
 Part 4 ⎯ Software 1

Part IV: Software

 Part 4 ⎯ Software 2

Why Software?
❑ Why is software as important to security

as crypto, access control, protocols?
❑ Virtually all information security features

are implemented in software
❑ If your software is subject to attack, your

security can be broken
o Regardless of strength of crypto, access

control, or protocols
❑ Software is a poor foundation for security

Chapter 11:
Software Flaws and Malware
If automobiles had followed the same development cycle as the computer,

a Rolls-Royce would today cost $100, get a million miles per gallon,
and explode once a year, killing everyone inside.

 ⎯ Robert X. Cringely

My software never has bugs. It just develops random features.
⎯ Anonymous

 Part 4 ⎯ Software 3 Part 4 ⎯ Software 4

Bad Software is Ubiquitous
❑ NASA Mars Lander (cost $165 million)

o Crashed into Mars due to…
o …error in converting English and metric units of measure
o Believe it or not

❑ Denver airport
o Baggage handling system ⎯ very buggy software
o Delayed airport opening by 11 months
o Cost of delay exceeded $1 million/day
o What happened to person responsible for this fiasco?

❑ MV-22 Osprey
o Advanced military aircraft
o Faulty software can be fatal

 Part 4 ⎯ Software 5

Software Issues
Trudy
❑ Actively looks for

bugs and flaws
❑ Likes bad software…
❑ …and tries to make

it misbehave
❑ Attacks systems via

bad software

Alice and Bob
❑ Find bugs and flaws

by accident
❑ Hate bad software…
❑ …but they learn to

live with it
❑ Must make bad

software work

 Part 4 ⎯ Software 6

Complexity
❑ “Complexity is the enemy of security”, Paul

Kocher, Cryptography Research, Inc.

❑ A new car contains more LOC than was required
to land the Apollo astronauts on the moon

System Lines of Code (LOC)
Netscape 17 million

Space Shuttle 10 million
Linux kernel 2.6.0 5 million

Windows XP 40 million
Mac OS X 10.4 86 million

Boeing 777 7 million

 Part 4 ⎯ Software 7

Lines of Code and Bugs
❑ Conservative estimate: 5 bugs/10,000 LOC
❑ Do the math

o Typical computer: 3k exe’s of 100k LOC each
o Conservative estimate: 50 bugs/exe
o Implies about 150k bugs per computer
o So, 30,000-node network has 4.5 billion bugs
o Maybe only 10% of bugs security-critical and

only 10% of those remotely exploitable
o Then “only” 45 million critical security flaws!

 Part 4 ⎯ Software 8

Software Security Topics
❑ Program flaws (unintentional)

o Buffer overflow
o Incomplete mediation
o Race conditions

❑ Malicious software (intentional)
o Viruses
o Worms
o Other breeds of malware

 Part 4 ⎯ Software 9

Program Flaws
❑ An error is a programming mistake

o To err is human
❑ An error may lead to incorrect state: fault

o A fault is internal to the program
❑ A fault may lead to a failure, where a

system departs from its expected behavior
o A failure is externally observable

error fault failure

 Part 4 ⎯ Software 10

Example
char array[10];
for(i = 0; i < 10; ++i)

array[i] = `A`;
array[10] = `B`;

❑ This program has an error
❑ This error might cause a fault

o Incorrect internal state
❑ If a fault occurs, it might lead to a failure

o Program behaves incorrectly (external)
❑ We use the term flaw for all of the above

 Part 4 ⎯ Software 11

Secure Software
❑ In software engineering, try to ensure that

a program does what is intended
❑ Secure software engineering requires that

software does what is intended…
❑ …and nothing more
❑ Absolutely secure software? Dream on…

o Absolute security anywhere is impossible
❑ How can we manage software risks?

 Part 4 ⎯ Software 12

Program Flaws
❑ Program flaws are unintentional

o But can still create security risks
❑ We’ll consider 3 types of flaws

o Buffer overflow (smashing the stack)
o Incomplete mediation
o Race conditions

❑ These are the most common flaws

 Part 4 ⎯ Software 13

Buffer Overflow

 Part 4 ⎯ Software 14

Attack Scenario
❑ Users enter data into a Web form
❑ Web form is sent to server
❑ Server writes data to array called buffer,

without checking length of input data
❑ Data “overflows” buffer

o Such overflow might enable an attack
o If so, attack could be carried out by anyone

with Internet access

 Part 4 ⎯ Software 15

Buffer Overflow

❑ Q: What happens when code is executed?
❑ A: Depending on what resides in memory

at location “buffer[20]”
o Might overwrite user data or code
o Might overwrite system data or code
o Or program could work just fine

int main(){

 int buffer[10];

 buffer[20] = 37;}

 Part 4 ⎯ Software 16

Simple Buffer Overflow
❑ Consider boolean flag for authentication
❑ Buffer overflow could overwrite flag

allowing anyone to authenticate

buffer
FTF O U R S C …

Boolean flag

❑ In some cases, Trudy need not be so lucky
as in this example

 Part 4 ⎯ Software 17

Memory Organization
❑ Text ⎯ code
❑ Data ⎯ static variables
❑ Heap ⎯ dynamic data
❑ Stack ⎯ “scratch paper”

o Dynamic local variables
o Parameters to functions
o Return address stack

heap
↓

↑

data

text

← high
 address

← low
 address

← stack
 pointer (SP)

 Part 4 ⎯ Software 18

Simplified Stack Example

high →

void func(int a, int b){

char buffer[10];

}

void main(){

func(1,2);

}

:
:

buffer

ret

a

b

← return
 address

low →

← SP

← SP

← SP

← SP

 Part 4 ⎯ Software 19

Smashing the Stack

high →

❑ What happens if
buffer overflows?

::

buffer

a

b

← ret…

low →

← SP

← SP

← SP

← SP

retoverflow

❑ Program “returns”
to wrong location

NOT!

???

❑ A crash is likely
overflow

 Part 4 ⎯ Software 20

Smashing the Stack

high →

❑ Trudy has a
better idea… :

:

evil code

a

b

low →

← SP

← SP

← SP

← SP

retret

❑ Code injection
❑ Trudy can run

code of her
choosing…
o …on your machine

 Part 4 ⎯ Software 21

Smashing the Stack

❑ Trudy may not know…
1) Address of evil code
2) Location of ret on stack

❑ Solutions
1) Precede evil code with

NOP “landing pad”
2) Insert ret many times

evil code

::

::

ret

ret
:

NOP

NOP

:

ret

← ret

 Part 4 ⎯ Software 22

Stack Smashing Summary
❑ A buffer overflow must exist in the code
❑ Not all buffer overflows are exploitable

o Things must align properly
❑ If exploitable, attacker can inject code
❑ Trial and error is likely required

o Fear not, lots of help is available online
o Smashing the Stack for Fun and Profit, Aleph One

❑ Stack smashing is “attack of the decade”…
o …for many recent decades
o Also heap & integer overflows, format strings, etc.

 Part 4 ⎯ Software 23

Stack Smashing Example
❑ Suppose program asks for a serial number

that Trudy does not know
❑ Also, Trudy does not have source code
❑ Trudy only has the executable (exe)

❑ Program quits on incorrect serial number
 Part 4 ⎯ Software 24

Buffer Overflow Present?
❑ By trial and error, Trudy discovers

apparent buffer overflow

❑ Note that 0x41 is ASCII for “A”
❑ Looks like ret overwritten by 2 bytes!

http://www.phrack.org/show.php?p=49&a=14

 Part 4 ⎯ Software 25

Disassemble Code
❑ Next, disassemble bo.exe to find

❑ The goal is to exploit buffer overflow
to jump to address 0x401034

 Part 4 ⎯ Software 26

Buffer Overflow Attack
❑ Find that, in ASCII, 0x401034 is “@^P4”

❑ Byte order is reversed? What the …
❑ X86 processors are “little-endian”

 Part 4 ⎯ Software 27

Overflow Attack, Take 2
❑ Reverse the byte order to “4^P@” and…

❑ Success! We’ve bypassed serial number
check by exploiting a buffer overflow

❑ What just happened?
o Overwrote return address on the stack

 Part 4 ⎯ Software 28

Buffer Overflow

❑ Trudy did not require access to the
source code

❑ Only tool used was a disassembler to
determine address to jump to

❑ Find desired address by trial and error?
o Necessary if attacker does not have exe
o For example, a remote attack

 Part 4 ⎯ Software 29

Source Code
❑ Source code for buffer overflow example
❑ Flaw easily

exploited by
attacker…

❑ …without
access to
source code!

 Part 4 ⎯ Software 30

Stack Smashing Defenses
❑ Employ non-executable stack

o “No execute” NX bit (if available)
o Seems like the logical thing to do, but some real

code executes on the stack (Java, for example)
❑ Use a canary
❑ Address space layout randomization (ASLR)
❑ Use safe languages (Java, C#)
❑ Use safer C functions

o For unsafe functions, safer versions exist
o For example, strncpy instead of strcpy

 Part 4 ⎯ Software 31

Stack Smashing Defenses

❑ Canary
o Run-time stack check
o Push canary onto stack
o Canary value:

▪ Constant 0x000aff0d

▪ Or, may depends on ret

←

high →

::

buffer

a

b

low →

overflowret

canaryoverflow

 Part 4 ⎯ Software 32

Microsoft’s Canary
❑ Microsoft added buffer security check

feature to C++ with /GS compiler flag
o Based on canary (or “security cookie”)

Q: What to do when canary dies?
A: Check for user-supplied “handler”
❑ Handler shown to be subject to attack

o Claimed that attacker can specify handler code
o If so, formerly “safe” buffer overflows become

exploitable when /GS is used!

 Part 4 ⎯ Software 33

ASLR
❑ Address Space Layout Randomization

o Randomize place where code loaded in memory
❑ Makes most buffer overflow attacks

probabilistic
❑ Windows Vista uses 256 random layouts

o So about 1/256 chance buffer overflow works
❑ Similar thing in Mac OS X and other OSs
❑ Attacks against Microsoft’s ASLR do exist

o Possible to “de-randomize”

 Part 4 ⎯ Software 34

Buffer Overflow
❑ A major security threat yesterday, today,

and tomorrow
❑ The good news?

o It is possible to reduce overflow attacks (safe
languages, NX bit, ASLR, education, etc.)

❑ The bad news?
o Buffer overflows will exist for a long time
o Why? Legacy code, bad development practices,

clever attacks, etc.

