
D.1 Introduction D-2

D.2 Advanced Topics in Disk Storage D-2

D.3 Definition and Examples of Real Faults and Failures D-10

D.4 I/O Performance, Reliability Measures, and Benchmarks D-15

D.5 A Little Queuing Theory D-23

D.6 Crosscutting Issues D-34

D.7 Designing and Evaluating an I/O System—The

Internet Archive Cluster D-36

D.8 Putting It All Together: NetApp FAS6000 Filer D-41

D.9 Fallacies and Pitfalls D-43

D.10 Concluding Remarks D-47

D.11 Historical Perspective and References D-48

Case Studies with Exercises by Andrea C. Arpaci-Dusseau

and Remzi H. Arpaci-Dusseau D-48

D

Storage Systems
I think Silicon Valley was misnamed. If you look back at the dollars
shipped in products in the last decade, there has been more revenue
frommagneticdisks than fromsilicon. Theyought to renametheplace
Iron Oxide Valley.

Al Hoagland
A pioneer of magnetic disks (1982)

Combiningbandwidthandstorage…enables swift and reliableaccess
to the ever expanding troves of content on the proliferating disks and
… repositories of the Internet… the capacity of storage arrays of all
kinds is rocketing ahead of the advance of computer performance.

George Gilder
“The End Is Drawing Nigh,”

Forbes ASAP (April 4, 2000)

D-2 ■ Appendix D Storage Systems
D.1

D.2
Introduction

The popularity of Internet services such as search engines and auctions has
enhanced the importance of I/O for computers, since no one would want a desktop
computer that couldn’t access the Internet. This rise in importance of I/O is
reflected by the names of our times. The 1960s to 1980s were called the Computing
Revolution; the period since 1990 has been called the Information Age, with
concerns focused on advances in information technology versus raw computa-
tional power. Internet services depend upon massive storage, which is the focus
of this chapter, and networking, which is the focus of Appendix F.

This shift in focus from computation to communication and storage of infor-
mation emphasizes reliability and scalability as well as cost-performance.
Although it is frustrating when a program crashes, people become hysterical if they
lose their data; hence, storage systems are typically held to a higher standard of
dependability than the rest of the computer. Dependability is the bedrock of
storage, yet it also has its own rich performance theory—queuing theory—that
balances throughput versus response time. The software that determines which
processor features get used is the compiler, but the operating system usurps that
role for storage.

Thus, storage has a different, multifaceted culture from processors, yet it is still
found within the architecture tent. We start our exploration with advances in mag-
netic disks, as they are the dominant storage device today in desktop and server
computers. We assume that readers are already familiar with the basics of storage

devices, some of which were covered in Chapter 1.
Advanced Topics in Disk Storage

The disk industry historically has concentrated on improving the capacity of disks.
Improvement in capacity is customarily expressed as improvement in areal
density, measured in bits per square inch:

Areal density¼Tracks
Inch

on a disk surface� Bits
Inch

on a track

Through about 1988, the rate of improvement of areal density was 29% per
year, thus doubling density every 3 years. Between then and about 1996, the
rate improved to 60% per year, quadrupling density every 3 years and matching
the traditional rate of DRAMs. From 1997 to about 2003, the rate increased to
100%, doubling every year. After the innovations that allowed this renaissances
had largely played out, the rate has dropped recently to about 30% per year. In
2011, the highest density in commercial products is 400 billion bits per square
inch. Cost per gigabyte has dropped at least as fast as areal density has
increased, with smaller diameter drives playing the larger role in this improve-
ment. Costs per gigabyte improved by almost a factor of 1,000,000 between

1983 and 2011.

0.1

1

10

100

1000

10,000

100,000

1,000,000

1

C
os

t (
$/

G
B

)

Figure D.1 Cost versus acce
two-order-of-magnitude gap
ory and rotating magnetic d
attempts have been made o
that between 1990 and 2005
matic improvement.

D.2 Advanced Topics in Disk Storage ■ D-3
Magnetic disks have been challenged many times for supremacy of secondary
storage. Figure D.1 shows one reason: the fabled access time gap between disks
and DRAM. DRAM latency is about 100,000 times less than disk, and that per-
formance advantage costs 30 to 150 times more per gigabyte for DRAM.

The bandwidth gap is more complex. For example, a fast disk in 2011 transfers
at 200 MB/sec from the disk media with 600 GB of storage and costs about $400.
A 4 GB DRAM module costing about $200 in 2011 could transfer at 16,000 MB/
sec (see Chapter 2), giving the DRAM module about 80 times higher bandwidth
than the disk. However, the bandwidth per GB is 6000 times higher for DRAM,
and the bandwidth per dollar is 160 times higher.

Many have tried to invent a technology cheaper than DRAM but faster than
disk to fill that gap, but thus far all have failed. Challengers have never had a prod-
uct to market at the right time. By the time a new product ships, DRAMs and disks
have made advances as predicted earlier, costs have dropped accordingly, and the
challenging product is immediately obsolete.

The closest challenger is Flash memory. This semiconductor memory is non-
volatile like disks, and it has about the same bandwidth as disks, but latency is 100
to 1000 times faster than disk. In 2011, the price per gigabyte of Flash was 15 to 20
times cheaper than DRAM. Flash is popular in cell phones because it comes in
much smaller capacities and it is more power efficient than disks, despite the cost

per gigabyte being 15 to 25 times higher than disks. Unlike disks and DRAM,

10 100 1000 10,000 100,000 1,000,000 10,000,000 100,000,000

Access time (ns)

Access time gap

1980

1980

1985

1985
1990

1990

1995

1995

2000

2000

2005

2005

DRAM

Disk

ss time for DRAM and magnetic disk in 1980, 1985, 1990, 1995, 2000, and 2005. The
in cost and five-order-of-magnitude gap in access times between semiconductor mem-
isks have inspired a host of competing technologies to try to fill them. So far, such
bsolete before production by improvements in magnetic disks, DRAMs, or both. Note
the cost per gigabyte DRAM chips made less improvement, while disk cost made dra-

D-4 ■ Appendix D Storage Systems
Flash memory bits wear out—typically limited to 1 million writes—and so they are
not popular in desktop and server computers.

While disks will remain viable for the foreseeable future, the conventional
sector-track-cylinder model did not. The assumptions of the model are that nearby
blocks are on the same track, blocks in the same cylinder take less time to access
since there is no seek time, and some tracks are closer than others.

First, disks started offering higher-level intelligent interfaces, like ATA and
SCSI, when they included a microprocessor inside a disk. To speed up sequential
transfers, these higher-level interfaces organize disks more like tapes than like ran-
dom access devices. The logical blocks are ordered in serpentine fashion across a
single surface, trying to capture all the sectors that are recorded at the same bit den-
sity. (Disks vary the recording density since it is hard for the electronics to keep up
with the blocks spinning much faster on the outer tracks, and lowering linear den-
sity simplifies the task.) Hence, sequential blocks may be on different tracks. We
will see later in Figure D.22 on page D-45 an illustration of the fallacy of assuming
the conventional sector-track model when working with modern disks.

