 6 2
 p x

2
 4 4 4

 u x
0
⊕x

1
 4 2 2

 t x
0
⊕x

2
 0 4 4

 x
1
⊕x

2
 4 6 6

 x
0
⊕x

1
⊕x

2
 4 6 2

❑ Input x
0
x

1
x

2

where x
0
 is row

and x
1
x

2
 is column

❑ Output y
0
y

1

❑ Count of 4 is
unbiased
❑ Count of 0 or 8
is best for Trudy

 Part 1 � Cryptography 241

Linear
Analysis

 column
row 00 01 10 11
 0 10 01 11 00
 1 00 10 01 11

 output
 y

0
 y

1
 y

0
⊕y

1

 0 4 4 4
 i x

0
 4 4 4

 n x
1

 4 6 2
 p x

2
 4 4 4

 u x
0
⊕x

1
 4 2 2

 t x
0
⊕x

2
 0 4 4

 x
1
⊕x

2
 4 6 6

 x
0
⊕x

1
⊕x

2
 4 6 2

❑ For example,
y

1
 = x

1

with prob. 3/4
❑ And

y
0
 = x

0
⊕x

2
⊕1

with prob. 1
❑ And

y
0
⊕y

1
=x

1
⊕x

2

with prob. 3/4

 Part 1 � Cryptography 242

Linear Cryptanalysis
❑ Consider a single DES S-box
❑ Let Y = Sbox(X)

❑ Suppose y
3
 = x

2
 ⊕ x

5
 with high probability

o I.e., a good linear approximation to output y
3

❑ Can we extend this so that we can solve
linear equations for the key?

❑ As in differential cryptanalysis, we need to
“chain” thru multiple rounds

 Part 1 � Cryptography 243

Linear Cryptanalysis of DES
❑ DES is linear except for S-boxes
❑ How well can we approximate S-boxes with

linear functions?
❑ DES S-boxes designed so there are no good

linear approximations to any one output bit
❑ But there are linear combinations of output

bits that can be approximated by linear
combinations of input bits

 Part 1 � Cryptography 244

Tiny DES

 Part 1 � Cryptography 245

Tiny DES (TDES)
❑ A much simplified version of DES

o 16 bit block
o 16 bit key
o 4 rounds
o 2 S-boxes, each maps 6 bits to 4 bits
o 12 bit subkey each round

❑ Plaintext = (L
0
,

R

0
)

❑ Ciphertext = (L
4
,

R

4
)

❑ No useless junk
 Part 1 � Cryptography 246

L R

expand shiftshift

key

key

SboxLeft

XOR

XOR

compress

L R

88

88

88

12

8

12

6

4

8

8

8

One
Round

 of
TDESSboxRight

6

4

K

i

 Part 1 � Cryptography 247

TDES Fun Facts
❑ TDES is a Feistel Cipher
❑ (L

0
,R

0
) = plaintext

❑ For i = 1 to 4
L

i
 = R

i-1
R

i
 = L

i-1
 ⊕ F(R

i-1
, K

i
)

❑ Ciphertext = (L
4
,R

4
)

❑ F(R
i-1

, K
i
) = Sboxes(expand(R

i-1
) ⊕ K

i
)

where Sboxes(x
0
x

1
x

2
…x

11
) = (SboxLeft(x

0
x

1
…x

5
),

SboxRight(x
6
x

7
…x

11
))

 Part 1 � Cryptography 248

TDES Key Schedule
❑ Key: K = k

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

10
k

11
k

12
k

13
k

14
k

15

❑ Subkey
o Left: k

0
k

1
…k

7
 rotate left 2, select 0,2,3,4,5,7

o Right: k
8
k

9
…k

15
 rotate left 1, select 9,10,11,13,14,15

❑ Subkey K
1
 = k

2
k

4
k

5
k

6
k

7
k

1
k

10
k

11
k

12
k

14
k

15
k

8

❑ Subkey K
2
 = k

4
k

6
k

7
k

0
k

1
k

3
k

11
k

12
k

13
k

15
k

8
k

9

❑ Subkey K
3
 = k

6
k

0
k

1
k

2
k

3
k

5
k

12
k

13
k

14
k

8
k

9
k

10

❑ Subkey K
4
 = k

0
k

2
k

3
k

4
k

5
k

7
k

13
k

14
k

15
k

9
k

10
k

11

 Part 1 � Cryptography 249

TDES expansion perm
❑ Expansion permutation: 8 bits to 12 bits

r
0
r
1
r
2
r
3
r
4
r
5
r
6
r
7

r
4
r
7
r
2
r
1
r
5
r
7
r
0
r
2
r
6
r
5
r
0
r
3

❑ We can write this as
expand(r

0
r
1
r
2
r
3
r
4
r
5
r
6
r
7
) = r

4
r
7
r
2
r
1
r
5
r
7
r
0
r
2
r
6
r
5
r
0
r
3

 Part 1 � Cryptography 250

TDES S-boxes
❑ Right S-box
❑ SboxRight

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 C 5 0 A E 7 2 8 D 4 3 9 6 F 1 B
1 1 C 9 6 3 E B 2 F 8 4 5 D A 0 7
2 F A E 6 D 8 2 4 1 7 9 0 3 5 B C
3 0 A 3 C 8 2 1 E 9 7 F 6 B 5 D 4