 Part 4 ⎯ Software 35

Incomplete Mediation

 Part 4 ⎯ Software 36

Input Validation
❑ Consider: strcpy(buffer, argv[1])
❑ A buffer overflow occurs if

len(buffer) < len(argv[1])

❑ Software must validate the input by
checking the length of argv[1]

❑ Failure to do so is an example of a more
general problem: incomplete mediation

http://www.stanford.edu/~blp/papers/asrandom.pdf

 Part 4 ⎯ Software 37

Input Validation
❑ Consider web form data
❑ Suppose input is validated on client
❑ For example, the following is valid

http://www.things.com/orders/final&custID=112&
num=55A&qty=20&price=10&shipping=5&total=205

❑ Suppose input is not checked on server
o Why bother since input checked on client?
o Then attacker could send http message
http://www.things.com/orders/final&custID=112&
num=55A&qty=20&price=10&shipping=5&total=25

 Part 4 ⎯ Software 38

Incomplete Mediation
❑ Linux kernel

o Research revealed many buffer overflows
o Lots of these due to incomplete mediation

❑ Linux kernel is “good” software since
o Open-source
o Kernel ⎯ written by coding gurus

❑ Tools exist to help find such problems
o But incomplete mediation errors can be subtle
o And tools useful for attackers too!

 Part 4 ⎯ Software 39

Race Conditions

 Part 4 ⎯ Software 40

Race Condition
❑ Security processes should be atomic

o Occur “all at once”
❑ Race conditions can arise when

security-critical process occurs in stages
❑ Attacker makes change between stages

o Often, between stage that gives authorization,
but before stage that transfers ownership

❑ Example: Unix mkdir

 Part 4 ⎯ Software 41

mkdir Race Condition
❑ mkdir creates new directory
❑ How mkdir is supposed to work

1. Allocate
 space

mkdir

2. Transfer
 ownership

 Part 4 ⎯ Software 42

mkdir Attack

❑ Not really a “race”
o But attacker’s timing is critical

1. Allocate
 space

mkdir

3. Transfer
 ownership

2. Create link to
 password file

❑ The mkdir race condition

 Part 4 ⎯ Software 43

Race Conditions
❑ Race conditions are common
❑ Race conditions may be more prevalent

than buffer overflows
❑ But race conditions harder to exploit

o Buffer overflow is “low hanging fruit” today
❑ To prevent race conditions, make

security-critical processes atomic
o Occur all at once, not in stages
o Not always easy to accomplish in practice

 Part 4 ⎯ Software 44

Malware

 Part 4 ⎯ Software 45

Malicious Software
❑ Malware is not new…

o Fred Cohen’s initial virus work in 1980’s
o Cohen used viruses to break MLS systems

❑ Types of malware (no standard definition)
o Virus ⎯ passive propagation
o Worm ⎯ active propagation
o Trojan horse ⎯ unexpected functionality
o Trapdoor/backdoor ⎯ unauthorized access
o Rabbit ⎯ exhaust system resources
o Spyware ⎯ steals info, such as passwords

 Part 4 ⎯ Software 46

Where do Viruses Live?
❑ They live just about anywhere, such as…
❑ Boot sector

o Take control before anything else
❑ Memory resident

o Stays in memory
❑ Applications, macros, data, etc.
❑ Library routines
❑ Compilers, debuggers, virus checker, etc.

o These would be particularly nasty!

 Part 4 ⎯ Software 47

Malware Examples
❑ Brain virus (1986)
❑ Morris worm (1988)
❑ Code Red (2001)
❑ SQL Slammer (2004)
❑ Stuxnet (2010)
❑ Botnets (currently fashionable malware)
❑ Future of malware?

 Part 4 ⎯ Software 48

Brain
● First appeared in 1986
● More annoying than harmful
● A prototype for later viruses
● Not much reaction by users
● What it did

1. Placed itself in boot sector (and other places)
2. Screened disk calls to avoid detection
3. Each disk read, checked boot sector to see if

boot sector infected; if not, goto 1
● Brain did nothing really malicious

 Part 4 ⎯ Software 49

Morris Worm
❑ First appeared in 1988
❑ What it tried to do

o Determine where it could spread, then…
o …spread its infection and…
o …remain undiscovered

❑ Morris claimed his worm had a bug!
o It tried to re-infect infected systems
o Led to resource exhaustion
o Effect was like a so-called rabbit

 Part 4 ⎯ Software 50

How Morris Worm Spread
❑ Obtained access to machines by…

o User account password guessing
o Exploit buffer overflow in fingerd

o Exploit trapdoor in sendmail

❑ Flaws in fingerd and sendmail were
well-known, but not widely patched

 Part 4 ⎯ Software 51

Bootstrap Loader

❑ Once Morris worm got access…
❑ “Bootstrap loader” sent to victim

o 99 lines of C code
❑ Victim compiled and executed code
❑ Bootstrap loader fetched the worm
❑ Victim authenticated sender

o Don’t want user to get a bad worm…

 Part 4 ⎯ Software 52

How to Remain Undetected?
❑ If transmission interrupted, all code

deleted
❑ Code encrypted when downloaded
❑ Code deleted after decrypt/compile
❑ When running, worm regularly changed

name and process identifier (PID)

http://www.foo.be/docs-free/morris-worm/worm/cracksome.c.txt

 Part 4 ⎯ Software 53

Morris Worm: Bottom Line
❑ Shock to the Internet community of 1988

o Internet of 1988 much different than today
❑ Internet designed to survive nuclear war

o Yet, brought down by one graduate student!
o At the time, Morris’ father worked at NSA…

❑ Could have been much worse
❑ Result? CERT, more security awareness
❑ But should have been a wakeup call

 Part 4 ⎯ Software 54

Code Red Worm
❑ Appeared in July 2001
❑ Infected more than 250,000 systems

in about 15 hours
❑ Eventually infected 750,000 out of

about 6,000,000 vulnerable systems
❑ Exploited buffer overflow in

Microsoft IIS server software
o Then monitor traffic on port 80, looking

for other susceptible servers

 Part 4 ⎯ Software 55

Code Red: What it Did
❑ Day 1 to 19 of month: spread its infection
❑ Day 20 to 27: distributed denial of service

attack (DDoS) on www.whitehouse.gov
❑ Later version (several variants)

o Included trapdoor for remote access
o Rebooted to flush worm, leaving only trapdoor

❑ Some said it was “beta test for info warfare”
o But, no evidence to support this

 Part 4 ⎯ Software 56

SQL Slammer

❑ Infected 75,000 systems
in 10 minutes!

❑ At its peak, infections
doubled every 8.5 seconds

❑ Spread “too fast”…
❑ …so it “burned out”

available bandwidth

 Part 4 ⎯ Software 57

Why was Slammer Successful?
❑ Worm size: one 376-byte UDP packet
❑ Firewalls often let one packet thru

o Then monitor ongoing “connections”
❑ Expectation was that much more data

required for an attack
o So no need to worry about 1 small packet

❑ Slammer defied “experts”

Stuxnet
❑ Malware for information warfare…
❑ Discovered in 2010

o Origins go back to 2008, or earlier
❑ Apparently, targeted Iranian nuclear

processing facility
o Reprogrammed specific type of PLC
o Changed speed of centrifuges, causing

damage to about 1000 of them

 Part 4 ⎯ Software 58

Stuxnet
❑ Many advanced features including…

o Infect system via removable drives ⎯
able to get behind “airgap” firewalls

o Used 4 unpatched MS vulnerabilities
o Updates via P2P over a LAN
o Contact C&C server for code/updates
o Includes a Windows rootkit for stealth
o Significant exfiltration/recon capability
o Used a compromised private key

 Part 4 ⎯ Software 59

Malware Related to Stuxnet
❑ Duqu (2011)

o Likely that developers had access to
Stuxnet source code

o Apparently, used mostly for info stealing
❑ Flame (2012)

o May be “most complex” malware ever
o Very sophisticated spyware mechanisms

 Part 4 ⎯ Software 60

 Part 4 ⎯ Software 61

Trojan Horse Example
❑ Trojan: unexpected functionality
❑ Prototype trojan for the Mac
❑ File icon for freeMusic.mp3:
❑ For a real mp3, double click on icon

o iTunes opens
o Music in mp3 file plays

❑ But for freeMusic.mp3, unexpected results…

 Part 4 ⎯ Software 62

Mac Trojan
❑ Double click on freeMusic.mp3

o iTunes opens (expected)
o “Wild Laugh” (not expected)
o Message box (not expected)

 Part 4 ⎯ Software 63

Trojan Example
❑ How does freeMusic.mp3 trojan work?
❑ This “mp3” is an application, not data

❑ This trojan is harmless, but…
❑ …could have done anything user could do

o Delete files, download files, launch apps, etc.
 Part 4 ⎯ Software 64

Malware Detection
❑ Three common detection methods

o Signature detection
o Change detection
o Anomaly detection

❑ We briefly discuss each of these
o And consider advantages…
o …and disadvantages

 Part 4 ⎯ Software 65

Signature Detection
❑ A signature may be a string of bits in exe

o Might also use wildcards, hash values, etc.
❑ For example, W32/Beast virus has signature

83EB 0274 EB0E 740A 81EB 0301 0000
o That is, this string of bits appears in virus

❑ We can search for this signature in all files
❑ If string found, have we found W32/Beast?

o Not necessarily ⎯ string could be in normal code
o At random, chance is only 1/2112

o But software is not random…
 Part 4 ⎯ Software 66

Signature Detection
❑ Advantages

o Effective on “ordinary” malware
o Minimal burden for users/administrators

❑ Disadvantages
o Signature file can be large (10s of thousands)…
o …making scanning slow
o Signature files must be kept up to date
o Cannot detect unknown viruses
o Cannot detect some advanced types of malware

❑ The most popular detection method

 Part 4 ⎯ Software 67

Change Detection
❑ Viruses must live somewhere
❑ If you detect a file has changed, it

might have been infected
❑ How to detect changes?

o Hash files and (securely) store hash values
o Periodically re-compute hashes and compare
o If hash changes, file might be infected

 Part 4 ⎯ Software 68

Change Detection
❑ Advantages

o Virtually no false negatives
o Can even detect previously unknown malware

❑ Disadvantages
o Many files change ⎯ and often
o Many false alarms (false positives)
o Heavy burden on users/administrators
o If suspicious change detected, then what?

Might fall back on signature detection

 Part 4 ⎯ Software 69

Anomaly Detection
❑ Monitor system for anything “unusual” or

“virus-like” or “potentially malicious” or …
❑ Examples of anomalous things

o Files change in some unexpected way
o System misbehaves in some way
o Unexpected network activity
o Unexpected file access, etc., etc., etc., etc.