Second, shortly after the microprocessors appeared inside disks, the disks
included buffers to hold the data until the computer was ready to accept it, and later
caches to avoid read accesses. They were joined by a command queue that allowed
the disk to decide in what order to perform the commands to maximize perfor-
mance while maintaining correct behavior. Figure D.2 shows how a queue depth
of 50 can double the number of I/Os per second of random I/Os due to better sched-
uling of accesses. Although it’s unlikely that a system would really have 256 com-
mands in a queue, it would triple the number of I/Os per second. Given buffers,
caches, and out-of-order accesses, an accurate performance model of a real disk

is much more complicated than sector-track-cylinder.

0

300

200

100

400

I/O
 p

er
 s

ec
on

d

500

600

0 300250200150
Queue depth

Random 512-byte reads per second

10050

Figure D.2 Throughput versus command queue depth using random 512-
byte reads. The disk performs 170 reads per second starting at no command queue
and doubles performance at 50 and triples at 256 [Anderson 2003].

Figure D.3 Serial ATA (SAT
second were calculated using
of 512 KB.

D.2 Advanced Topics in Disk Storage ■ D-5
Finally, the number of platters shrank from 12 in the past to 4 or even 1 today,
so the cylinder has less importance than before because the percentage of data in a
cylinder is much less.

Disk Power

Power is an increasing concern for disks as well as for processors. A typical ATA
disk in 2011 might use 9 watts when idle, 11 watts when reading or writing, and 13
watts when seeking. Because it is more efficient to spin smaller mass, smaller-
diameter disks can save power. One formula that indicates the importance of rota-
tion speed and the size of the platters for the power consumed by the disk motor is
the following [Gurumurthi et al. 2005]:

Power�Diameter4:6�RPM2:8�Number of platters

Thus, smaller platters, slower rotation, and fewer platters all help reduce disk motor
power, and most of the power is in the motor.

Figure D.3 shows the specifications of two 3.5-inch disks in 2011. The Serial
ATA (SATA) disks shoot for high capacity and the best cost per gigabyte, so the
2000 GB drives cost less than $0.05 per gigabyte. They use the widest platters that
fit the form factor and use four or five of them, but they spin at 5900 RPM and seek
relatively slowly to allow a higher areal density and to lower power. The corre-
sponding Serial Attach SCSI (SAS) drive aims at performance, so it spins at
15,000 RPM and seeks much faster. It uses a lower areal density to spin at that
high rate. To reduce power, the platter is much narrower than the form factor. This
combination reduces capacity of the SAS drive to 600 GB.

The cost per gigabyte is about a factor of five better for the SATA drives, and,
conversely, the cost per I/O per second or MB transferred per second is about a
factor of five better for the SAS drives. Despite using smaller platters and many
fewer of them, the SAS disks use twice the power of the SATA drives, due to

the much faster RPM and seeks.

A) versus Serial Attach SCSI (SAS) drives in 3.5-inch form factor in 2011. The I/Os per
the average seek plus the time for one-half rotation plus the time to transfer one sector

D-6 ■ Appendix D Storage Systems
Advanced Topics in Disk Arrays

An innovation that improves both dependability and performance of storage
systems is disk arrays. One argument for arrays is that potential throughput can
be increased by having many disk drives and, hence, many disk arms, rather than
fewer large drives. Simply spreading data over multiple disks, called striping, auto-
matically forces accesses to several disks if the data files are large. (Although
arrays improve throughput, latency is not necessarily improved.) As we saw in
Chapter 1, the drawback is that with more devices, dependability decreases: N
devices generally have 1/N the reliability of a single device.

Although a disk array would have more faults than a smaller number of larger
disks when each disk has the same reliability, dependability is improved by adding
redundant disks to the array to tolerate faults. That is, if a single disk fails, the lost
information is reconstructed from redundant information. The only danger is in
having another disk fail during the mean time to repair (MTTR). Since the mean
time to failure (MTTF) of disks is tens of years, and the MTTR is measured in
hours, redundancy can make the measured reliability of many disks much higher
than that of a single disk.

Such redundant disk arrays have become known by the acronym RAID, which
originally stood for redundant array of inexpensive disks, although some prefer
the word independent for I in the acronym. The ability to recover from failures plus
the higher throughput, measured as either megabytes per second or I/Os per second,
makeRAIDattractive.Whencombinedwith the advantagesof smaller size and lower
power of small-diameter drives, RAIDs now dominate large-scale storage systems.

Figure D.4 summarizes the five standard RAID levels, showing how eight
disks of user data must be supplemented by redundant or check disks at each RAID
level, and it lists the pros and cons of each level. The standard RAID levels are well
documented, so we will just do a quick review here and discuss advanced levels in
more depth.

■ RAID 0—It has no redundancy and is sometimes nicknamed JBOD, for just a
bunch of disks, although the data may be striped across the disks in the array.
This level is generally included to act as a measuring stick for the other RAID
levels in terms of cost, performance, and dependability.

■ RAID 1—Also called mirroring or shadowing, there are two copies of every
piece of data. It is the simplest and oldest disk redundancy scheme, but it also
has the highest cost. Some array controllers will optimize read performance by
allowing the mirrored disks to act independently for reads, but this optimiza-
tion means it may take longer for the mirrored writes to complete.

■ RAID 2—This organization was inspired by applying memory-style error-
correcting codes (ECCs) to disks. It was included because there was such a disk
array product at the time of the original RAID paper, but none since then as
other RAID organizations are more attractive.

■ RAID 3—Since the higher-level disk interfaces understand the health of a disk,

it’s easy to figure out which disk failed. Designers realized that if one extra disk

Figure D.4 RAID levels, their fault tolerance, and their overhead in redundant disks. Thepaper that introduced the
term RAID [Patterson, Gibson, and Katz 1987] used a numerical classification that has become popular. In fact, the non-
redundant disk array is often called RAID 0, indicating that the data are striped across several disks but without redun-
dancy. Note that mirroring (RAID 1) in this instance can survive up to eight disk failures provided only one disk of each
mirrored pair fails; worst case is both disks in amirroredpair fail. In 2011, theremaybeno commercial implementations
of RAID 2; the rest are found

D.2 Advanced Topics in Disk Storage ■ D-7
contains the parity of the information in the data disks, a single disk allows
recovery from a disk failure. The data are organized in stripes, with N data
blocks and one parity block. When a failure occurs, we just “subtract” the good
data from the good blocks, and what remains is the missing data. (This works
whether the failed disk is a data disk or the parity disk.) RAID 3 assumes that
the data are spread across all disks on reads and writes, which is attractive when
reading or writing large amounts of data.