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 6 9 A 3 4 D 7 8 E 1 2 B 5 C F 0
1 9 E B A 4 5 0 7 8 6 3 2 C D 1 F
2 8 1 C 2 D 3 E F 0 9 5 A 4 B 6 7
3 9 0 2 5 A D 6 E 1 8 B C 3 4 7 F

❑ Left S-box
❑ SboxLeft

 Part 1 � Cryptography 251

Differential Cryptanalysis of
TDES

 Part 1 � Cryptography 252

TDES
❑ TDES SboxRight

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 C 5 0 A E 7 2 8 D 4 3 9 6 F 1 B
1 1 C 9 6 3 E B 2 F 8 4 5 D A 0 7
2 F A E 6 D 8 2 4 1 7 9 0 3 5 B C
3 0 A 3 C 8 2 1 E 9 7 F 6 B 5 D 4

❑ For X and X suppose X ⊕ X = 001000

❑ Then SboxRight(X) ⊕ SboxRight(X) = 0010 with
probability 3/4

 Part 1 � Cryptography 253

Differential Crypt. of TDES
❑ The game plan…
❑ Select P and P so that

P ⊕ P = 0000 0000 0000 0010 = 0x0002

❑ Note that P and P differ in exactly 1 bit
❑ Let’s carefully analyze what happens as

these plaintexts are encrypted with TDES

 Part 1 � Cryptography 254

TDES
❑ If Y ⊕ Y = 001000 then with probability 3/4

SboxRight(Y) ⊕ SboxRight(Y) = 0010

❑ Y ⊕ Y = 001000 ⇒ (Y⊕K) ⊕ (Y⊕K) = 001000
❑ If Y ⊕ Y = 000000 then for any S-box, we

have Sbox(Y) ⊕ Sbox(Y) = 0000

❑ Difference of (0000 0010) is expanded by
TDES expand perm to diff. (000000 001000)

❑ The bottom line: If X ⊕ X = 00000010 then
F(X, K) ⊕ F(X, K) = 00000010 with prob. 3/4

 Part 1 � Cryptography 255

TDES

❑ From the previous slide
o Suppose R ⊕ R = 0000 0010
o Suppose K is unknown key
o Then with probability 3/4

F(R,K) ⊕ F(R,K) = 0000 0010

❑ The bottom line? With probability 3/4…
o Input to next round same as current round

❑ So we can chain thru multiple rounds

 Part 1 � Cryptography 256

TDES Differential Attack

(L
0
,R

0
) = P

L
1
 = R

0
R

1
 = L

0
 ⊕ F(R

0
,K

1
)

L
2
 = R

1
R

2
 = L

1
 ⊕ F(R

1
,K

2
)

L
3
 = R

2
R

3
 = L

2
 ⊕ F(R

2
,K

3
)

L
4
 = R

3
R

4
 = L

3
 ⊕ F(R

3
,K

4
)

C = (L
4
,R

4
)

(L
0
,R

0
) = P

L
1
 = R

0
R

1
 = L

0
 ⊕ F(R

0
,K

1
)

L
2
 = R

1
R

2
 = L

1
 ⊕ F(R

1
,K

2
)

L
3
 = R

2
R

3
 = L

2
 ⊕ F(R

2
,K

3
)

L
4
 = R

3
R

4
 = L

3
 ⊕ F(R

3
,K

4
)

C = (L
4
,R

4
)

P ⊕ P = 0x0002

With probability 3/4
(L

1
,R

1
) ⊕ (L

1
,R

1
) = 0x0202

With probability (3/4)2

(L
2
,R

2
) ⊕ (L

2
,R

2
) = 0x0200

With probability (3/4)2

(L
3
,R

3
) ⊕ (L

3
,R

3
) = 0x0002

With probability (3/4)3

(L
4
,R

4
) ⊕ (L

4
,R

4
) = 0x0202

C ⊕ C = 0x0202

❑ Select P and P with P ⊕ P = 0x0002

 Part 1 � Cryptography 257

TDES Differential Attack
❑ Choose P and P with P ⊕ P = 0x0002

❑ If C ⊕ C = 0x0202 then
 R

4
 = L

3
 ⊕ F(R

3
, K

4
) R

4
 = L

3
 ⊕ F(R

3
, K

4
)