❑ But, we must first define “normal”
o And normal can (and must) change over time

 Part 4 ⎯ Software 70

Anomaly Detection
❑ Advantages

o Chance of detecting unknown malware
❑ Disadvantages

o No proven track record
o Trudy can make abnormal look normal (go slow)
o Must be combined with another method (e.g.,

signature detection)
❑ Also popular in intrusion detection (IDS)
❑ Difficult unsolved (unsolvable?) problem

o Reminds me of AI…

 Part 4 ⎯ Software 71

Future of Malware
❑ Recent trends

o Encrypted, polymorphic, metamorphic malware
o Fast replication/Warhol worms
o Flash worms, slow worms
o Botnets

❑ The future is bright for malware
o Good news for the bad guys…
o …bad news for the good guys

❑ Future of malware detection?
 Part 4 ⎯ Software 72

Encrypted Viruses
❑ Virus writers know signature detection used
❑ So, how to evade signature detection?
❑ Encrypting the virus is a good approach

o Ciphertext looks like random bits
o Different key, then different “random” bits
o So, different copies have no common signature

❑ Encryption often used in viruses today

 Part 4 ⎯ Software 73

Encrypted Viruses
❑ How to detect encrypted viruses?
❑ Scan for the decryptor code

o More-or-less standard signature detection
o But may be more false alarms

❑ Why not encrypt the decryptor code?
o Then encrypt the decryptor of the decryptor

(and so on…)
❑ Encryption of limited value to virus writers

 Part 4 ⎯ Software 74

Polymorphic Malware
❑ Polymorphic worm

o Body of worm is encrypted
o Decryptor code is “mutated” (or “morphed”)
o Trying to hide decryptor signature
o Like an encrypted worm on steroids…

Q: How to detect?
A: Emulation ⎯ let the code decrypt itself

o Slow, and anti-emulation is possible

 Part 4 ⎯ Software 75

Metamorphic Malware
❑ A metamorphic worm mutates before

infecting a new system
o Sometimes called “body polymorphic”

❑ Such a worm can, in principle, evade
signature-based detection

❑ Mutated worm must function the same
o And be “different enough” to avoid detection

❑ Detection is a difficult research problem

 Part 4 ⎯ Software 76

Metamorphic Worm
❑ One approach to metamorphic replication…

o The worm is disassembled

o Worm then stripped to a base form

o Random variations inserted into code (permute
the code, insert dead code, etc., etc.)

o Assemble the resulting code

❑ Result is a worm with same functionality as
original, but different signature

 Part 4 ⎯ Software 77

Warhol Worm
❑ “In the future everybody will be

world-famous for 15 minutes” ⎯ Andy
Warhol

❑ Warhol Worm is designed to infect the
entire Internet in 15 minutes

❑ Slammer infected 250,000 in 10 minutes
o “Burned out” bandwidth
o Could not have infected entire Internet in 15

minutes ⎯ too bandwidth intensive
❑ Can rapid worm do “better” than Slammer?

 Part 4 ⎯ Software 78

A Possible Warhol Worm
❑ Seed worm with an initial hit list containing

a set of vulnerable IP addresses
o Depends on the particular exploit
o Tools exist for identifying vulnerable systems

❑ Each successful initial infection would
attack selected part of IP address space

❑ Could infect entire Internet in 15 minutes!
❑ No worm this sophisticated has yet been

seen in the wild (as of 2011)
o Slammer generated random IP addresses

 Part 4 ⎯ Software 79

Flash Worm
❑ Can we do “better” than Warhol worm?
❑ Infect entire Internet in less than 15 minutes?
❑ Searching for vulnerable IP addresses is the

slow part of any worm attack
❑ Searching might be bandwidth limited

o Like Slammer

❑ Flash worm designed to infect entire Internet
almost instantly

 Part 4 ⎯ Software 80

Flash Worm
❑ Predetermine all vulnerable IP addresses

o Depends on details of the attack
❑ Embed these addresses in worm(s)

o Results in huge worm(s)
o But, the worm replicates, it splits

❑ No wasted time or bandwidth!
Original worm(s)

1st generation

2nd generation

 Part 4 ⎯ Software 81

Flash Worm
❑ Estimated that ideal flash worm could

infect the entire Internet in 15 seconds!
o Some debate as to actual time it would take
o Estimates range from 2 seconds to 2 minutes

❑ In any case…
❑ …much faster than humans could respond
❑ So, any defense must be fully automated
❑ How to defend against such attacks?

 Part 4 ⎯ Software 82

Rapid Malware Defenses
❑ Master IDS watches over network

o “Infection” proceeds on part of network
o Determines whether an attack or not
o If so, IDS saves most of the network
o If not, only a slight delay

❑ Beneficial worm
o Disinfect faster than the worm infects

❑ Other approaches?

 Part 4 ⎯ Software 83

Push vs Pull Malware
❑ Viruses/worms examples of “push”
❑ Recently, a lot of “pull” malware
❑ Scenario

o A compromised web server
o Visit a website at compromised server
o Malware loaded on you machine

❑ Good paper: Ghost in the Browser

 Part 4 ⎯ Software 84

Botnet
❑ Botnet: a “network” of infected machines
❑ Infected machines are “bots”

o Victim is unaware of infection (stealthy)
❑ Botmaster controls botnet

o Generally, using IRC
o P2P botnet architectures exist

❑ Botnets used for…
o Spam, DoS attacks, keylogging, ID theft, etc.

http://www.usenix.org/events/hotbots07/tech/full_papers/provos/provos.pdf

 Part 4 ⎯ Software 85

Botnet Examples
❑ XtremBot

o Similar bots: Agobot, Forbot, Phatbot
o Highly modular, easily modified
o Source code readily available (GPL license)

❑ UrXbot
o Similar bots: SDBot, UrBot, Rbot
o Less sophisticated than XtremBot type

❑ GT-Bots and mIRC-based bots
o mIRC is common IRC client for Windows

 Part 4 ⎯ Software 86

More Botnet Examples
❑ Mariposa

o Used to steal credit card info
o Creator arrested in July 2010

❑ Conficker
o Estimated 10M infected hosts (2009)

❑ Kraken
o Largest as of 2008 (400,000 infections)

❑ Srizbi
o For spam, one of largest as of 2008

 Part 4 ⎯ Software 87

Computer Infections
❑ Analogies are made between computer

viruses/worms and biological diseases
❑ There are differences

o Computer infections are much quicker
o Ability to intervene in computer outbreak is more

limited (vaccination?)
o Bio disease models often not applicable
o “Distance” almost meaningless on Internet

❑ But there are some similarities…

 Part 4 ⎯ Software 88

Computer Infections
❑ Cyber “diseases” vs biological diseases
❑ One similarity

o In nature, too few susceptible individuals and
disease will die out

o In the Internet, too few susceptible systems and
worm might fail to take hold

❑ One difference
o In nature, diseases attack more-or-less at random
o Cyber attackers select most “desirable” targets
o Cyber attacks are more focused and damaging

❑ Mobile devices an interesting hybrid case

 Part 4 ⎯ Software 89

Future Malware Detection?
❑ Malware today far outnumbers “goodware”

o Metamorphic copies of existing malware
o Many virus toolkits available
o Trudy can recycle old viruses, new signatures

❑ So, may be better to “detect” good code
o If code not on approved list, assume it’s bad
o That is, use whitelist instead of blacklist

 Part 4 ⎯ Software 90

Miscellaneous
Software-Based

Attacks

 Part 4 ⎯ Software 91

Miscellaneous Attacks
❑ Numerous attacks involve software
❑ We’ll discuss a few issues that do not

fit into previous categories
o Salami attack
o Linearization attack
o Time bomb
o Can you ever trust software?

 Part 4 ⎯ Software 92

Salami Attack
❑ What is Salami attack?

o Programmer “slices off” small amounts of money
o Slices are hard for victim to detect

❑ Example
o Bank calculates interest on accounts
o Programmer “slices off” any fraction of a cent

and puts it in his own account
o No customer notices missing partial cent
o Bank may not notice any problem
o Over time, programmer makes lots of money!

 Part 4 ⎯ Software 93

Salami Attack
❑ Such attacks are possible for insiders
❑ Do salami attacks actually occur?

o Or is it just Office Space folklore?
❑ Programmer added a few cents to every

employee payroll tax withholding
o But money credited to programmer’s tax
o Programmer got a big tax refund!

❑ Rent-a-car franchise in Florida inflated gas
tank capacity to overcharge customers

 Part 4 ⎯ Software 94

Salami Attacks
❑ Employee reprogrammed Taco Bell cash

register: $2.99 item registered as $0.01
o Employee pocketed $2.98 on each such item
o A large “slice” of salami!

❑ In LA, four men installed computer chip
that overstated amount of gas pumped
o Customers complained when they had to pay for

more gas than tank could hold
o Hard to detect since chip programmed to give

correct amount when 5 or 10 gallons purchased
o Inspector usually asked for 5 or 10 gallons

 Part 4 ⎯ Software 95

Linearization Attack
❑ Program checks for

serial number
S123N456

❑ For efficiency,
check made one
character at a time

❑ Can attacker take
advantage of this?

 Part 4 ⎯ Software 96

Linearization Attack
❑ Correct number takes longer than incorrect
❑ Trudy tries all 1st characters

o Find that S takes longest

❑ Then she guesses all 2nd characters: S∗
o Finds S1 takes longest

❑ And so on…
❑ Trudy can recover one character at a time!

o Same principle as used in lock picking

http://www.imdb.com/title/tt0151804/

 Part 4 ⎯ Software 97

Linearization Attack
❑ What is the advantage to attacking serial

number one character at a time?
❑ Suppose serial number is 8 characters and

each has 128 possible values
o Then 1288 = 256 possible serial numbers
o Attacker would guess the serial number in

about 255 tries ⎯ a lot of work!
o Using the linearization attack, the work is

about 8 ∗ (128/2) = 29 which is easy

 Part 4 ⎯ Software 98

Linearization Attack
❑ A real-world linearization attack
❑ TENEX (an ancient timeshare system)

o Passwords checked one character at a time
o Careful timing was not necessary, instead…
o …could arrange for a “page fault” when next

unknown character guessed correctly
o Page fault register was user accessible

❑ Attack was very easy in practice

 Part 4 ⎯ Software 99

Time Bomb
❑ In 1986 Donald Gene Burleson told employer

to stop withholding taxes from his paycheck
❑ His company refused
❑ He planned to sue his company

o He used company time to prepare legal docs
o Company found out and fired him

❑ Burleson had been working on malware…
o After being fired, his software “time bomb”

deleted important company data

 Part 4 ⎯ Software 100

Time Bomb
❑ Company was reluctant to pursue the case
❑ So Burleson sued company for back pay!

o Then company finally sued Burleson
❑ In 1988 Burleson fined $11,800

o Case took years to prosecute…
o Cost company thousands of dollars…
o Resulted in a slap on the wrist for attacker

❑ One of the first computer crime cases
❑ Many cases since follow a similar pattern

o Companies reluctant to prosecute

http://www.internetwright.com/drp/RiskAssess.htm

 Part 4 ⎯ Software 101

Trusting Software
❑ Can you ever trust software?

o See Reflections on Trusting Trust
❑ Consider the following thought experiment
❑ Suppose C compiler has a virus

o When compiling login program, virus creates
backdoor (account with known password)

o When recompiling the C compiler, virus
incorporates itself into new C compiler

❑ Difficult to get rid of this virus!

 Part 4 ⎯ Software 102

Trusting Software
❑ Suppose you notice something is wrong
❑ So you start over from scratch
❑ First, you recompile the C compiler
❑ Then you recompile the OS

o Including login program…
o You have not gotten rid of the problem!

❑ In the real world
o Attackers try to hide viruses in virus scanner
o Imagine damage that would be done by attack

on virus signature updates

Chapter 12:
Insecurity in Software

Every time I write about the impossibility of effectively protecting digital files
on a general-purpose computer, I get responses from people decrying the

death of copyright. “How will authors and artists get paid for their work?”
they ask me. Truth be told, I don’t know. I feel rather like the physicist

who just explained relativity to a group of would-be interstellar travelers,
only to be asked: “How do you expect us to get to the stars, then?”