■ RAID 4—Many applications are dominated by small accesses. Since sectors
have their own error checking, you can safely increase the number of reads
per second by allowing each disk to perform independent reads. It would seem
that writes would still be slow, if you have to read every disk to calculate parity.
To increase the number of writes per second, an alternative approach involves
only two disks. First, the array reads the old data that are about to be overwrit-
ten, and then calculates what bits would change before it writes the new data. It
then reads the old value of the parity on the check disks, updates parity accord-

in a wide range of products. RAID 0+1, 1+0, 01, 10, and 6 are discussed in the text.
ing to the list of changes, and then writes the new value of parity to the check

D-8 ■ Appendix D Storage Systems
disk. Hence, these so-called “small writes” are still slower than small reads—
they involve four disks accesses—but they are faster than if you had to read all
disks on every write. RAID 4 has the same low check disk overhead as RAID 3,
and it can still do large reads and writes as fast as RAID 3 in addition to small
reads and writes, but control is more complex.

■ RAID 5—Note that a performance flaw for small writes in RAID 4 is that they
all must read and write the same check disk, so it is a performance bottleneck.
RAID 5 simply distributes the parity information across all disks in the array,
thereby removing the bottleneck. The parity block in each stripe is rotated so
that parity is spread evenly across all disks. The disk array controller must now
calculate which disk has the parity for when it wants to write a given block, but
that can be a simple calculation. RAID 5 has the same low check disk overhead
as RAID 3 and 4, and it can do the large reads and writes of RAID 3 and the
small reads of RAID 4, but it has higher small write bandwidth than RAID 4.
Nevertheless, RAID 5 requires the most sophisticated controller of the classic
RAID levels.

Having completed our quick review of the classic RAID levels, we can now look at
two levels that have become popular since RAID was introduced.

RAID 10 versus 01 (or 1+0 versus RAID 0+1)

One topic not always described in the RAID literature involves how mirroring in
RAID 1 interacts with striping. Suppose you had, say, four disks’ worth of data to
store and eight physical disks to use. Would you create four pairs of disks—each
organized as RAID 1—and then stripe data across the four RAID 1 pairs? Alter-
natively, would you create two sets of four disks—each organized as RAID 0—and
then mirror writes to both RAID 0 sets? The RAID terminology has evolved to call
the former RAID 1+0 or RAID 10 (“striped mirrors”) and the latter RAID 0+1 or
RAID 01 (“mirrored stripes”).

RAID 6: Beyond a Single Disk Failure

The parity-based schemes of the RAID 1 to 5 protect against a single self-
identifying failure; however, if an operator accidentally replaces the wrong disk
during a failure, then the disk array will experience two failures, and data will
be lost. Another concern is that since disk bandwidth is growing more slowly than
disk capacity, the MTTR of a disk in a RAID system is increasing, which in turn
increases the chances of a second failure. For example, a 500 GB SATA disk could
take about 3 hours to read sequentially assuming no interference. Given that the
damaged RAID is likely to continue to serve data, reconstruction could be
stretched considerably, thereby increasing MTTR. Besides increasing reconstruc-
tion time, another concern is that reading much more data during reconstruction
means increasing the chance of an uncorrectable media failure, which would result

in data loss. Other arguments for concern about simultaneous multiple failures are

D.2 Advanced Topics in Disk Storage ■ D-9
the increasing number of disks in arrays and the use of ATA disks, which are
slower and larger than SCSI disks.

Hence, over the years, there has been growing interest in protecting against
more than one failure. Network Appliance (NetApp), for example, started by build-
ing RAID 4 file servers. As double failures were becoming a danger to customers,
they created a more robust scheme to protect data, called row-diagonal parity or
RAID-DP [Corbett et al. 2004]. Like the standard RAID schemes, row-diagonal
parity uses redundant space based on a parity calculation on a per-stripe basis.
Since it is protecting against a double failure, it adds two check blocks per stripe
of data. Let’s assume there are p+1 disks total, so p�1 disks have data. Figure D.5
shows the case when p is 5.

The row parity disk is just like in RAID 4; it contains the even parity across the
other four data blocks in its stripe. Each block of the diagonal parity disk contains
the even parity of the blocks in the same diagonal. Note that each diagonal does not
cover one disk; for example, diagonal 0 does not cover disk 1. Hence, we need just
p�1 diagonals to protect the p disks, so the disk only has diagonals 0 to 3 in
Figure D.5.

Let’s see how row-diagonal parity works by assuming that data disks 1 and 3
fail in Figure D.5. We can’t perform the standard RAID recovery using the first
row using row parity, since it is missing two data blocks from disks 1 and 3. How-
ever, we can perform recovery on diagonal 0, since it is only missing the data block
associated with disk 3. Thus, row-diagonal parity starts by recovering one of the
four blocks on the failed disk in this example using diagonal parity. Since each
diagonal misses one disk, and all diagonals miss a different disk, two diagonals
are only missing one block. They are diagonals 0 and 2 in this example, so we next
restore the block from diagonal 2 from failed disk 1.When the data for those blocks

have been recovered, then the standard RAID recovery scheme can be used to

0

1

2

3

1

2

3

4

2

3

4

0

3

4

0

1

4

0

1

2

0

1

2

3

Data disk 0 Data disk 1 Data disk 2 Data disk 3 Row parity Diagonal parity

Figure D.5 Row diagonal parity for p55, which protects four data disks from double
failures [Corbett et al. 2004]. This figure shows the diagonal groups for which parity is
calculated and stored in the diagonal parity disk. Although this shows all the check data
in separate disks for row parity and diagonal parity as in RAID 4, there is a rotated version
of row-diagonal parity that is analogous to RAID 5. Parameter p must be prime and
greater than 2; however, you canmake p larger than the number of data disks by assum-
ing that the missing disks have all zeros and the scheme still works. This trick makes it
easy to add disks to an existing system. NetApp picks p to be 257, which allows the sys-
tem to grow to up to 256 data disks.

D.3

D-10 ■ Appendix D Storage Systems
recover two more blocks in the standard RAID 4 stripes 0 and 2, which in turn
allows us to recover more diagonals. This process continues until two failed disks
are completely restored.

The EVEN-ODD scheme developed earlier by researchers at IBM is similar to
row diagonal parity, but it has a bit more computation during operation and
recovery [Blaum 1995]. Papers that are more recent show how to expand
EVEN-ODD to protect against three failures [Blaum, Bruck, and Vardy 1996;

Blaum et al. 2001].
Definition and Examples of Real Faults and Failures

Although people may be willing to live with a computer that occasionally crashes
and forces all programs to be restarted, they insist that their information is never
lost. The prime directive for storage is then to remember information, no matter
what happens.