 R
4
 = L

3
 ⊕ F(L

4
, K

4
) R

4
 = L

3
 ⊕ F(L

4
, K

4
)

and (L
3
,

R

3
) ⊕ (L

3
,

R

3
) = 0x0002

❑ Then L
3
 = L

3
 and C=(L

4
,

R

4
) and C=(L

4
,

R

4
) are

both known
❑ Since L

3
 = R

4
⊕ F(L

4
,

K

4
) and L

3
 = R

4
⊕ F(L

4
,

K

4
),

for correct choice of subkey K
4
 we have

 R
4
 ⊕ F(L

4
, K

4
) = R

4
 ⊕ F(L

4
, K

4
)

 Part 1 � Cryptography 258

TDES Differential Attack
❑ Choose P and P with P ⊕ P = 0x0002
❑ If C ⊕ C = (L

4
,

R

4
) ⊕ (L

4
,

R

4
) = 0x0202

❑ Then for the correct subkey K
4

R
4
 ⊕ F(L

4
,

K

4
) = R

4
 ⊕ F(L

4
,

K

4
)

which we rewrite as
R

4
 ⊕ R

4
 = F(L

4
,

K

4
) ⊕ F(L

4
,

K

4
)

where the only unknown is K
4

❑ Let L
4
 = l

0
l
1
l
2
l
3
l
4
l
5
l
6
l
7
. Then we have

0010 = SBoxRight(

l
0
l
2
l
6
l
5
l
0
l
3
⊕

k

13
k

14
k

15
k

9
k

10
k

11
)

 ⊕ SBoxRight(

l
0
l
2
l
6
l
5
l
0
l
3
⊕

k

13
k

14
k

15
k

9
k

10
k

11
)

 Part 1 � Cryptography 259

TDES Differential Attack
Algorithm to find right 6 bits of subkey K

4
count[i] = 0, for i = 0,1,. . .,63
for i = 1 to iterations
 Choose P and P with P ⊕ P = 0x0002
 Obtain corresponding C and C
 if C ⊕ C = 0x0202
 for K = 0 to 63

 if 0010 == (SBoxRight(

l
0
l
2
l
6
l
5
l
0
l
3
⊕K) ⊕ SBoxRight(

l
0
l
2
l
6
l
5
l
0
l
3
⊕K))

 ++count[K]
 end if

 next K
 end if
next i

All K with max count[K] are possible (partial) K
4

 Part 1 � Cryptography 260

TDES Differential Attack
❑ Experimental results
❑ Choose 100 pairs P and P with P ⊕ P= 0x0002

❑ Found 47 of these give C ⊕ C = 0x0202

❑ Tabulated counts for these 47
o Max count of 47 for each

K ∈ {000001,001001,110000,111000}

o No other count exceeded 39

❑ Implies that K
4
 is one of 4 values, that is,

k
13

k
14

k
15

k
9
k

10
k

11
∈ {000001,001001,110000,111000}

❑ Actual key is K=1010 1001 1000 0111

 Part 1 � Cryptography 261

Linear Cryptanalysis of
TDES

 Part 1 � Cryptography 262

Linear Approx. of Left S-Box
❑ TDES left S-box or SboxLeft

 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 6 9 A 3 4 D 7 8 E 1 2 B 5 C F 0
1 9 E B A 4 5 0 7 8 6 3 2 C D 1 F
2 8 1 C 2 D 3 E F 0 9 5 A 4 B 6 7
3 9 0 2 5 A D 6 E 1 8 B C 3 4 7 F

❑ Notation: y
0
y

1
y

2
y

3
 = SboxLeft(x

0
x

1
x

2
x

3
x

4
x

5
)

❑ For this S-box, y
1
=x

2
 and y

2
=x

3
 both with

probability 3/4

❑ Can we “chain” this thru multiple rounds?