I’m sorry, but I don't know that, either.
⎯ Bruce Schneier

So much time and so little to do! Strike that. Reverse it. Thank you.
⎯ Willy Wonka

 Part 4 ⎯ Software 103 Part 4 ⎯ Software 104

Software Reverse
Engineering (SRE)

http://www.acm.org/classics/sep95/

 Part 4 ⎯ Software 105

SRE
❑ Software Reverse Engineering

o Also known as Reverse Code Engineering (RCE)
o Or simply “reversing”

❑ Can be used for good...
o Understand malware
o Understand legacy code

❑ …or not-so-good
o Remove usage restrictions from software
o Find and exploit flaws in software
o Cheat at games, etc.

 Part 4 ⎯ Software 106

SRE
❑ We assume…

o Reverse engineer is an attacker
o Attacker only has exe (no source code)
o No bytecode (i.e., not Java, .Net, etc.)

❑ Attacker might want to
o Understand the software
o Modify (“patch”) the software

❑ SRE usually focused on Windows
o So we focus on Windows

 Part 4 ⎯ Software 107

SRE Tools
❑ Disassembler

o Converts exe to assembly (as best it can)
o Cannot always disassemble 100% correctly
o In general, not possible to re-assemble

disassembly into working executable
❑ Debugger

o Must step thru code to completely understand it
o Labor intensive ⎯ lack of useful tools

❑ Hex Editor
o To patch (modify) exe file

❑ Process Monitor, VMware, etc.
 Part 4 ⎯ Software 108

SRE Tools
❑ IDA Pro ⎯ good disassembler/debugger

o Costs a few hundred dollars (free version exists)
o Converts binary to assembly (as best it can)

❑ OllyDbg ⎯ high-quality shareware debugger
o Includes a good disassembler

❑ Hex editor ⎯ to view/modify bits of exe
o UltraEdit is good ⎯ freeware
o HIEW ⎯ useful for patching exe

❑ Process Monitor ⎯ freeware

 Part 4 ⎯ Software 109

Why is Debugger Needed?
❑ Disassembly gives static results

o Good overview of program logic
o User must “mentally execute” program
o Difficult to jump to specific place in the code

❑ Debugging is dynamic
o Can set break points
o Can treat complex code as “black box”
o And code not always disassembled correctly

❑ Disassembly and debugging both required
for any serious SRE task

 Part 4 ⎯ Software 110

SRE Necessary Skills
❑ Working knowledge of target assembly code
❑ Experience with the tools

o IDA Pro ⎯ sophisticated and complex
o OllyDbg ⎯ good choice for this class

❑ Knowledge of Windows Portable Executable
(PE) file format

❑ Boundless patience and optimism
❑ SRE is a tedious, labor-intensive process!

 Part 4 ⎯ Software 111

SRE Example
❑ We consider a simple example
❑ This example only requires disassembly

(IDA Pro used here) and hex editor
o Trudy disassembles to understand code
o Trudy also wants to patch (modify) the code

❑ For most real-world code, would also need a
debugger (e.g., OllyDbg)

 Part 4 ⎯ Software 112

SRE Example
❑ Program requires serial number
❑ But Trudy doesn’t know the serial number…

❑ Can Trudy get serial number from exe?

 Part 4 ⎯ Software 113

SRE Example
❑ IDA Pro disassembly

❑ Looks like serial number is S123N456

 Part 4 ⎯ Software 114

SRE Example
❑ Try the serial number S123N456

❑ It works!
❑ Can Trudy do “better”?

 Part 4 ⎯ Software 115

SRE Example
❑ Again, IDA Pro disassembly

❑ And hex view…

 Part 4 ⎯ Software 116

SRE Example

❑ “test eax,eax” is AND of eax with itself
o So, zero flag set only if eax is 0
o If test yields 0, then jz is true

❑ Trudy wants jz to always be true
❑ Can Trudy patch exe so jz always holds?

 Part 4 ⎯ Software 117

SRE Example

Assembly Hex
test eax,eax 85 C0 …
xor eax,eax 33 C0 …

❑ Can Trudy patch exe so that jz always true?

xor ← jz always true!!!

 Part 4 ⎯ Software 118

SRE Example

❑ Can edit serial.exe with hex editor

serial.exe

serialPatch.exe

❑ Save as serialPatch.exe

 Part 4 ⎯ Software 119

SRE Example

❑ Any “serial number” now works!
❑ Very convenient for Trudy

 Part 4 ⎯ Software 120

SRE Example
❑ Back to IDA Pro disassembly…

serial.exe

serialPatch.exe

 Part 4 ⎯ Software 121

SRE Attack Mitigation
❑ Impossible to prevent SRE on open system
❑ Can we make such attacks more difficult?
❑ Anti-disassembly techniques

o To confuse static view of code
❑ Anti-debugging techniques

o To confuse dynamic view of code
❑ Tamper-resistance

o Code checks itself to detect tampering
❑ Code obfuscation

o Make code more difficult to understand
 Part 4 ⎯ Software 122

Anti-disassembly
❑ Anti-disassembly methods include

o Encrypted or “packed” object code
o False disassembly
o Self-modifying code
o Many other techniques

❑ Encryption prevents disassembly
o But need plaintext decryptor to decrypt code!
o Same problem as with polymorphic viruses

 Part 4 ⎯ Software 123

Anti-disassembly Example
❑ Suppose actual code instructions are

❑ What a “dumb” disassembler sees

inst 1 inst 3jmp junk inst 4 …

inst 1 inst 5inst 2 inst 3 inst 4 inst 6 …

❑ This is example of “false disassembly”
❑ Persistent attacker will figure it out

 Part 4 ⎯ Software 124

Anti-debugging
❑ IsDebuggerPresent()
❑ Can also monitor for

o Use of debug registers
o Inserted breakpoints

❑ Debuggers don’t handle threads well
o Interacting threads may confuse debugger…
o …and therefore, confuse attacker

❑ Many other debugger-unfriendly tricks
o See next slide for one example

 Part 4 ⎯ Software 125

Anti-debugger Example

❑ Suppose when program gets inst 1, it
pre-fetches inst 2, inst 3, and inst 4
o This is done to increase efficiency

❑ Suppose when debugger executes inst 1, it
does not pre-fetch instructions

❑ Can we use this difference to confuse the
debugger?

inst 1 inst 5inst 2 inst 3 inst 4 inst 6 …

 Part 4 ⎯ Software 126

Anti-debugger Example

❑ Suppose inst 1 overwrites inst 4 in memory
❑ Then program (without debugger) will be OK

since it fetched inst 4 at same time as inst 1
❑ Debugger will be confused when it reaches

junk where inst 4 is supposed to be
❑ Problem if this segment of code executed

more than once!
o Also, self-modifying code is platform-dependent

❑ Again, clever attacker can figure this out

inst 1 inst 5inst 2 inst 3 inst 4 inst 6 …junk

 Part 4 ⎯ Software 127

Tamper-resistance
❑ Goal is to make patching more difficult
❑ Code can hash parts of itself
❑ If tampering occurs, hash check fails
❑ Research has shown, can get good coverage

of code with small performance penalty
❑ But don’t want all checks to look similar

o Or else easy for attacker to remove checks
❑ This approach sometimes called “guards”

 Part 4 ⎯ Software 128

Code Obfuscation
❑ Goal is to make code hard to understand

o Opposite of good software engineering
o Spaghetti code is a good example

❑ Much research into more robust obfuscation
o Example: opaque predicate

int x,y

:

if((x−y)∗(x−y) > (x∗x−2∗x∗y+y∗y)){…}

o The if() conditional is always false
❑ Attacker wastes time analyzing dead code

 Part 4 ⎯ Software 129

Code Obfuscation
❑ Code obfuscation sometimes promoted as a

powerful security technique
❑ Diffie and Hellman’s original idea for public

key crypto was based on code obfuscation
o But public key crypto didn’t work out that way

❑ It has been shown that obfuscation probably
cannot provide strong, crypto-like security
o On the (im)possibility of obfuscating programs

❑ Obfuscation might still have practical uses
o Even if it can never be as strong as crypto

 Part 4 ⎯ Software 130

Authentication Example
❑ Software used to determine authentication
❑ Ultimately, authentication is 1-bit decision

o Regardless of method used (pwd, biometric, …)
o Somewhere in authentication software, a single

bit determines success/failure
❑ If Trudy can find this bit, she can force

authentication to always succeed
❑ Obfuscation makes it more difficult for

attacker to find this all-important bit

 Part 4 ⎯ Software 131

Obfuscation
❑ Obfuscation forces attacker to analyze

larger amounts of code
❑ Method could be combined with

o Anti-disassembly techniques
o Anti-debugging techniques
o Code tamper-checking

❑ All of these increase work/pain for attacker
❑ But a persistent attacker can ultimately win

 Part 4 ⎯ Software 132

Software Cloning
❑ Suppose we write a piece of software
❑ We then distribute an identical copy (or clone)

to each customers
❑ If an attack is found on one copy, the same

attack works on all copies
❑ This approach has no resistance to “break

once, break everywhere” (BOBE)
❑ This is the usual situation in software

development

http://www.wisdom.weizmann.ac.il/~oded/p_obfuscate.html

 Part 4 ⎯ Software 133

Metamorphic Software
❑ Metamorphism sometimes used in malware
❑ Can metamorphism also be used for good?
❑ Suppose we write a piece of software
❑ Each copy we distribute is different

o This is an example of metamorphic software
❑ Two levels of metamorphism are possible

o All instances are functionally distinct (only possible
in certain application)

o All instances are functionally identical but differ
internally (always possible)

o We consider the latter case
 Part 4 ⎯ Software 134

Metamorphic Software
❑ If we distribute N copies of cloned software

o One successful attack breaks all N

❑ If we distribute N metamorphic copies, where
each of N instances is functionally identical,
but they differ internally…
o An attack on one instance does not necessarily

work against other instances

o In the best case, N times as much work is required
to break all N instances

 Part 4 ⎯ Software 135

Metamorphic Software
❑ We cannot prevent SRE attacks
❑ The best we can hope for is BOBE resistance
❑ Metamorphism can improve BOBE resistance
❑ Consider the analogy to genetic diversity

o If all plants in a field are genetically identical,
one disease can rapidly kill all of the plants

o If the plants in a field are genetically diverse, one
disease can only kill some of the plants

 Part 4 ⎯ Software 136

Cloning vs Metamorphism
❑ Spse our software has a buffer overflow
❑ Cloned software

o Same buffer overflow attack will work against
all cloned copies of the software

❑ Metamorphic software
o Unique instances ⎯ all are functionally the

same, but they differ in internal structure
o Buffer overflow likely exists in all instances
o But a specific buffer overflow attack will only

work against some instances
o Buffer overflow attacks are delicate!