Chapter 1 covered the basics of dependability, and this section expands that
information to give the standard definitions and examples of failures.

The first step is to clarify confusion over terms. The terms fault, error, and fail-
ure are often used interchangeably, but they have different meanings in the depend-
ability literature. For example, is a programming mistake a fault, error, or failure?
Does it matter whether we are talking about when it was designed or when the pro-
gram is run? If the running program doesn’t exercise the mistake, is it still a fault/
error/failure? Try another one. Suppose an alpha particle hits a DRAM memory
cell. Is it a fault/error/failure if it doesn’t change the value? Is it a fault/error/failure
if the memory doesn’t access the changed bit? Did a fault/error/failure still occur if
the memory had error correction and delivered the corrected value to the CPU?
You get the drift of the difficulties. Clearly, we need precise definitions to discuss
such events intelligently.

To avoid such imprecision, this subsection is based on the terminology used by
Laprie [1985] and Gray and Siewiorek [1991], endorsed by IFIP Working Group
10.4 and the IEEE Computer Society Technical Committee on Fault Tolerance.
We talk about a system as a single module, but the terminology applies to submo-
dules recursively. Let’s start with a definition of dependability:

Computer system dependability is the quality of delivered service such that reli-
ance can justifiably be placed on this service. The service delivered by a system is
its observed actual behavior as perceived by other system(s) interacting with this
system’s users. Each module also has an ideal specified behavior, where a service
specification is an agreed description of the expected behavior. A system failure
occurs when the actual behavior deviates from the specified behavior. The failure
occurred because of an error, a defect in that module. The cause of an error is a
fault.
When a fault occurs, it creates a latent error, which becomes effectivewhen it is
activated; when the error actually affects the delivered service, a failure occurs. The

D.3 Definition and Examples of Real Faults and Failures ■ D-11
time between the occurrence of an error and the resulting failure is the error
latency. Thus, an error is the manifestation in the system of a fault, and a failure
is the manifestation on the service of an error. [p. 3]

Let’s go back to our motivating examples above. A programmingmistake is a fault.
The consequence is an error (or latent error) in the software. Upon activation, the
error becomes effective. When this effective error produces erroneous data that
affect the delivered service, a failure occurs.

An alpha particle hitting a DRAM can be considered a fault. If it changes the
memory, it creates an error. The error will remain latent until the affected memory
word is read. If the effective word error affects the delivered service, a failure
occurs. If ECC corrected the error, a failure would not occur.

A mistake by a human operator is a fault. The resulting altered data is an error.
It is latent until activated, and so on as before.

To clarify, the relationship among faults, errors, and failures is as follows:

■ A fault creates one or more latent errors.

■ The properties of errors are (1) a latent error becomes effective once activated;
(2) an error may cycle between its latent and effective states; and (3) an effective
error often propagates from one component to another, thereby creating new
errors. Thus, either an effective error is a formerly latent error in that component
or it has propagated from another error in that component or from elsewhere.

■ A component failure occurs when the error affects the delivered service.

■ These properties are recursive and apply to any component in the system.

Gray and Siewiorek classified faults into four categories according to their cause:

1. Hardware faults—Devices that fail, such as perhaps due to an alpha particle
hitting a memory cell

2. Design faults—Faults in software (usually) and hardware design (occasionally)

3. Operation faults—Mistakes by operations and maintenance personnel

4. Environmental faults—Fire, flood, earthquake, power failure, and sabotage

Faults are also classified by their duration into transient, intermittent, and perma-
nent [Nelson 1990]. Transient faults exist for a limited time and are not recurring.
Intermittent faults cause a system to oscillate between faulty and fault-free oper-
ation. Permanent faults do not correct themselves with the passing of time.

Now that we have defined the difference between faults, errors, and failures,
we are ready to see some real-world examples. Publications of real error rates
are rare for two reasons. First, academics rarely have access to significant hardware
resources to measure. Second, industrial researchers are rarely allowed to publish
failure information for fear that it would be used against their companies in the

marketplace. A few exceptions follow.

D-12 ■ Appendix D Storage Systems
Berkeley’s Tertiary Disk

The Tertiary Disk project at the University of California created an art image server
for the Fine Arts Museums of San Francisco in 2000. This database consisted of
high-quality images of over 70,000 artworks [Talagala et al., 2000]. The database
was stored on a cluster, which consisted of 20 PCs connected by a switched
Ethernet and containing 368 disks. It occupied seven 7-foot-high racks.

Figure D.6 shows the failure rates of the various components of Tertiary Disk.
In advance of building the system, the designers assumed that SCSI data disks
would be the least reliable part of the system, as they are both mechanical and plen-
tiful. Next would be the IDE disks since there were fewer of them, then the power
supplies, followed by integrated circuits. They assumed that passive devices such
as cables would scarcely ever fail.

Figure D.6 shatters some of those assumptions. Since the designers followed
the manufacturer’s advice of making sure the disk enclosures had reduced vibra-
tion and good cooling, the data disks were very reliable. In contrast, the PC chassis
containing the IDE/ATA disks did not afford the same environmental controls.

(The IDE/ATA disks did not store data but helped the application and operating

Figure D.6 Failures of components in Tertiary Disk over 18 months of operation. For
each type of component, the table shows the total number in the system, the number
that failed, and the percentage failure rate. Disk enclosures have two entries in the table
because they had two types of problems: backplane integrity failures and power supply
failures. Since each enclosure had two power supplies, a power supply failure did not
affect availability. This cluster of 20 PCs, contained in seven 7-foot-high, 19-inch-wide
racks, hosted 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks. The PCs were P6-200 MHz with
96 MB of DRAM each. They ran FreeBSD 3.0, and the hosts were connected via switched
100 Mbit/sec Ethernet. All SCSI disks were connected to two PCs via double-ended SCSI
chains to support RAID 1. The primary application was called the Zoom Project, which in
1998 was the world’s largest art image database, with 72,000 images. See Talagala et al.
[2000b].

D.3 Definition and Examples of Real Faults and Failures ■ D-13
system to boot the PCs.) Figure D.6 shows that the SCSI backplane, cables, and
Ethernet cables were no more reliable than the data disks themselves!

As Tertiary Disk was a large system with many redundant components, it could
survive this wide range of failures. Components were connected and mirrored
images were placed so that no single failure could make any image unavailable.
This strategy, which initially appeared to be overkill, proved to be vital.

This experience also demonstrated the difference between transient faults and
hard faults. Virtually all the failures in Figure D.6 appeared first as transient faults.
It was up to the operator to decide if the behavior was so poor that they needed to be
replaced or if they could continue. In fact, the word “failure”was not used; instead,
the group borrowed terms normally used for dealing with problem employees, with
the operator deciding whether a problem component should or should not be
“fired.”