 Part 1 � Cryptography 263

TDES Linear Relations
❑ Recall that the expansion perm is

expand(r
0
r
1
r
2
r
3
r
4
r
5
r
6
r
7
) = r

4
r
7
r2r1r5

r
7
r
0
r
2
r
6
r
5
r
0
r
3

❑ And y
0
y

1
y

2
y

3
 = SboxLeft(x

0
x

1
x

2
x

3
x

4
x

5
) with y

1
=x

2
 and

y
2
=x

3
 each with probability 3/4

❑ Also, expand(R
i−1

) ⊕ K
i
 is input to Sboxes at round i

❑ Then y
1
=r

2
⊕k

m
 and y

2
=r

1
⊕k

n
 both with prob 3/4

❑ New right half is y
0
y

1
y

2
y

3
… plus old left half

❑ Bottom line: New right half bits: r
1
 ← r

2
 ⊕ k

m
 ⊕ l

1

and r
2
 ← r

1
 ⊕ k

n
 ⊕ l

2
 both with probability 3/4

 Part 1 � Cryptography 264

Recall TDES Subkeys
❑ Key: K = k

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

8
k

9
k

10
k

11
k

12
k

13
k

14
k

15

❑ Subkey K
1
 = k

2
k

4
k5k6k7

k
1
k

10
k

11
k

12
k

14
k

15
k

8

❑ Subkey K
2
 = k

4
k

6
k7k0k1

k
3
k

11
k

12
k

13
k

15
k

8
k

9

❑ Subkey K
3
 = k

6
k

0
k1k2k3

k
5
k

12
k

13
k

14
k

8
k

9
k

10

❑ Subkey K
4
 = k

0
k

2
k

3
k

4
k

5
k

7
k

13
k

14
k

15
k

9
k

10
k

11

 Part 1 � Cryptography 265

TDES Linear Cryptanalysis

(L
0
,R

0
) = (p

0
…p

7
,p

8
…p

15
)

L
1
 = R

0
R

1
 = L

0
 ⊕ F(R

0
,K

1
)

L
2
 = R

1
R

2
 = L

1
 ⊕ F(R

1
,K

2
)

L
3
 = R

2
R

3
 = L

2
 ⊕ F(R

2
,K

3
)

L
4
 = R

3
R

4
 = L

3
 ⊕ F(R

3
,K

4
)

C = (L
4
,R

4
)

Bit 1, Bit 2
(numbering from 0)
p

9
, p

10
p

1
⊕p

10
⊕k

5
, p

2
⊕p

9
⊕k

6

p
1
⊕p

10
⊕k

5
, p

2
⊕p

9
⊕k

6
p

2
⊕k

6
⊕k

7
, p

1
⊕k

5
⊕k

0

p
2
⊕k

6
⊕k

7
, p

1
⊕k

5
⊕k

0
p

10
⊕k

0
⊕k

1
, p

9
⊕k

7
⊕k

2

p
10
⊕k

0
⊕k

1
, p

9
⊕k

7
⊕k

2

probability

1
3/4

3/4
(3/4)2

(3/4)2

(3/4)3

(3/4)3

❑ Known P=p
0
p

1
p

2
…p

15
 and C=c

0
c

1
c

2
…c

15

k0 ⊕ k
1
 = c

1
 ⊕ p

10
 (3/4)3

k7 ⊕ k
2
 = c

2
 ⊕ p

9
 (3/4)3

 Part 1 � Cryptography 266

TDES Linear Cryptanalysis
❑ Experimental results
❑ Use 100 known plaintexts, get ciphertexts.

o Let P=p
0
p

1
p

2
…p

15
 and let C=c

0
c

1
c

2
…c

15

❑ Resulting counts
o c

1
 ⊕ p

10
 = 0 occurs 38 times

o c
1
 ⊕ p

10
 = 1 occurs 62 times

o c
2
 ⊕ p

9
 = 0 occurs 62 times

o c
2
 ⊕ p

9
 = 1 occurs 38 times

❑ Conclusions
o Since k

0
⊕ k

1
 = c

1
 ⊕ p

10
 we have k

0
 ⊕ k

1
 = 1

o Since k
7
⊕ k

2
 = c

2
 ⊕ p

9
 we have k

7
 ⊕ k

2
 = 0

❑ Actual key is K = 1010 0011 0101 0110

 Part 1 � Cryptography 267

To Build a Better Block Cipher…
❑ How can cryptographers make linear and

differential attacks more difficult?
1. More rounds � success probabilities diminish

with each round
2. Better confusion (S-boxes) � reduce success

probability on each round
3. Better diffusion (permutations) � more

difficult to chain thru multiple rounds
❑ Limited mixing and limited nonlinearity,

means that more rounds required: TEA
❑ Strong mixing and nonlinearity, then

fewer (but more complex) rounds: AES
 Part 1 � Cryptography 268

Side Channel Attack on RSA

 Part 1 � Cryptography 269

Side Channel Attacks

❑ Sometimes possible to recover key without
directly attacking the crypto algorithm

❑ A side channel consists of “incidental info”
❑ Side channels can arise due to

o The way that a computation is performed
o Media used, power consumed, emanations, etc.