 Part 4 ⎯ Software 137

Metamorphic Software
❑ Metamorphic software is intriguing concept
❑ But raises concerns regarding…

o Software development, upgrades, etc.
❑ Metamorphism does not prevent SRE, but

could make it infeasible on a large scale
❑ Metamorphism might be a practical tool for

increasing BOBE resistance
❑ Metamorphism currently used in malware
❑ So, metamorphism is not just for evil!

 Part 4 ⎯ Software 138

Digital Rights Management

 Part 4 ⎯ Software 139

Digital Rights Management
❑ DRM is a good example of limitations

of doing security in software
❑ We’ll discuss

o What is DRM?
o A PDF document protection system
o DRM for streaming media
o DRM in P2P application
o DRM within an enterprise

 Part 4 ⎯ Software 140

What is DRM?
❑ “Remote control” problem

o Distribute digital content
o Retain some control on its use, after delivery

❑ Digital book example
o Digital book sold online could have huge market
o But might only sell 1 copy!
o Trivial to make perfect digital copies
o A fundamental change from pre-digital era

❑ Similar comments for digital music, video, etc.

 Part 4 ⎯ Software 141

Persistent Protection
❑ “Persistent protection” is the fundamental

problem in DRM
o How to enforce restrictions on use of content

after delivery?
❑ Examples of such restrictions

o No copying
o Limited number of reads/plays
o Time limits
o No forwarding, etc.

 Part 4 ⎯ Software 142

What Can be Done?
❑ The honor system?

o Example: Stephen King’s, The Plant
❑ Give up?

o Internet sales? Regulatory compliance? etc.
❑ Lame software-based DRM?

o The standard DRM system today
❑ Better software-based DRM?

o MediaSnap’s goal
❑ Tamper-resistant hardware?

o Closed systems: Game Cube, etc.
o Open systems: TCG/NGSCB for PCs

 Part 4 ⎯ Software 143

Is Crypto the Answer?

❑ Attacker’s goal is to recover the key
❑ In standard crypto scenario, attacker has

o Ciphertext, some plaintext, side-channel info, etc.
❑ In DRM scenario, attacker has

o Everything in the box (at least)
❑ Crypto was not designed for this problem!

 Part 4 ⎯ Software 144

Is Crypto the Answer?
❑ But crypto is necessary

o To securely deliver the bits
o To prevent trivial attacks

❑ Then attacker will not try to directly
attack crypto

❑ Attacker will try to find keys in software
o DRM is “hide and seek” with keys in software!

 Part 4 ⎯ Software 145

Current State of DRM
❑ At best, security by obscurity

o A derogatory term in security
❑ Secret designs

o In violation of Kerckhoffs Principle
❑ Over-reliance on crypto

o “Whoever thinks his problem can be solved
using cryptography, doesn’t understand his
problem and doesn’t understand cryptography.”
⎯ Attributed by Roger Needham and Butler Lampson to each other

 Part 4 ⎯ Software 146

DRM Limitations
❑ The analog hole

o When content is rendered, it can be captured in
analog form

o DRM cannot prevent such an attack
❑ Human nature matters

o Absolute DRM security is impossible
o Want something that “works” in practice
o What works depends on context

❑ DRM is not strictly a technical problem!

 Part 4 ⎯ Software 147

Software-based DRM
❑ Strong software-based DRM is impossible
❑ Why?

o We can’t really hide a secret in software
o We cannot prevent SRE
o User with full admin privilege can eventually

break any anti-SRE protection
❑ Bottom line: The killer attack on

software-based DRM is SRE

 Part 4 ⎯ Software 148

DRM for PDF Documents
❑ Based on design of MediaSnap, Inc., a

small Silicon Valley startup company
❑ Developed a DRM system

o Designed to protect PDF documents
❑ Two parts to the system

o Server ⎯ Secure Document Server (SDS)
o Client ⎯ PDF Reader “plugin” software

 Part 4 ⎯ Software 149

Protecting a Document

SDS BobAlice

encrypt persistent
protection

❑ Alice creates PDF document
❑ Document encrypted and sent to SDS
❑ SDS applies desired “persistent protection”
❑ Document sent to Bob

 Part 4 ⎯ Software 150

Accessing a Document

key

Request key

❑ Bob authenticates to SDS
❑ Bob requests key from SDS
❑ Bob can then access document, but only thru

special DRM software

SDS BobAlice

 Part 4 ⎯ Software 151

Security Issues
❑ Server side (SDS)

o Protect keys, authentication data, etc.
o Apply persistent protection

❑ Client side (PDF plugin)
o Protect keys, authenticate user, etc.
o Enforce persistent protection

❑ Remaining discussion concerns client

 Part 4 ⎯ Software 152

Security Overview

Obfuscation

Tamper-resistance

❑ A tamper-resistant outer layer
❑ Software obfuscation applied within

 Part 4 ⎯ Software 153

Anti-debugger Encrypted code

Tamper-Resistance

❑ Encrypted code will prevent static analysis
of PDF plugin software

❑ Anti-debugging to prevent dynamic analysis
of PDF plugin software

❑ These two designed to protect each other
❑ But the persistent attacker will get thru!

 Part 4 ⎯ Software 154

Obfuscation
❑ Obfuscation can be used for

o Key management
o Authentication
o Caching (keys and authentication info)
o Encryption and “scrambling”
o Key parts (data and/or code)
o Multiple keys/key parts

❑ Obfuscation can only slow the attacker
❑ The persistent attacker still wins!

 Part 4 ⎯ Software 155

Other Security Features
❑ Code tamper checking (hashing)

o To validate all code executing on system
❑ Anti-screen capture

o To prevent obvious attack on digital documents
❑ Watermarking

o In theory, can trace stolen content
o In practice, of limited value

❑ Metamorphism (or individualization)
o For BOBE-resistance

 Part 4 ⎯ Software 156

Security Not Implemented

❑ More general code obfuscation
❑ Code “fragilization”

o Code that hash checks itself
o Tampering should cause code to break

❑ OS cannot be trusted
o How to protect against “bad” OS?
o Not an easy problem!

 Part 4 ⎯ Software 157

DRM for Streaming Media
❑ Stream digital content over Internet

o Usually audio or video
o Viewed in real time

❑ Want to charge money for the content
❑ Can we protect content from capture?

o So content can’t be redistributed
o We want to make money!

 Part 4 ⎯ Software 158

Attacks on Streaming Media
❑ Spoof the stream between endpoints
❑ Man in the middle
❑ Replay and/or redistribute data
❑ Capture the plaintext

o This is the threat we are concerned with
o Must prevent malicious software from

capturing plaintext stream at client end

 Part 4 ⎯ Software 159

Design Features
❑ Scrambling algorithms

o Encryption-like algorithms
o Many distinct algorithms available
o A strong form of metamorphism!

❑ Negotiation of scrambling algorithm
o Server and client must both know the algorithm

❑ Decryption at receiver end
o To remove the strong encryption

❑ De-scrambling in device driver
o De-scramble just prior to rendering

 Part 4 ⎯ Software 160

Scrambling Algorithms

❑ Server has a large set of scrambling
algorithms
o Suppose N of these numbered 1 thru N

❑ Each client has a subset of algorithms
o For example: LIST = {12,45,2,37,23,31}

❑ The LIST is stored on client, encrypted
with server’s key: E(LIST,K

server
)

 Part 4 ⎯ Software 161

Server-side Scrambling
❑ On server side

data scrambled
data

encrypted
scrambled data

❑ Server must scramble data with an algorithm
the client supports

❑ Client must send server list of algorithms it
supports

❑ Server must securely communicate algorithm
choice to client

 Part 4 ⎯ Software 162

Select Scrambling Algorithm

❑ The key K is a session key
❑ The LIST is unreadable by client

o Reminiscent of Kerberos TGT

Alice
(client)

Bob
(server)

E(LIST, K
server

)

E(m,K)

scramble (encrypted) data
using Alice’s m-th algorithm

 Part 4 ⎯ Software 163

Client-side De-scrambling
❑ On client side

datascrambled
data

encrypted
scrambled data

❑ Try to keep plaintext away from
potential attacker

❑ “Proprietary” device driver
o Scrambling algorithms “baked in”
o Able to de-scramble at last moment

 Part 4 ⎯ Software 164

Why Scrambling?
❑ Metamorphism deeply embedded in system
❑ If a scrambling algorithm is known to be

broken, server will not choose it
❑ If client has too many broken algorithms,

server can force software upgrade
❑ Proprietary algorithm harder for SRE
❑ We cannot trust crypto strength of

proprietary algorithms, so we also encrypt

 Part 4 ⎯ Software 165

Why Metamorphism?
❑ The most serious threat is SRE
❑ Attacker does not need to reverse

engineer any standard crypto algorithm
o Attacker only needs to find the key

❑ Reverse engineering a scrambling algorithm
may be difficult

❑ This is just security by obscurity
❑ But appears to help with BOBE-resistance

 Part 4 ⎯ Software 166

DRM for a P2P Application
❑ Today, much digital content is delivered via

peer-to-peer (P2P) networks
o P2P networks contain lots of pirated music

❑ Is it possible to get people to pay for digital
content on such P2P networks?

❑ How can this possibly work?
❑ A peer offering service (POS) is one idea

 Part 4 ⎯ Software 167

P2P File Sharing: Query
❑ Suppose Alice requests “Hey Jude”
❑ Black arrows: query flooding
❑ Red arrows: positive responses

Frank

Ted Carol Pat

MarilynBobAlice Dean

Fred

❑ Alice can select from: Carol, Pat

Carol
Pat

 Part 4 ⎯ Software 168

P2P File Sharing with POS
❑ Suppose Alice requests “Hey Jude”
❑ Black arrow: query
❑ Red arrow: positive response

POS

Ted Carol Pat

MarilynBobAlice Dean

Fred

❑ Alice selects from: Bill, Ben, Carol, Joe, Pat
❑ Bill, Ben, and Joe have legal content!

Bill
Ben
Joe

Carol
Pat

 Part 4 ⎯ Software 169

POS
❑ Bill, Ben and Joe must appear normal to Alice
❑ If “victim” (Alice) clicks POS response

o DRM protected (legal) content downloaded
o Then small payment required to play

❑ Alice can choose not to pay
o But then she must download again
o Is it worth the hassle to avoid paying small fee?
o POS content can also offer extras

 Part 4 ⎯ Software 170

POS Conclusions
❑ A very clever idea!
❑ Piggybacking on existing P2P networks
❑ Weak DRM works very well here

o Pirated content already exists
o DRM only needs to be more hassle to break

than the hassle of clicking and waiting
❑ Current state of POS?

o Very little interest from the music industry
o Considerable interest from the “adult” industry

 Part 4 ⎯ Software 171

DRM in the Enterprise
❑ Why enterpise DRM?
❑ Health Insurance Portability and

Accountability Act (HIPAA)
o Medical records must be protected
o Fines of up to $10,000 “per incident”

❑ Sarbanes-Oxley Act (SOA)
o Must preserve documents of interest to SEC

❑ DRM-like protections needed by
corporations for regulatory compliance

 Part 4 ⎯ Software 172

What’s Different in
Enterprise DRM?