Tandem

The next example comes from industry. Gray [1990] collected data on faults for
Tandem Computers, which was one of the pioneering companies in fault-tolerant
computing and used primarily for databases. Figure D.7 graphs the faults that
caused system failures between 1985 and 1989 in absolute faults per system
and in percentage of faults encountered. The data show a clear improvement in
the reliability of hardware and maintenance. Disks in 1985 required yearly service
by Tandem, but they were replaced by disks that required no scheduled mainte-
nance. Shrinking numbers of chips and connectors per system plus software’s abil-
ity to tolerate hardware faults reduced hardware’s contribution to only 7% of
failures by 1989. Moreover, when hardware was at fault, software embedded in
the hardware device (firmware) was often the culprit. The data indicate that soft-
ware in 1989 was the major source of reported outages (62%), followed by system
operations (15%).

The problem with any such statistics is that the data only refer to what is
reported; for example, environmental failures due to power outages were not
reported to Tandem because they were seen as a local problem. Data on operation
faults are very difficult to collect because operators must report personal mistakes,
which may affect the opinion of their managers, which in turn can affect job secu-
rity and pay raises. Gray suggested that both environmental faults and operator
faults are underreported. His study concluded that achieving higher availability
requires improvement in software quality and software fault tolerance, simpler

operations, and tolerance of operational faults.
Other Studies of the Role of Operators in Dependability

While Tertiary Disk and Tandem are storage-oriented dependability studies, we
need to look outside storage to find better measurements on the role of humans

in failures. Murphy and Gent [1995] tried to improve the accuracy of data on

Unknown
Environment (power, network)
Operations (by customer)
Maintenance (by Tandem)
Hardware
Software (applications + OS)

20

40

60
F

au
lts

 p
er

 1
00

0
sy

st
em

s
P

er
ce

nt
ag

e
fa

ul
ts

 p
er

 c
at

eg
or

y

80

100

120

100%

80%

4%

6%

9%

19%

29%

34%

5%

6%

15%

5%

7%

62%

5%

9%

12%

13%

22%

39%

60%

40%

20%

0%

0
989178915891

989178915891

Figure D.7 Faults in Tandem between 1985 and 1989. Gray [1990] collected these
data for fault-tolerant Tandem Computers based on reports of component failures
by customers.

D-14 ■ Appendix D Storage Systems
operator faults by having the system automatically prompt the operator on each
boot for the reason for that reboot. They classified consecutive crashes to the same
fault as operator fault and included operator actions that directly resulted in
crashes, such as giving parameters bad values, bad configurations, and bad appli-

cation installation. Although they believed that operator error is under-reported,

D.4

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-15
they did get more accurate information than did Gray, who relied on a form that the
operator filled out and then sent up the management chain. The hardware/operating
system went from causing 70% of the failures in VAX systems in 1985 to 28% in
1993, and failures due to operators rose from 15% to 52% in that same period.Mur-
phy and Gent expected managing systems to be the primary dependability chal-
lenge in the future.

The final set of data comes from the government. The Federal Communications
Commission (FCC) requires that all telephone companies submit explanations
when they experience an outage that affects at least 30,000 people or lasts
30 minutes. These detailed disruption reports do not suffer from the self-reporting
problem of earlier figures, as investigators determine the cause of the outage rather
than operators of the equipment. Kuhn [1997] studied the causes of outages
between 1992 and 1994, and Enriquez [2001] did a follow-up study for the first
half of 2001. Although there was a significant improvement in failures due to over-
loading of the network over the years, failures due to humans increased, from about
one-third to two-thirds of the customer-outage minutes.

These four examples and others suggest that the primary cause of failures in
large systems today is faults by human operators. Hardware faults have declined
due to a decreasing number of chips in systems and fewer connectors. Hardware
dependability has improved through fault tolerance techniques such as memory
ECC and RAID. At least some operating systems are considering reliability impli-
cations before adding new features, so in 2011 the failures largely occurred
elsewhere.

Although failures may be initiated due to faults by operators, it is a poor reflec-
tion on the state of the art of systems that the processes of maintenance and upgrad-
ing are so error prone. Most storage vendors claim today that customers spend
much more on managing storage over its lifetime than they do on purchasing
the storage. Thus, the challenge for dependable storage systems of the future is
either to tolerate faults by operators or to avoid faults by simplifying the tasks
of system administration. Note that RAID 6 allows the storage system to survive
even if the operator mistakenly replaces a good disk.

We have now covered the bedrock issue of dependability, giving definitions,
case studies, and techniques to improve it. The next step in the storage tour is

performance.
I/O Performance, Reliability Measures, and Benchmarks

I/O performance has measures that have no counterparts in design. One of these is
diversity: Which I/O devices can connect to the computer system? Another is
capacity: How many I/O devices can connect to a computer system?

In addition to these unique measures, the traditional measures of performance
(namely, response time and throughput) also apply to I/O. (I/O throughput is some-
times called I/O bandwidth and response time is sometimes called latency.) The

next two figures offer insight into how response time and throughput trade off

revreSrecudorP

Queue

Figure D.8 The traditional producer-server model of response time and throughput.
Response time begins when a task is placed in the buffer and ends when it is completed
by the server. Throughput is the number of tasks completed by the server in unit time.

D-16 ■ Appendix D Storage Systems
against each other. Figure D.8 shows the simple producer-server model. The pro-
ducer creates tasks to be performed and places them in a buffer; the server takes
tasks from the first in, first out buffer and performs them.

Response time is defined as the time a task takes from themoment it is placed in
the buffer until the server finishes the task. Throughput is simply the average num-
ber of tasks completed by the server over a time period. To get the highest possible
throughput, the server should never be idle, thus the buffer should never be empty.
Response time, on the other hand, counts time spent in the buffer, so an empty
buffer shrinks it.

Another measure of I/O performance is the interference of I/O with processor
execution. Transferring data may interfere with the execution of another process.
There is also overhead due to handling I/O interrupts. Our concern here is how
much longer a process will take because of I/O for another process.

Throughput versus Response Time

Figure D.9 shows throughput versus response time (or latency) for a typical I/O
system. The knee of the curve is the area where a little more throughput results
in much longer response time or, conversely, a little shorter response time results
in much lower throughput.

How does the architect balance these conflicting demands? If the computer is
interacting with human beings, Figure D.10 suggests an answer. An interaction, or
transaction, with a computer is divided into three parts:

1. Entry time—The time for the user to enter the command.

2. System response time—The time between when the user enters the command
and the complete response is displayed.

3. Think time—The time from the reception of the response until the user begins to
enter the next command.

The sum of these three parts is called the transaction time. Several studies report
that user productivity is inversely proportional to transaction time. The results in
Figure D.10 show that cutting system response time by 0.7 seconds saves 4.9

seconds (34%) from the conventional transaction and 2.0 seconds (70%) from

300

0%

Percentage of maximum throughput (bandwidth)

R
es

po
ns

e
tim

e
(la

te
nc

y)
 (

m
s)

20% 40% 60% 80% 100%

200

100

0

Figure D.9 Throughput versus response time. Latency is normally reported as
response time. Note that the minimum response time achieves only 11% of the
throughput, while the response time for 100% throughput takes seven times the min-
imum response time. Note also that the independent variable in this curve is implicit; to
trace the curve, you typically vary load (concurrency). Chen et al. [1990] collected these
data for an array of magnetic disks.