❑ Induced faults can also reveal information
❑ Side channel may reveal a crypto key
❑ Paul Kocher one of the first in this field

 Part 1 � Cryptography 270

Types of Side Channels
❑ Emanations security (EMSEC)

o Electromagnetic field (EMF) from computer screen can
allow screen image to be reconstructed at a distance

o Smartcards have been attacked via EMF emanations

❑ Differential power analysis (DPA)
o Smartcard power usage depends on the computation

❑ Differential fault analysis (DFA)
o Key stored on smartcard in GSM system could be read

using a flashbulb to induce faults

❑ Timing analysis
o Different computations take different time
o RSA keys recovered over a network (openSSL)!

 Part 1 � Cryptography 271

The Scenario
❑ Alice’s public key: (N,e)

❑ Alice’s private key: d
❑ Trudy wants to find d
❑ Trudy can send any message M to Alice and

Alice will respond with Md mod N

o That is, Alice signs M and sends result to Trudy

❑ Trudy can precisely time Alice’s
computation of Md mod N

 Part 1 � Cryptography 272

Timing Attack on RSA
❑ Consider Md mod N
❑ We want to find private

key d, where d = d
0
d

1
…d

n
❑ Spse repeated squaring

used for Md mod N
❑ Suppose, for efficiency

mod(x,N)
if x >= N
 x = x % N
end if
return x

Repeated Squaring
x = M

for j = 1 to n

 x = mod(x2,N)

 if d
j
 == 1 then

 x = mod(x∗M,N)

 end if

next j

return x

 Part 1 � Cryptography 273

Timing Attack
❑ If d

j
 = 0 then

o x = mod(x2,N)

❑ If d
j
 = 1 then

o x = mod(x2,N)
o x = mod(x∗M,N)

❑ Computation time
differs in each case

❑ Can attacker take
advantage of this?

Repeated Squaring
x = M
for j = 1 to n
 x = mod(x2,N)
 if d

j
 == 1 then

 x = mod(x∗M,N)
 end if
next j
return x

mod(x,N)
if x >= N
 x = x % N
end if
return x

 Part 1 � Cryptography 274

Timing Attack
❑ Choose M with M3 < N

❑ Choose M with M2 < N < M3

❑ Let x = M and x = M

❑ Consider j = 1
o x = mod(x2,N) does no “%”
o x = mod(x∗M,N) does no “%”
o x = mod(x2,N) does no “%”
o x = mod(x∗M,N) does “%” only if d

1
=1

❑ If d
1
 = 1 then j = 1 step takes

longer for M than for M
❑ But more than one round…

Repeated Squaring
x = M
for j = 1 to n
 x = mod(x2,N)
 if d

j
 == 1 then

 x = mod(x∗M,N)
 end if
next j
return x

mod(x,N)
if x >= N
 x = x % N
end if
return x

 Part 1 � Cryptography 275

Timing Attack on RSA
❑ An example of a chosen plaintext attack
❑ Choose M

0
,M

1
,…,M

m-1
 with

o M
i
3 < N for i=0,1,…,m-1

❑ Let t
i
 be time to compute M

i
d mod N

o t = (t
0
 + t

1
 + … + t

m-1
) / m

❑ Choose M
0
,M

1
,…,M

m-1
 with

o M
i
2 < N < M

i
3 for i=0,1,…,m-1

❑ Let t
i
 be time to compute M

i
d mod N

o t = (t
0
 + t

1
 + … + t

m-1
) / m

❑ If t > t then d
1
 = 1 otherwise d

1
 = 0

❑ Once d
1
 is known, find d

2
 then d

3
 then …

 Part 1 � Cryptography 276

Side Channel Attacks
❑ If crypto is secure Trudy looks for shortcut
❑ What is good crypto?

o More than mathematical analysis of algorithms
o Many other issues (such as side channels) must

be considered
o See Schneier’s article

❑ Lesson: Attacker’s don’t play by the rules!

http://www.csl.sri.com/users/neumann/insiderisks.html%23112

 Part 1 � Cryptography 277

Knapsack Lattice Reduction
Attack

 Part 1 � Cryptography 278

Lattice?
❑ Many problems can be solved by

finding a “short” vector in a lattice
❑ Let b

1
,b

2
,…,b

n
 be vectors in ℜm

❑ All α
1
b

1
+α

2
b

2
+…+α

n
b

n
, each αi is an

integer is a discrete set of points

 Part 1 � Cryptography 279

What is a Lattice?
❑ Suppose b

1
=[1,3]T and b

2
=[−2,1]T

❑ Then any point in the plane can be written
as α

1
b

1
+α

2
b

2
 for some α

1
,α

2
 ∈ ℜ

o Since b
1
 and b

2
 are linearly independent

❑ We say the plane ℜ2 is spanned by (b
1
,b

2
)