❑ Technically, similar to e-commerce
❑ But motivation for DRM is different

o Regulatory compliance
o To satisfy a legal requirement
o Not to make money ⎯ to avoid losing money!

❑ Human dimension is completely different
o Legal threats are far more plausible

❑ Legally, corporation is OK provided an
active attack on DRM is required

 Part 4 ⎯ Software 173

Enterprise DRM
❑ Moderate DRM security is sufficient
❑ Policy management issues

o Easy to set policies for groups, roles, etc.
o Yet policies must be flexible

❑ Authentication issues
o Must interface with existing system
o Must prevent network authentication spoofing

(authenticate the authentication server)
❑ Enterprise DRM is a solvable problem!

 Part 4 ⎯ Software 174

DRM Failures

❑ Many examples of DRM failures
o One system defeated by a felt-tip pen
o One defeated my holding down shift key
o Secure Digital Music Initiative (SDMI)

completely broken before it was finished
o Adobe eBooks
o Microsoft MS-DRM (version 2)
o Many, many others!

 Part 4 ⎯ Software 175

DRM Conclusions
❑ DRM nicely illustrates limitations of doing

security in software
❑ Software in a hostile environment is

extremely vulnerable to attack
❑ Protection options are very limited
❑ Attacker has enormous advantage
❑ Tamper-resistant hardware and a trusted

OS can make a difference
o We’ll discuss this more later: TCG/NGSCB

 Part 4 ⎯ Software 176

Secure Software
Development

 Part 4 ⎯ Software 177

Penetrate and Patch
❑ Usual approach to software development

o Develop product as quickly as possible
o Release it without adequate testing
o Patch the code as flaws are discovered

❑ In security, this is “penetrate and patch”
o A bad approach to software development
o An even worse approach to secure software!

 Part 4 ⎯ Software 178

Why Penetrate and Patch?
❑ First to market advantage

o First to market likely to become market leader
o Market leader has huge advantage in software
o Users find it safer to “follow the leader”
o Boss won’t complain if your system has a flaw,

as long as everybody else has same flaw…
o User can ask more people for support, etc.

❑ Sometimes called “network economics”

 Part 4 ⎯ Software 179

Why Penetrate and Patch?
❑ Secure software development is hard

o Costly and time consuming development
o Costly and time consuming testing
o Cheaper to let customers do the work!

❑ No serious economic disincentive
o Even if software flaw causes major losses, the

software vendor is not liable
o Is any other product sold this way?
o Would it matter if vendors were legally liable?

 Part 4 ⎯ Software 180

Penetrate and Patch Fallacy
❑ Fallacy: If you keep patching software,

eventually it will be secure
❑ Why is this a fallacy?
❑ Empirical evidence to the contrary
❑ Patches often add new flaws
❑ Software is a moving target: new versions,

features, changing environment, new uses,…

 Part 4 ⎯ Software 181

Open vs Closed Source
❑ Open source software

o The source code is available to user
o For example, Linux

❑ Closed source
o The source code is not available to user
o For example, Windows

❑ What are the security implications?

 Part 4 ⎯ Software 182

Open Source Security
❑ Claimed advantages of open source is

o More eyeballs: more people looking at the code
should imply fewer flaws

o A variant on Kerchoffs Principle
❑ Is this valid?

o How many “eyeballs” looking for security flaws?
o How many “eyeballs” focused on boring parts?
o How many “eyeballs” belong to security experts?
o Attackers can also look for flaws!
o Evil coder might be able to insert a flaw

 Part 4 ⎯ Software 183

Open Source Security
❑ Open source example: wu-ftp

o About 8,000 lines of code
o A security-critical application
o Was deployed and widely used
o After 10 years, serious security flaws discovered!

❑ More generally, open source software has
done little to reduce security flaws

❑ Why?
o Open source follows penetrate and patch model!

 Part 4 ⎯ Software 184

Closed Source Security
❑ Claimed advantage of closed source

o Security flaws not as visible to attacker
o This is a form of “security by obscurity”

❑ Is this valid?
o Many exploits do not require source code
o Possible to analyze closed source code…
o …though it is a lot of work!
o Is “security by obscurity” real security?

 Part 4 ⎯ Software 185

Open vs Closed Source
❑ Advocates of open source often cite the

Microsoft fallacy which states
1. Microsoft makes bad software
2. Microsoft software is closed source
3. Therefore all closed source software is bad

❑ Why is this a fallacy?
o Not logically correct
o More relevant is the fact that Microsoft

follows the penetrate and patch model

 Part 4 ⎯ Software 186

Open vs Closed Source

❑ No obvious security advantage to
either open or closed source

❑ More significant than open vs closed
source is software development
practices

❑ Both open and closed source follow the
“penetrate and patch” model

 Part 4 ⎯ Software 187

Open vs Closed Source
❑ If there is no security difference, why is

Microsoft software attacked so often?
o Microsoft is a big target!
o Attacker wants most “bang for the buck”

❑ Few exploits against Mac OS X
o Not because OS X is inherently more secure
o An OS X attack would do less damage
o Would bring less “glory” to attacker

❑ Next, we consider the theoretical
differences
o See this paper

 Part 4 ⎯ Software 188

Security and Testing
❑ Can be shown that probability of a security

failure after t units of testing is about
E = K/t where K is a constant

❑ This approximation holds over large range of t
❑ Then the “mean time between failures” is

MTBF = t/K

❑ The good news: security improves with testing
❑ The bad news: security only improves linearly

with testing!

http://www.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf

 Part 4 ⎯ Software 189

Security and Testing
❑ The “mean time between failures” is

approximately
MTBF = t/K

❑ To have 1,000,000 hours between security
failures, must test 1,000,000 hours!

❑ Suppose open source project has MTBF = t/K
❑ If flaws in closed source are twice as hard

to find, do we then have MTBF = 2t/K ?
o No! Testing not as effective MTBF = 2(t/2)/K = t/K

❑ The same result for open and closed source!
 Part 4 ⎯ Software 190

Security and Testing
❑ Closed source advocates might argue

o Closed source has “open source” alpha testing,
where flaws found at (higher) open source rate

o Followed by closed source beta testing and use,
giving attackers the (lower) closed source rate

o Does this give closed source an advantage?
❑ Alpha testing is minor part of total testing

o Recall, first to market advantage
o Products rushed to market

❑ Probably no real advantage for closed source

 Part 4 ⎯ Software 191

Security and Testing
❑ No security difference between open and

closed source?
❑ Provided that flaws are found “linearly”
❑ Is this valid?

o Empirical results show security improves linearly
with testing

o Conventional wisdom is that this is the case for
large and complex software systems

 Part 4 ⎯ Software 192

Security and Testing
❑ The fundamental problem

o Good guys must find (almost) all flaws
o Bad guy only needs 1 (exploitable) flaw

❑ Software reliability far more
difficult in security than elsewhere

❑ How much more difficult?
o See the next slide…

 Part 4 ⎯ Software 193

Security Testing: Do the Math
❑ Recall that MTBF = t/K

❑ Suppose 106 security flaws in some software
o Say, Windows XP

❑ Suppose each bug has MTBF of 109 hours
❑ Expect to find 1 bug for every 103 hours testing
❑ Good guys spend 107 hours testing: find 104 bugs

o Good guys have found 1% of all the bugs

❑ Trudy spends 103 hours of testing: finds 1 bug
❑ Chance good guys found Trudy’s bug is only 1% !!!

 Part 4 ⎯ Software 194

Software Development
❑ General software development model

o Specify
o Design
o Implement
o Test
o Review
o Document
o Manage
o Maintain

 Part 4 ⎯ Software 195

Secure Software Development
❑ Goal: move away from “penetrate and patch”
❑ Penetrate and patch will always exist

o But if more care taken in development, then
fewer and less severe flaws to patch

❑ Secure software development not easy
❑ Much more time and effort required thru

entire development process
❑ Today, little economic incentive for this!

 Part 4 ⎯ Software 196

Secure Software Development

❑ We briefly discuss the following
o Design
o Hazard analysis
o Peer review
o Testing
o Configuration management
o Postmortem for mistakes

 Part 4 ⎯ Software 197

Design
❑ Careful initial design
❑ Try to avoid high-level errors

o Such errors may be impossible to correct later
o Certainly costly to correct these errors later

❑ Verify assumptions, protocols, etc.
❑ Usually informal approach is used
❑ Formal methods

o Possible to rigorously prove design is correct
o In practice, only works in simple cases

 Part 4 ⎯ Software 198

Hazard Analysis
❑ Hazard analysis (or threat modeling)

o Develop hazard list
o List of what ifs
o Schneier’s “attack tree”

❑ Many formal approaches
o Hazard and operability studies (HAZOP)
o Failure modes and effective analysis (FMEA)
o Fault tree analysis (FTA)

 Part 4 ⎯ Software 199

Peer Review
❑ Three levels of peer review

o Review (informal)
o Walk-through (semi-formal)
o Inspection (formal)

❑ Each level of review is important
❑ Much evidence that peer review is effective
❑ Although programmers might not like it!

 Part 4 ⎯ Software 200

Levels of Testing
❑ Module testing ⎯ test each small

section of code
❑ Component testing ⎯ test

combinations of a few modules
❑ Unit testing ⎯ combine several

components for testing
❑ Integration testing ⎯ put everything

together and test

 Part 4 ⎯ Software 201

Types of Testing

❑ Function testing ⎯ verify that system
functions as it is supposed to

❑ Performance testing ⎯ other requirements
such as speed, resource use, etc.

❑ Acceptance testing ⎯ customer involved
❑ Installation testing ⎯ test at install time
❑ Regression testing ⎯ test after any change

 Part 4 ⎯ Software 202

Other Testing Issues
❑ Active fault detection

o Don’t wait for system to fail
o Actively try to make it fail ⎯ attackers will!

❑ Fault injection
o Insert faults into the process
o Even if no obvious way for such a fault to occur

❑ Bug injection
o Insert bugs into code
o See how many of injected bugs are found
o Can use this to estimate number of bugs
o Assumes injected bugs similar to unknown bugs

 Part 4 ⎯ Software 203

Testing Case History
❑ In one system with 184,000 lines of code
❑ Flaws found

o 17.3% inspecting system design
o 19.1% inspecting component design
o 15.1% code inspection
o 29.4% integration testing
o 16.6% system and regression testing

❑ Conclusion: must do many kinds of testing
o Overlapping testing is necessary
o Provides a form of “defense in depth”

 Part 4 ⎯ Software 204

Security Testing: The
Bottom Line

❑ Security testing is far more demanding
than non-security testing

❑ Non-security testing ⎯ does system do
what it is supposed to?

❑ Security testing ⎯ does system do what it
is supposed to and nothing more?

❑ Usually impossible to do exhaustive testing
❑ How much testing is enough?