0

Time (sec)

High-function graphics workload
(0.3 sec system response time)

5 10 15

High-function graphics workload
(1.0 sec system response time)

Conventional interactive workload
(0.3 sec system response time)

Conventional interactive workload
(1.0 sec system response time)

Workload

–70% total
(–81% think)

–34% total
(–70% think)

Entry time System response time Think time

Figure D.10 A user transaction with an interactive computer divided into entry time,
system response time, and user think time for a conventional system and graphics
system. The entry times are the same, independent of system response time. The entry
time was 4 seconds for the conventional system and 0.25 seconds for the graphics sys-
tem. Reduction in response time actually decreases transaction time by more than just
the response time reduction. (From Brady [1986].)

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-17

Figure D.11 Response time restrictions for three I/O benchmarks.

D-18 ■ Appendix D Storage Systems
the graphics transaction. This implausible result is explained by human nature:
People need less time to think when given a faster response. Although this study
is 20 years old, response times are often still much slower than 1 second, even if
processors are 1000 times faster. Examples of long delays include starting an appli-
cation on a desktop PC due to many disk I/Os, or network delays when clicking on
Web links.

To reflect the importance of response time to user productivity, I/O bench-
marks also address the response time versus throughput trade-off. Figure D.11
shows the response time bounds for three I/O benchmarks. They report maximum
throughput given either that 90% of response times must be less than a limit or that
the average response time must be less than a limit.

Let’s next look at these benchmarks in more detail.

Transaction-Processing Benchmarks

Transaction processing (TP, or OLTP for online transaction processing) is chiefly
concerned with I/O rate (the number of disk accesses per second), as opposed to
data rate (measured as bytes of data per second). TP generally involves changes to
a large body of shared information from many terminals, with the TP system
guaranteeing proper behavior on a failure. Suppose, for example, that a bank’s
computer fails when a customer tries to withdraw money from an ATM. The
TP system would guarantee that the account is debited if the customer received
the money and that the account is unchanged if the money was not received. Air-
line reservations systems as well as banks are traditional customers for TP.

As mentioned in Chapter 1, two dozen members of the TP community con-
spired to form a benchmark for the industry and, to avoid the wrath of their legal
departments, published the report anonymously [Anon. et al. 1985]. This report led
to the Transaction Processing Council, which in turn has led to eight benchmarks
since its founding. Figure D.12 summarizes these benchmarks.

Let’s describe TPC-C to give a flavor of these benchmarks. TPC-C uses a data-

base to simulate an order-entry environment of a wholesale supplier, including

Figure D.12 Transaction Processing Council benchmarks. The summary results include both the performance met-
ric and the price-performance of that metric. TPC-A, TPC-B, TPC-D, and TPC-R were retired.

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-19
entering and delivering orders, recording payments, checking the status of orders,
and monitoring the level of stock at the warehouses. It runs five concurrent trans-
actions of varying complexity, and the database includes nine tables with a scalable
range of records and customers. TPC-C is measured in transactions per minute
(tpmC) and in price of system, including hardware, software, and three years of
maintenance support. Figure 1.17 on page 42 in Chapter 1 describes the top sys-
tems in performance and cost-performance for TPC-C.

These TPC benchmarks were the first—and in some cases still the only ones—
that have these unusual characteristics:

■ Price is included with the benchmark results. The cost of hardware, software,
and maintenance agreements is included in a submission, which enables eval-
uations based on price-performance as well as high performance.

■ The dataset generally must scale in size as the throughput increases. The
benchmarks are trying to model real systems, in which the demand on the sys-
tem and the size of the data stored in it increase together. It makes no sense, for
example, to have thousands of people per minute access hundreds of bank
accounts.

■ The benchmark results are audited. Before results can be submitted, they must
be approved by a certified TPC auditor, who enforces the TPC rules that try to
make sure that only fair results are submitted. Results can be challenged and
disputes resolved by going before the TPC.

■ Throughput is the performance metric, but response times are limited. For
example, with TPC-C, 90% of the new order transaction response times must

be less than 5 seconds.

D-20 ■ Appendix D Storage Systems
■ An independent organization maintains the benchmarks. Dues collected by
TPC pay for an administrative structure including a chief operating office. This
organization settles disputes, conducts mail ballots on approval of changes to
benchmarks, holds board meetings, and so on.

SPEC System-Level File Server, Mail, and Web Benchmarks

The SPEC benchmarking effort is best known for its characterization of processor
performance, but it has created benchmarks for file servers, mail servers, and Web
servers.

Seven companies agreed on a synthetic benchmark, called SFS, to evaluate
systems running the Sun Microsystems network file service (NFS). This bench-
mark was upgraded to SFS 3.0 (also called SPEC SFS97_R1) to include support
for NFS version 3, using TCP in addition to UDP as the transport protocol, and
making the mix of operations more realistic. Measurements on NFS systems led
to a synthetic mix of reads, writes, and file operations. SFS supplies default param-
eters for comparative performance. For example, half of all writes are done in 8 KB
blocks and half are done in partial blocks of 1, 2, or 4 KB. For reads, the mix is 85%
full blocks and 15% partial blocks.

Like TPC-C, SFS scales the amount of data stored according to the reported
throughput: For every 100 NFS operations per second, the capacity must increase

by 1 GB. It also limits the average response time, in this case to 40 ms. Figure D.13

0

1

2

3

5

4

6

R
es

po
ns

e
tim

e
(m

s)

7

8

0 150,000125,000

34,089

2 Xeons

FAS3000

FAS6000

4 Xeons

8 Opterons

4 Opterons

47,927

100,295

136,048

100,00075,000
Operations/second

50,00025,000

Figure D.13 SPEC SFS97_R1 performance for the NetApp FAS3050c NFS servers in
two configurations. Two processors reached 34,089 operations per second and four
processors did 47,927. Reported in May 2005, these systems used the Data ONTAP
7.0.1R1 operating system, 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM per
processor, 1 GB of nonvolatile memory per system, and 168 15 K RPM, 72 GB, Fibre
Channel disks. These disks were connected using two or four QLogic ISP-2322 FC disk
controllers.

D.4 I/O Performance, Reliability Measures, and Benchmarks ■ D-21
shows average response time versus throughput for two NetApp systems. Unfor-
tunately, unlike the TPC benchmarks, SFS does not normalize for different price
configurations.