❑ If α
1
,α

2
 are restricted to integers, the

resulting span is a lattice
❑ Then a lattice is a discrete set of points

 Part 1 � Cryptography 280

Lattice Example
❑ Suppose b

1
=[1,3]T

and b
2
=[−2,1]T

❑ The lattice
spanned by
(b

1
,b

2
) is pictured

to the right

 Part 1 � Cryptography 281

Exact Cover
❑ Exact cover � given a set S and a

collection of subsets of S, find a
collection of these subsets with each
element of S is in exactly one subset

❑ Exact cover is can be solved by
finding a “short” vector in a lattice

 Part 1 � Cryptography 282

Exact Cover Example
❑ Set S = {0,1,2,3,4,5,6}

❑ Spse m = 7 elements and n = 13 subsets
Subset: 0 1 2 3 4 5 6 7 8 9 10 11 12
Elements: 013 015 024 025 036 124 126 135 146 1 256 345 346

❑ Find a collection of these subsets with each
element of S in exactly one subset

❑ Could try all 213 possibilities
❑ If problem is too big, try heuristic search
❑ Many different heuristic search techniques

 Part 1 � Cryptography 283

Exact Cover Solution
❑ Exact cover in matrix form

o Set S = {0,1,2,3,4,5,6}

o Spse m = 7 elements and n = 13 subsets
Subset: 0 1 2 3 4 5 6 7 8 9 10 11 12
Elements: 013 015 024 025 036 124 126 135 146 1 256 345 346

Solve: AU = B
where u

i
 ∈

{0,1}

subsets
e
l
e
m
e
n
t
s

Solution:
U = [0001000001001]T

m x 1

n x 1

m x n

 Part 1 � Cryptography 284

Example
❑ We can restate AU = B as MV = W where

❑ The desired solution is U
o Columns of M are linearly independent

❑ Let c
0
,c

1
,c

2
,…,c

n
 be the columns of M

❑ Let v
0
,v

1
,v

2
,…,v

n
 be the elements of V

❑ Then W = v
0
c

0
 + v

1
c

1
 + … + v

n
c

n

Matrix
M

Vector WVector
V

 Part 1 � Cryptography 285

Example
❑ Let L be the lattice spanned by

c
0
,c

1
,c

2
,…,c

n
 (c

i
 are the columns of M)

❑ Recall MV = W

o Where W = [U,0]T and we want to find U
o But if we find W, we’ve also solved it!

❑ Note W is in lattice L since all v
i
 are

integers and W = v
0
c

0
 + v

1
c

1
 + … + v

n
c

n

 Part 1 � Cryptography 286

Facts
❑ W = [u

0
,u

1
,…,u

n-1
,0,0,…,0] ∈ L, each u

i
∈ {0,1}

❑ The length of a vector Y ∈ ℜN is
||Y|| = sqrt(y

0
2+y

1
2+…+y

N-1
2)

❑ Then the length of W is
 ||W|| = sqrt(u

0
2+u

1
2+…+u

n-1
2) ≤ sqrt(n)

❑ So W is a very short vector in L where
o First n entries of W all 0 or 1
o Last m elements of W are all 0

❑ Can we use these facts to find U?

 Part 1 � Cryptography 287

Lattice Reduction
❑ If we can find a short vector in L, with first

n entries all 0 or 1 and last m entries all 0…
o Then we might have found solution U

❑ LLL lattice reduction algorithm will
efficiently find short vectors in a lattice

❑ About 30 lines of pseudo-code specify LLL
❑ No guarantee LLL will find desired vector
❑ But probability of success is often good

 Part 1 � Cryptography 288

Knapsack Example
❑ What does lattice reduction have to do with

the knapsack cryptosystem?
❑ Suppose we have

o Superincreasing knapsack
S = [2,3,7,14,30,57,120,251]

o Suppose m = 41, n = 491 ⇒ m−1 = 12 mod n

o Public knapsack: t
i
 = 41 ⋅ s

i
 mod 491

T = [82,123,287,83,248,373,10,471]

❑ Public key: T Private key: (S,m−1,n)

 Part 1 � Cryptography 289

Knapsack Example
❑ Public key: T Private key: (S,m−1,n)

S = [2,3,7,14,30,57,120,251]
T = [82,123,287,83,248,373,10,471]
n = 491, m−1 = 12

❑ Example: 10010110 is encrypted as
82+83+373+10 = 548

❑ Then receiver computes
548 ⋅ 12 = 193 mod 491

and uses S to solve for 10010110

 Part 1 � Cryptography 290

Knapsack LLL Attack
❑ Attacker knows public key

 T = [82,123,287,83,248,373,10,471]

❑ Attacker knows ciphertext: 548

❑ Attacker wants to find u
i
 ∈ {0,1} s.t.