 Part 4 ⎯ Software 205

Security Testing: The
Bottom Line

❑ How much testing is enough?
❑ Recall MTBF = t/K

❑ Seems to imply testing is nearly hopeless!
❑ But there is some hope…

o If we eliminate an entire class of flaws then
statistical model breaks down

o For example, if a single test (or a few tests)
find all buffer overflows

 Part 4 ⎯ Software 206

Configuration Issues
❑ Types of changes

o Minor changes ⎯ maintain daily
functioning

o Adaptive changes ⎯ modifications
o Perfective changes ⎯ improvements
o Preventive changes ⎯ no loss of

performance
❑ Any change can introduce new flaws!

 Part 4 ⎯ Software 207

Postmortem
❑ After fixing any security flaw…
❑ Carefully analyze the flaw
❑ To learn from a mistake

o Mistake must be analyzed and understood
o Must make effort to avoid repeating mistake

❑ In security, always learn more when things
go wrong than when they go right

❑ Postmortem may be the most under-used
tool in all of security engineering!

 Part 4 ⎯ Software 208

Software Security
❑ First to market advantage

o Also known as “network economics”
o Security suffers as a result
o Little economic incentive for secure software!

❑ Penetrate and patch
o Fix code as security flaws are found
o Fix can result in worse problems
o Mostly done after code delivered

❑ Proper development can reduce flaws
o But costly and time-consuming

 Part 4 ⎯ Software 209

Software and Security
❑ Even with best development practices,

security flaws will still exist
❑ Absolute security is (almost) never possible
❑ So, it is not surprising that absolute

software security is impossible
❑ The goal is to minimize and manage risks of

software flaws
❑ Do not expect dramatic improvements in

consumer software security anytime soon!

Chapter 13:
Operating Systems and

Security
UNIX is basically a simple operating system,

but you have to be a genius to understand the simplicity.
⎯ Dennis Ritchie

And it is a mark of prudence never to trust wholly
in those things which have once deceived us.

⎯ Rene Descartes

 Part 4 ⎯ Software 210

 Part 4 ⎯ Software 211

OS and Security
❑ OSs are large, complex programs

o Many bugs in any such program
o We have seen that bugs can be security threats

❑ Here we are concerned with security
provided by OS
o Not concerned with threat of bad OS software

❑ Concerned with OS as security enforcer
❑ In this section we only scratch the surface

 Part 4 ⎯ Software 212

OS Security Challenges
❑ Modern OS is multi-user and multi-tasking
❑ OS must deal with

o Memory
o I/O devices (disk, printer, etc.)
o Programs, threads
o Network issues
o Data, etc.

❑ OS must protect processes from other
processes and users from other users
o Whether accidental or malicious

 Part 4 ⎯ Software 213

OS Security Functions
❑ Memory protection

o Protect memory from users/processes
❑ File protection

o Protect user and system resources
❑ Authentication

o Determines and enforce authentication results
❑ Authorization

o Determine and enforces access control

 Part 4 ⎯ Software 214

Memory Protection
❑ Fundamental problem

o How to keep users/processes separate?
❑ Separation

o Physical separation ⎯ separate devices
o Temporal separation ⎯ one at a time
o Logical separation ⎯ sandboxing, etc.
o Cryptographic separation ⎯ make information

unintelligible to outsider
o Or any combination of the above

 Part 4 ⎯ Software 215

Memory Protection

❑ Base/bounds register ⎯ lower and upper
address limit

❑ Assumes contiguous space

❑ Fence ⎯ users cannot cross a
specified address
o Static fence ⎯ fixed size OS
o Dynamic fence ⎯ fence register

 Part 4 ⎯ Software 216

Memory Protection
❑ Tagging ⎯ specify protection of each address

+ Extremely fine-grained protection
- High overhead ⎯ can be reduced by tagging

sections instead of individual addresses
- Compatibility

❑ More common is segmentation and/or paging
o Protection is not as flexible
o But much more efficient

 Part 4 ⎯ Software 217

Segmentation
❑ Divide memory into logical units, such as

o Single procedure
o Data in one array, etc.

❑ Can enforce different access restrictions
on different segments

❑ Any segment can be placed in any memory
location (if location is large enough)

❑ OS keeps track of actual locations

 Part 4 ⎯ Software 218

Segmentation

program

memory

 Part 4 ⎯ Software 219

Segmentation
❑ OS can place segments anywhere
❑ OS keeps track of segment locations

as <segment,offset>
❑ Segments can be moved in memory
❑ Segments can move out of memory
❑ All address references go thru OS

 Part 4 ⎯ Software 220

Segmentation Advantages
❑ Every address reference can be checked

o Possible to achieve complete mediation
❑ Different protection can be applied to

different segments
❑ Users can share access to segments
❑ Specific users can be restricted to specific

segments

 Part 4 ⎯ Software 221

Segmentation Disadvantages
❑ How to reference <segment,offset> ?

o OS must know segment size to verify access is
within segment

o But some segments can grow during execution (for
example, dynamic memory allocation)

o OS must keep track of variable segment sizes
❑ Memory fragmentation is also a problem

o Compacting memory changes tables
❑ A lot of work for the OS
❑ More complex ⇒ more chance for mistakes

 Part 4 ⎯ Software 222

Paging
❑ Like segmentation, but fixed-size segments
❑ Access via <page,offset>
❑ Plusses and minuses

+ Avoids fragmentation, improved efficiency
+ OS need not keep track of variable segment sizes
- No logical unity to pages
- What protection to apply to a given page?

 Part 4 ⎯ Software 223

Paging

program

memory

Page 1

Page 0

Page 2

Page 3
Page 4

Page 2

Page 1

Page 0

Page 3

Page 4

 Part 4 ⎯ Software 224

Other OS Security Functions
❑ OS must enforce access control
❑ Authentication

o Passwords, biometrics
o Single sign-on, etc.

❑ Authorization
o ACL
o Capabilities

❑ These topics discussed previously
❑ OS is an attractive target for attack!

 Part 4 ⎯ Software 225

Trusted Operating System

 Part 4 ⎯ Software 226

Trusted Operating System
❑ An OS is trusted if we rely on it for

o Memory protection
o File protection
o Authentication
o Authorization

❑ Every OS does these things
❑ But if a trusted OS fails to provide these,

our security fails

 Part 4 ⎯ Software 227

Trust vs Security
❑ Security is a

judgment of
effectiveness

❑ Judge based on
specified policy

❑ Security depends on
trust relationships

❑ Trust implies reliance
❑ Trust is binary
❑ Ideally, only trust

secure systems
❑ All trust relationships

should be explicit

❑ Note: Some authors use different terminology!

 Part 4 ⎯ Software 228

Trusted Systems
❑ Trust implies reliance
❑ A trusted system is relied on for security
❑ An untrusted system is not relied on for

security
❑ If all untrusted systems are compromised,

your security is unaffected
❑ Ironically, only a trusted system can

break your security!

 Part 4 ⎯ Software 229

Trusted OS
❑ OS mediates interactions between

subjects (users) and objects
(resources)

❑ Trusted OS must decide
o Which objects to protect and how
o Which subjects are allowed to do what

 Part 4 ⎯ Software 230

General Security Principles
❑ Least privilege ⎯ like “low watermark”
❑ Simplicity
❑ Open design (Kerchoffs Principle)
❑ Complete mediation
❑ White listing (preferable to black listing)
❑ Separation
❑ Ease of use
❑ But commercial OSs emphasize features

o Results in complexity and poor security

 Part 4 ⎯ Software 231

OS Security
❑ Any OS must provide some degree of

o Authentication
o Authorization (users, devices and data)
o Memory protection
o Sharing
o Fairness
o Inter-process communication/synchronization
o OS protection

 Part 4 ⎯ Software 232

OS Services
users

User interface

Operating system

servic
es

Synchronization
Concurrency
Deadlock
Communication
Audit trail, etc.

allocation
Data, programs,
CPU, memory,
I/O devices, etc.

Resource

 Part 4 ⎯ Software 233

Trusted OS
❑ A trusted OS also provides some or all of

o User authentication/authorization
o Mandatory access control (MAC)
o Discretionary access control (DAC)
o Object reuse protection
o Complete mediation ⎯ access control
o Trusted path
o Audit/logs

 Part 4 ⎯ Software 234

Trusted OS Services
users

User interface

Operating system

ser
vic

es

Synchronization
Concurrency
Deadlock
Communication
Audit trail, etc.

Resource
allocation Data, programs,

CPU, memory,
I/O devices, etc.

Authentication Acce
ss

con
tro

l

Access control

 Part 4 ⎯ Software 235

MAC and DAC
❑ Mandatory Access Control (MAC)

o Access not controlled by owner of object
o Example: User does not decide who holds a

TOP SECRET clearance
❑ Discretionary Access Control (DAC)

o Owner of object determines access
o Example: UNIX/Windows file protection

❑ If DAC and MAC both apply, MAC wins

 Part 4 ⎯ Software 236

Object Reuse Protection
❑ OS must prevent leaking of info
❑ Example

o User creates a file
o Space allocated on disk
o But same space previously used
o “Leftover” bits could leak information
o Magnetic remanence is a related issue

 Part 4 ⎯ Software 237

Trusted Path
❑ Suppose you type in your password

o What happens to the password?
❑ Depends on the software!
❑ How can you be sure software is not evil?
❑ Trusted path problem:

“I don't know how to to be confident even of a digital
signature I make on my own PC, and I've worked in
security for over fifteen years. Checking all of the
software in the critical path between the display and the
signature software is way beyond my patience. ”

 ⎯ Ross Anderson

 Part 4 ⎯ Software 238

Audit
❑ System should log security-related events
❑ Necessary for postmortem
❑ What to log?

o Everything? Who (or what) will look at it?
o Don’t want to overwhelm administrator
o Needle in haystack problem

❑ Should we log incorrect passwords?
o “Almost” passwords in log file?

❑ Logging is not a trivial matter

 Part 4 ⎯ Software 239

Security Kernel
❑ Kernel is the lowest-level part of the OS
❑ Kernel is responsible for

o Synchronization
o Inter-process communication
o Message passing
o Interrupt handling

❑ The security kernel is the part of the
kernel that deals with security

❑ Security kernel contained within the kernel

 Part 4 ⎯ Software 240

Security Kernel
❑ Why have a security kernel?
❑ All accesses go thru kernel

o Ideal place for access control
❑ Security-critical functions in one location

o Easier to analyze and test
o Easier to modify

❑ More difficult for attacker to get in
“below” security functions

 Part 4 ⎯ Software 241

Reference Monitor
❑ The part of the security kernel that deals

with access control
o Mediates access of subjects to objects
o Tamper-resistant
o Analyzable (small, simple, etc.)

Objects Subjects

Reference monitor
 Part 4 ⎯ Software 242

Trusted Computing Base
❑ TCB ⎯ everything in the OS that we rely

on to enforce security
❑ If everything outside TCB is subverted,

trusted OS would still be trusted
❑ TCB protects users from each other

o Context switching between users
o Shared processes
o Memory protection for users
o I/O operations, etc.

 Part 4 ⎯ Software 243

TCB Implementation
❑ Security may occur many places within OS
❑ Ideally, design security kernel first, and

build the OS around it
o Reality is usually the other way around

❑ Example of a trusted OS: SCOMP
o Developed by Honeywell
o Less than 10,000 LOC in SCOMP security kernel
o Win XP has 40,000,000 lines of code!