SPECMail is a benchmark to help evaluate performance of mail servers at an
Internet service provider. SPECMail2001 is based on the standard Internet proto-
cols SMTP and POP3, and it measures throughput and user response time while
scaling the number of users from 10,000 to 1,000,000.

SPECWeb is a benchmark for evaluating the performance of World Wide Web
servers, measuring number of simultaneous user sessions. The SPECWeb2005
workload simulates accesses to a Web service provider, where the server supports
home pages for several organizations. It has three workloads: Banking (HTTPS),

E-commerce (HTTP and HTTPS), and Support (HTTP).
Examples of Benchmarks of Dependability

The TPC-C benchmark does in fact have a dependability requirement. The bench-
marked system must be able to handle a single disk failure, which means in
practice that all submitters are running some RAID organization in their storage
system.

Efforts that are more recent have focused on the effectiveness of fault tolerance
in systems. Brown and Patterson [2000] proposed that availability be measured by
examining the variations in system quality-of-service metrics over time as faults
are injected into the system. For aWeb server, the obvious metrics are performance
(measured as requests satisfied per second) and degree of fault tolerance (measured
as the number of faults that can be tolerated by the storage subsystem, network
connection topology, and so forth).

The initial experiment injected a single fault—such as a write error in disk sec-
tor—and recorded the system’s behavior as reflected in the quality-of-service met-
rics. The example compared software RAID implementations provided by Linux,
Solaris, and Windows 2000 Server. SPECWeb99 was used to provide a workload
and to measure performance. To inject faults, one of the SCSI disks in the software
RAID volume was replaced with an emulated disk. It was a PC running software
using a SCSI controller that appears to other devices on the SCSI bus as a disk. The
disk emulator allowed the injection of faults. The faults injected included a variety
of transient disk faults, such as correctable read errors, and permanent faults, such
as disk media failures on writes.

Figure D.14 shows the behavior of each system under different faults. The two
top graphs show Linux (on the left) and Solaris (on the right). As RAID systems
can lose data if a second disk fails before reconstruction completes, the longer the
reconstruction (MTTR), the lower the availability. Faster reconstruction implies
decreased application performance, however, as reconstruction steals I/O
resources from running applications. Thus, there is a policy choice between taking
a performance hit during reconstruction or lengthening the window of vulnerability

and thus lowering the predicted MTTF.

0 10 20 30 40 50 60 70 80 90 100 1100 10 20 30 40

Reconstruction

50 60 70 80 90 100 110

0 5 10 15 20 25 30 35 40 45

Time (minutes)

Reconstruction

H
its

 p
er

 s
ec

on
d

H
its

 p
er

 s
ec

on
d

H
its

 p
er

 s
ec

on
d

siraloSxuniL

Windows

Time (minutes)

Time (minutes)

Reconstruction

200

190

180

170

160

150

220

225

215

210

205

200

195

190 80

90

100

110

120

130

140

150

160

Figure D.14 Availability benchmark for software RAID systems on the same computer running Red Hat 6.0 Linux,
Solaris 7, and Windows 2000 operating systems. Note the difference in philosophy on speed of reconstruction of
Linux versus Windows and Solaris. The y-axis is behavior in hits per second running SPECWeb99. The arrow indicates
time of fault insertion. The lines at the top give the 99% confidence interval of performance before the fault is
inserted. A 99% confidence interval means that if the variable is outside of this range, the probability is only 1% that
this value would appear.

D-22 ■ Appendix D Storage Systems
Although none of the tested systems documented their reconstruction policies
outside of the source code, even a single fault injection was able to give insight into
those policies. The experiments revealed that both Linux and Solaris initiate auto-
matic reconstruction of the RAID volume onto a hot spare when an active disk is

taken out of service due to a failure. Although Windows supports RAID

D.5

D.5 A Little Queuing Theory ■ D-23
reconstruction, the reconstruction must be initiated manually. Thus, without
human intervention, a Windows system that did not rebuild after a first failure
remains susceptible to a second failure, which increases the window of vulnerabil-
ity. It does repair quickly once told to do so.

The fault injection experiments also provided insight into other availability
policies of Linux, Solaris, and Windows 2000 concerning automatic spare utiliza-
tion, reconstruction rates, transient errors, and so on. Again, no system documented
their policies.

In terms of managing transient faults, the fault injection experiments revealed
that Linux’s software RAID implementation takes an opposite approach than do
the RAID implementations in Solaris and Windows. The Linux implementation
is paranoid—it would rather shut down a disk in a controlled manner at the first
error, rather than wait to see if the error is transient. In contrast, Solaris and Win-
dows are more forgiving—they ignore most transient faults with the expectation
that they will not recur. Thus, these systems are substantially more robust to tran-
sients than the Linux system. Note that both Windows and Solaris do log the tran-
sient faults, ensuring that the errors are reported even if not acted upon. When

faults were permanent, the systems behaved similarly.
A Little Queuing Theory

In processor design, we have simple back-of-the-envelope calculations of perfor-
mance associated with the CPI formula in Chapter 1, or we can use full-scale sim-
ulation for greater accuracy at greater cost. In I/O systems, we also have a bestcase
analysis as a back-of-the-envelope calculation. Full-scale simulation is also much
more accurate and much more work to calculate expected performance.

With I/O systems, however, we also have a mathematical tool to guide I/O
design that is a little more work and much more accurate than best-case analysis,
but much less work than full-scale simulation. Because of the probabilistic nature
of I/O events and because of sharing of I/O resources, we can give a set of simple
theorems that will help calculate response time and throughput of an entire I/O sys-
tem. This helpful field is called queuing theory. Since there are many books and
courses on the subject, this section serves only as a first introduction to the topic.
However, even this small amount can lead to better design of I/O systems.

Let’s start with a black-box approach to I/O systems, as shown in Figure D.15.
In our example, the processor is making I/O requests that arrive at the I/O device,
and the requests “depart” when the I/O device fulfills them.

We are usually interested in the long term, or steady state, of a system rather
than in the initial start-up conditions. Suppose we weren’t. Although there is a
mathematics that helps (Markov chains), except for a few cases, the only way
to solve the resulting equations is simulation. Since the purpose of this section
is to show something a little harder than back-of-the-envelope calculations but less
than simulation, we won’t cover such analyses here. (See the references in Appen-

dix M for more details.)

Arrivals Departures

Figure D.15 Treating the I/O system as a black box. This leads to a simple but impor-
tant observation: If the system is in steady state, then the number of tasks entering the
system must equal the number of tasks leaving the system. This flow-balanced state is
necessary but not sufficient for steady state. If the system has been observed or mea-
sured for a sufficiently long time and mean waiting times stabilize, then we say that the
system has reached steady state.