82u
0
+123u

1
+287u

2
+83u

3
+248u

4
+373u

5
+10u

6
+471u

7
=548

❑ This can be written as a matrix equation
(dot product): T ⋅ U = 548

 Part 1 � Cryptography 291

Knapsack LLL Attack
❑ Attacker knows: T = [82,123,287,83,248,373,10,471]

❑ Wants to solve: T ⋅ U = 548 where each u
i
 ∈ {0,1}

o Same form as AU = B on previous slides!
o We can rewrite problem as MV = W where

❑ LLL gives us short vectors in the lattice spanned by
the columns of M

 Part 1 � Cryptography 292

LLL Result
❑ LLL finds short vectors in lattice of M
❑ Matrix M’ is result of applying LLL to M

∗

❑ Column marked with “∗” has the right form
❑ Possible solution: U = [1,0,0,1,0,1,1,0]T

❑ Easy to verify this is actually the plaintext

 Part 1 � Cryptography 293

Bottom Line
❑ Lattice reduction is a surprising

method of attack on knapsack
❑ A cryptosystem is only secure as long

as nobody has found an attack
❑ Lesson: Advances in mathematics

can break cryptosystems!

 Part 1 � Cryptography 294

Hellman’s TMTO Attack

 Part 1 � Cryptography 295

Popcnt
❑ Before we consider Hellman’s attack,

consider a simple Time-Memory TradeOff
❑ “Population count” or popcnt

o Let x be a 32-bit integer
o Define popcnt(x) = number of 1’s in binary

expansion of x
o How to compute popcnt(x) efficiently?

 Part 1 � Cryptography 296

Simple Popcnt
❑ Most obvious thing to do is

popcnt(x) // assuming x is 32-bit value
t = 0
for i = 0 to 31

t = t + ((x >> i) & 1)
next i
return t

end popcnt
❑ But is it the most efficient?

 Part 1 � Cryptography 297

More Efficient Popcnt

❑ Precompute popcnt for all 256 bytes
❑ Store precomputed values in a table
❑ Given x, lookup its bytes in this table

o Sum these values to find popcnt(x)

❑ Note that precomputation is done once
❑ Each popcnt now requires 4 steps, not 32

 Part 1 � Cryptography 298

More Efficient Popcnt

Initialize: table[i] = popcnt(i) for i = 0,1,…,255

popcnt(x) // assuming x is 32-bit value
p = table[x & 0xff]

+ table[(x >> 8) & 0xff]
+ table[(x >> 16) & 0xff]
+ table[(x >> 24) & 0xff]

return p
end popcnt

 Part 1 � Cryptography 299

TMTO Basics
❑ A precomputation

o One-time work
o Results stored in a table

❑ Precomputation results used to make each
subsequent computation faster

❑ Balancing “memory” and “time”
❑ In general, larger precomputation requires

more initial work and larger “memory” but
each subsequent computation is less “time”

 Part 1 � Cryptography 300

Block Cipher Notation
❑ Consider a block cipher

C = E(P, K)
where

P is plaintext block of size n
C is ciphertext block of size n
K is key of size k

 Part 1 � Cryptography 301

Block Cipher as Black Box

❑ For TMTO, treat block cipher as black box
❑ Details of crypto algorithm not important

 Part 1 � Cryptography 302

Hellman’s TMTO Attack
❑ Chosen plaintext attack: choose P and

obtain C, where C = E(P, K)
❑ Want to find the key K
❑ Two “obvious” approaches

1. Exhaustive key search
□ “Memory” is 0, but “time” of 2k-1 for each attack

2. Pre-compute C = E(P, K) for all possible K
□ Then given C, can simply look up key K in the table
□ “Memory” of 2k but “time” of 0 for each attack

❑ TMTO lies between 1. and 2.

 Part 1 � Cryptography 303

Chain of Encryptions
❑ Assume block and key lengths equal: n = k
❑ Then a chain of encryptions is

SP = K0 = Starting Point
K1 = E(P, SP)
K2 = E(P, K1)

:
:

EP = Kt = E(P, Kt−1) = End Point

 Part 1 � Cryptography 304

Encryption Chain

❑ Ciphertext used as key at next iteration
❑ Same (chosen) plaintext at each iteration

 Part 1 � Cryptography 305

Pre-computation
❑ Pre-compute m encryption chains, each

of length t +1
❑ Save only the start and end points

(SP0, EP0)
(SP1, EP1)
:

(SPm-1, EPm-1)