 Part 4 ⎯ Software 244

Poor TCB Design

Hardware
OS kernel
Operating system
User space

Security critical activities

Problem: No clear security layer

 Part 4 ⎯ Software 245

Better TCB Design

Hardware
Security kernel
Operating system
User space

Security kernel is the security layer
 Part 4 ⎯ Software 246

Trusted OS Summary
❑ Trust implies reliance
❑ TCB (trusted computing

base) is everything in OS
we rely on for security

❑ If everything outside
TCB is subverted, we still
have trusted system

❑ If TCB subverted,
security is broken

OS

OS Kernel

Security Kernel

 Part 4 ⎯ Software 247

NGSCB

 Part 4 ⎯ Software 248

Next Generation Secure
Computing Base

❑ NGSCB pronounced “n-scub” (the G is silent)
❑ Was supposed to be part of Vista OS

o Vista was once known as Longhorn…
❑ TCG (Trusted Computing Group)

o Led by Intel, TCG makes special hardware
❑ NGSCB is the part of Windows that will

interface with TCG hardware
❑ TCG/NGSCB formerly TCPA/Palladium

o Why the name changes?

http://www.theregister.co.uk/content/4/29039.html

 Part 4 ⎯ Software 249

NGSCB
❑ The original motivation for TCPA/Palladium

was digital rights management (DRM)
❑ Today, TCG/NGSCB is promoted as general

security-enhancing technology
o DRM just one of many potential applications

❑ Depending on who you ask, TCG/NGSCB is
o Trusted computing
o Treacherous computing

 Part 4 ⎯ Software 250

Motivation for TCG/NGSCB
❑ Closed systems: Game consoles, etc.

o Good at protecting secrets (tamper resistant)
o Good at forcing people to pay for software
o Limited flexibility

❑ Open systems: PCs
o Incredible flexibility
o Poor at protecting secrets
o Very poor at defending their own software

❑ TCG: closed system security on open platform
❑ “virtual set-top box inside your PC” ⎯ Rivest

 Part 4 ⎯ Software 251

TCG/NGSCB
❑ TCG provides tamper-resistant hardware

o Secure place to store cryptographic key
o Key secure from a user with admin privileges!

❑ TCG hardware is in addition to ordinary
hardware, not in place of it

❑ PC has two OSs ⎯ regular OS and special
trusted OS to deal with TCG hardware

❑ NGSCB is Microsoft’s trusted OS

 Part 4 ⎯ Software 252

NGSCB Design Goals

❑ Provide high assurance
o High confidence that system behaves correctly
o Correct behavior even if system is under attack

❑ Provide authenticated operation
o Authenticate “things” (software, devices, etc.)

❑ Protection against hardware tampering is
concern of TCG, not NGSCB

http://www.microsoft.com/resources/ngscb/default.mspx
http://www.cl.cam.ac.uk/~rja14/tcpa-faq.html

 Part 4 ⎯ Software 253

NGSCB Disclaimer
❑ Specific details are sketchy
❑ Based on available info, Microsoft may not

have resolved all of the details
o Maybe un-resolvable?

❑ What follows: author’s best guesses
❑ This should all become much clearer in the

not-too-distant future
o At least I thought so a couple of years ago…

 Part 4 ⎯ Software 254

NGSCB Architecture

❑ Nexus is the Trusted Computing Base in NGSCB
❑ The NCA (Nexus Computing Agents) talk to Nexus

and LHS

Left-hand side (LHS) Right-hand side (RHS)

u
n
t
r
u
s
t
e
d

t
r
u
s
t
e
d

User space

Kernel

Nexus

NCA
NCA

Regular OS

Drivers

Application

Application

 Part 4 ⎯ Software 255

NGSCB
❑ NGSCB has 4 “feature groups”

1. Strong process isolation
□ Processes do not interfere with each other

2. Sealed storage
□ Data protected (tamper resistant hardware)

3. Secure path
□ Data to and from I/O protected

4. Attestation
□ “Things” securely authenticated
□ Allows TCB to be extended via NCAs

● All are aimed at malicious code
● 4. also provides (secure) extensibility

 Part 4 ⎯ Software 256

NGSCB Process Isolation
❑ Curtained memory
❑ Process isolation and the OS

o Protect trusted OS (Nexus) from untrusted OS
o Isolate trusted OS from untrusted stuff

❑ Process isolation and NCAs
o NCAs isolated from software they do not trust

❑ Trust determined by users, to an extent…
o User can disable a trusted NCA
o User cannot enable an untrusted NCA

 Part 4 ⎯ Software 257

NGSCB Sealed Storage
❑ Sealed storage contains secret data

o If code X wants access to secret, a hash of X
must be verified (integrity check of X)

o Implemented via symmetric key cryptography
❑ Confidentiality of secret is protected since

only accessed by trusted software
❑ Integrity of secret is assured since it’s in

sealed storage

 Part 4 ⎯ Software 258

NGSCB Secure Path
❑ Secure path for input

o From keyboard to Nexus
o From mouse to Nexus
o From any input device to Nexus

❑ Secure path for output
o From Nexus to the screen

❑ Uses crypto (digital signatures)

 Part 4 ⎯ Software 259

NGSCB Attestation (1)
❑ Secure authentication of things

o Authenticate devices, services, code, etc.
o Separate from user authentication

❑ Public key cryptography used
o Certified key pair required
o Private key not user-accessible
o Sign and send result to remote system

❑ TCB extended via attestation of NCAs
o This is a major feature!

 Part 4 ⎯ Software 260

NGSCB Attestation (2)
❑ Public key used for attestation

o However, public key reveals the user identity
o Using public keys, anonymity would be lost

❑ Trusted third party (TTP) can be used
o TTP verifies signature
o Then TTP vouches for signature
o Anonymity preserved (except to TTP)

❑ Support for zero knowledge proofs
o Verify knowledge of a secret without revealing it
o Anonymity “preserved unconditionally”

 Part 4 ⎯ Software 261

NGSCB Compelling Apps (1)
❑ Type your Word document in Windows

o I.e., the untrusted LHS
❑ Move document to trusted RHS
❑ Read document carefully
❑ Digitally sign the document
❑ Assured that “what you see is what you sign”

o Practically impossible to get this on your PC

 Part 4 ⎯ Software 262

NGSCB Compelling Apps (2)
❑ Digital Rights Management (DRM)
❑ Many DRM problems solved by NGSCB
❑ Protect secret ⎯ sealed storage

o Impossible without something like NGSCB
❑ Scraping data ⎯ secure path

o Cannot prevent without something like NGSCB
❑ Positively ID users

o Higher assurance with NGSCB

 Part 4 ⎯ Software 263

NGSCB According to MS
❑ All of Windows works on untrusted LHS
❑ User is in charge of…

o Which Nexus(es) will run on system
o Which NCAs will run on system
o Which NCAs allowed to identify system, etc.

❑ No external process enables Nexus or NCA
❑ Nexus can’t block, delete, censor data

o NCA does, but NCAs authorized by user
❑ Nexus is open source

 Part 4 ⎯ Software 264

NGSCB Critics
❑ Many critics ⎯ we consider two
❑ Ross Anderson

o Perhaps the most influential critic
o Also one of the harshest critics

❑ Clark Thomborson
o Lesser-known critic
o Criticism strikes at heart of NGSCB

 Part 4 ⎯ Software 265

Anderson’s NGSCB Criticism (1)
❑ Digital object controlled by its creator, not

user of machine where it resides: Why?
o Creator can specify the NCA
o If user does not accept NCA, access is denied
o Aside: This is critical for, say, MLS applications

❑ If Microsoft Word encrypts all documents
with key only available to Microsoft products
o Then difficult to stop using Microsoft products

 Part 4 ⎯ Software 266

Anderson’s NGSCB Criticism (2)
❑ Files from a compromised machine could be

blacklisted to, e.g., prevent music piracy
❑ Suppose everyone at SJSU uses same pirated

copy of Microsoft Word
o If you stop this copy from working on all NGSCB

machines, SJSU users will not use NGSCB
o Instead, make all NGSCB machines refuse to open

documents created with this copy of Word…
o …so SJSU user can’t share docs with NGSCB user…

 Part 4 ⎯ Software 267

Anderson’s NGSCB Criticism (3)
❑ Going off the deep end…

o “The Soviet Union tried to register and
control all typewriters. NGSCB attempts
to register and control all computers.”

o “In 2010 President Clinton may have two
red buttons on her desk ⎯ one that sends
missiles to China and another that turns
off all of the PCs in China…”

 Part 4 ⎯ Software 268

Thomborson’s NGSCB Criticism
❑ NGSCB acts like a security guard
❑ By passive observation, NGSCB

“security guard” can see sensitive info
❑ Former student worked as security

guard at apartment complex
o By passive observations…
o …he learned about people who lived there

 Part 4 ⎯ Software 269

Thomborson’s NGSCB Criticism
❑ Can NGSCB spy on you?
❑ According to Microsoft

o Nexus software is public
o NCAs can be debugged (for development)
o NGSCB is strictly “opt in”

❑ Loophole?
o Release version of NCA can’t be debugged
and debug and release versions differ

 Part 4 ⎯ Software 270

NGSCB Bottom Line (1)
❑ NGCSB: trusted OS on an open platform
❑ Without something similar, PC may lose out

o Particularly in entertainment-related areas
o Copyright holders will not trust PC
o Already lost? (iPod, Kindle, iPad, etc., etc.)

❑ With NGSCB, will users lose some control
of their PCs?

❑ But NGSCB users must choose to “opt in”
o If user does not opt in, what has been lost?

 Part 4 ⎯ Software 271

NGSCB Bottom Line (2)
❑ NGSCB is a trusted system
❑ Only trusted system can break security

o By definition, an untrusted system is not
trusted with security critical tasks

o Also by definition, a trusted system is trusted
with security critical tasks

o If untrusted system is compromised, security is
not at risk

o If a trusted system is compromised (or simply
malfunctions), security is at risk

 Part 4 ⎯ Software 272

Software Summary
❑ Software flaws

o Buffer overflow
o Race conditions
o Incomplete mediation

❑ Malware
o Viruses, worms, etc.

❑ Other software-based attacks

 Part 4 ⎯ Software 273

Software Summary
❑ Software Reverse Engineering (SRE)
❑ Digital Rights Management (DRM)
❑ Secure software development

o Penetrate and patch
o Open vs closed source
o Testing

 Part 4 ⎯ Software 274

Software Summary
❑ Operating systems and security

o How does OS enforce security?
❑ Trusted OS design principles
❑ Microsoft’s NGSCB

o A trusted OS for DRM

 Part 4 ⎯ Software 275

Course Summary
❑ Crypto

o Symmetric key, public key, hash functions,
cryptanalysis

❑ Access Control
o Authentication, authorization

❑ Protocols
o Simple auth., SSL, IPSec, Kerberos, GSM

❑ Software
o Flaws, malware, SRE, Software development,

trusted OS