EP0
SP0

SP1

SPm-1

EP1

EPm-1

 Part 1 � Cryptography 306

TMTO Attack
❑ Memory: Pre-compute encryption chains and

save (SPi, EPi) for i = 0,1,…,m−1
o This is one-time work

❑ Then to attack a particular unknown key K
o For the same chosen P used to find chains, we

know C where C = E(P, K) and K is unknown key
o Time: Compute the chain (maximum of t steps)

X0 = C, X1 = E(P, X0), X2 = E(P, X1),…

 Part 1 � Cryptography 307

TMTO Attack
❑ Consider the computed chain

X0 = C, X1 = E(P, X0), X2 = E(P, X1),…
❑ Suppose for some i we find Xi = EPj

SPj
EPjC

K

❑ Since C = E(P, K) key K before C in chain!

 Part 1 � Cryptography 308

TMTO Attack
❑ To summarize, we compute chain

X0 = C, X1 = E(P, X0), X2 = E(P, X1),…
❑ If for some i we find Xi = EPj

❑ Then reconstruct chain from SPj

Y0 = SPj, Y1 = E(P,Y0), Y2 = E(P,Y1),…
❑ Find C = Yt−i = E(P, Yt−i−1) (always?)
❑ Then K = Yt−i−1 (always?)

 Part 1 � Cryptography 309

Trudy’s Perfect World
❑ Suppose block cipher has k = 56

o That is, the key length is 56 bits
❑ Suppose we find m = 228 chains, each of

length t = 228 and no chains overlap
❑ Memory: 228 pairs (SPj, EPi)
❑ Time: about 228 (per attack)

o Start at C, find some EPj in about 227 steps
o Find K with about 227 more steps

❑ Attack never fails

 Part 1 � Cryptography 310

Trudy’s Perfect World
❑ No chains overlap
❑ Any ciphertext C is in some chain

EP0
SP0

C
SP1

SP2

EP1

EP2

K

 Part 1 � Cryptography 311

The Real World
❑ Chains are not so well-behaved!
❑ Chains can cycle and merge

EP

SP

C

❑ Chain from C goes to EP
❑ Chain from SP to EP does not contain K
❑ Is this Trudy’s nightmare?

K

 Part 1 � Cryptography 312

Real-World TMTO Issues
❑ Merging, cycles, false alarms, etc.
❑ Pre-computation is lots of work

o Must attack many times to make it worthwhile
❑ Success is not assured

o Probability depends on initial work
❑ What if block size not equal key length?

o This is easy to deal with
❑ What is the probability of success?

o This is not so easy to compute

 Part 1 � Cryptography 313

To Reduce Merging
❑ Compute chain as F(E(P, Ki−1)) where F

permutes the bits
❑ Chains computed using different functions

can intersect, but they will not merge

EP1

SP0

SP1
EP0

F
0
 chain

F
1
 chain

 Part 1 � Cryptography 314

Hellman’s TMTO in Practice
❑ Let

o m = random starting points for each F
o t = encryptions in each chain
o r = number of “random” functions F

❑ Then mtr = total precomputed chain elements
❑ Pre-computation is O(mtr) work
❑ Each TMTO attack requires

o O(mr) “memory” and O(tr) “time”
❑ If we choose m = t = r = 2k/3 then

o Probability of success is at least 0.55

 Part 1 � Cryptography 315

TMTO: The Bottom Line
❑ Attack is feasible against DES
❑ Pre-computation is about 256 work
❑ Each attack requires about

o 237 “memory”
o 237 “time”

❑ Attack is not particular to DES
❑ No fancy math is required!
❑ Lesson: Clever algorithms can break crypto!

 Part 1 � Cryptography 316

Crypto Summary
❑ Terminology
❑ Symmetric key crypto

o Stream ciphers
▪ A5/1 and RC4

o Block ciphers
▪ DES, AES, TEA
▪ Modes of operation
▪ Integrity

 Part 1 � Cryptography 317

Crypto Summary
❑ Public key crypto

o Knapsack
o RSA
o Diffie-Hellman
o ECC
o Non-repudiation
o PKI, etc.

 Part 1 � Cryptography 318

Crypto Summary
❑ Hashing

o Birthday problem
o Tiger hash
o HMAC

❑ Secret sharing
❑ Random numbers

 Part 1 � Cryptography 319

Crypto Summary
❑ Information hiding

o Steganography
o Watermarking

❑ Cryptanalysis
o Linear and differential cryptanalysis
o RSA timing attack
o Knapsack attack
o Hellman’s TMTO

 Part 1 � Cryptography 320

Coming Attractions…
❑ Access Control

o Authentication -- who goes there?
o Authorization -- can you do that?

❑ We’ll see some crypto in next chapter
❑ We’ll see lots of crypto in protocol

chapters