D-24 ■ Appendix D Storage Systems
Hence, in this section we make the simplifying assumption that we are evalu-
ating systems with multiple independent requests for I/O service that are in equi-
librium: The input rate must be equal to the output rate. We also assume there is a
steady supply of tasks independent for how long they wait for service. In many real
systems, such as TPC-C, the task consumption rate is determined by other system
characteristics, such as memory capacity.

This leads us to Little’s law, which relates the average number of tasks in the
system, the average arrival rate of new tasks, and the average time to perform a
task:

Mean number of tasks in system¼Arrival rate�Mean response time

Little’s law applies to any system in equilibrium, as long as nothing inside the
black box is creating new tasks or destroying them. Note that the arrival rate
and the response time must use the same time unit; inconsistency in time units
is a common cause of errors.

Let’s try to derive Little’s law. Assume we observe a system for Timeobserve
minutes. During that observation, we record how long it took each task to
be serviced, and then sum those times. The number of tasks completed during
Timeobserve is Numbertask, and the sum of the times each task spends in the system
is Timeaccumulated. Note that the tasks can overlap in time, so Timeaccumulated�
Timeobserved. Then,

Mean number of tasks in system¼Timeaccumulated

Timeobserve

Mean response time¼Timeaccumulated

Numbertasks

Arrival rate¼Numbertasks
Timeobserve

Algebra lets us split the first formula:

Timeaccumulated ¼Timeaccumulated∞
Numbertasks
Timeobserve Numbertasks Timeobserve

Arrivals

Queue Server

I/O controller
and device

Figure D.16 The single-server model for this section. In this situation, an I/O request

D.5 A Little Queuing Theory ■ D-25
If we substitute the three definitions above into this formula, and swap the resulting
two terms on the right-hand side, we get Little’s law:

Mean number of tasks in system¼Arrival rate�Mean response time

This simple equation is surprisingly powerful, as we shall see.
If we open the black box, we see Figure D.16. The area where the tasks accu-

mulate, waiting to be serviced, is called the queue, or waiting line. The device per-
forming the requested service is called the server. Until we get to the last two pages
of this section, we assume a single server.

Little’s law and a series of definitions lead to several useful equations:

■ Timeserver—Average time to service a task; average service rate is 1/Timeserver,
traditionally represented by the symbol μ in many queuing texts.

■ Timequeue—Average time per task in the queue.

■ Timesystem—Average time/task in the system, or the response time, which is
the sum of Timequeue and Timeserver.

■ Arrival rate—Average number of arriving tasks/second, traditionally
represented by the symbol λ in many queuing texts.

■ Lengthserver—Average number of tasks in service.

■ Lengthqueue—Average length of queue.

■ Lengthsystem—Average number of tasks in system, which is the sum of
Lengthqueue and Lengthserver.

One common misunderstanding can be made clearer by these definitions: whether
the question is how long a task must wait in the queue before service starts (Time-
queue) or how long a task takes until it is completed (Timesystem). The latter term is
what we mean by response time, and the relationship between the terms is
Timesystem¼Timequeue+Timeserver.

The mean number of tasks in service (Lengthserver) is simply Arrival rate�
Timeserver, which is Little’s law. Server utilization is simply the mean number
of tasks being serviced divided by the service rate. For a single server, the service
rate is 1/Timeserver. Hence, server utilization (and, in this case, the mean number of
tasks per server) is simply:

“departs” by being completed by the server.
Server utilization¼Arrival rate�Timeserver

Example

Answer

D-26 ■ Appendix D Storage Systems
Service utilization must be between 0 and 1; otherwise, there would be more tasks
arriving than could be serviced, violating our assumption that the system is in equi-
librium. Note that this formula is just a restatement of Little’s law. Utilization is also
called traffic intensityand is representedby thesymbolρ inmanyqueuing theory texts.
Suppose an I/O system with a single disk gets on average 50 I/O requests per
second. Assume the average time for a disk to service an I/O request is 10 ms.What

is the utilization of the I/O system?

Using the equation above, with 10 ms represented as 0.01 seconds, we get: 50

Server utilization¼Arrival rate�Timeserver ¼ 50
sec

�0:01sec ¼ 0:50
Therefore, the I/O system utilization is 0.5.
How the queue delivers tasks to the server is called the queue discipline. The sim-
plest and most common discipline is first in, first out (FIFO). If we assume FIFO,
we can relate time waiting in the queue to the mean number of tasks in the queue:

Timequeue ¼Lengthqueue�Timeserver +Mean time to complete service of task when
new task arrives if server is busy

That is, the time in the queue is the number of tasks in the queue times the mean
service time plus the time it takes the server to complete whatever task is being
serviced when a new task arrives. (There is one more restriction about the arrival
of tasks, which we reveal on page D-28.)

The last component of the equation is not as simple as it first appears. A new
task can arrive at any instant, so we have no basis to know how long the existing
task has been in the server. Although such requests are random events, if we know
something about the distribution of events, we can predict performance.

Poisson Distribution of Random Variables

To estimate the last component of the formula we need to know a little about dis-
tributions of random variables. A variable is random if it takes one of a specified
set of values with a specified probability; that is, you cannot know exactly what its
next value will be, but you may know the probability of all possible values.

Requests for service from an I/O system can be modeled by a random variable
because the operating system is normally switching between several processes that
generate independent I/O requests. We also model I/O service times by a random
variable given the probabilistic nature of disks in terms of seek and rotational delays.

One way to characterize the distribution of values of a random variable with
discrete values is a histogram, which divides the range between the minimum
and maximum values into subranges called buckets. Histograms then plot the

number in each bucket as columns.

D.5 A Little Queuing Theory ■ D-27
Histograms work well for distributions that are discrete values—for example,
the number of I/O requests. For distributions that are not discrete values, such as
time waiting for an I/O request, we have two choices. Either we need a curve to plot
the values over the full range, so that we can estimate accurately the value, or we
need a very fine time unit so that we get a very large number of buckets to estimate
time accurately. For example, a histogram can be built of disk service times mea-
sured in intervals of 10 μs although disk service times are truly continuous.

Hence, to be able to solve the last part of the previous equation we need to char-
acterize the distribution of this random variable. The mean time and some measure
of the variance are sufficient for that characterization.

For the first term, we use the weighted arithmetic mean time. Let’s first assume
that after measuring the number of occurrences, say, ni, of tasks, you could
compute frequency of occurrence of task i:

fi ¼ niXn
i¼1

ni

 !

Then weighted arithmetic mean is

Weighted arithmetic mean time¼ f1�T1 + f2�T2 +…+ fn�Tn

where Ti is the time for task i and fi is the frequency of occurrence of task i.
To characterize variability about the mean, many people use the standard devi-

ation. Let’s use the variance instead, which is simply the square of the standard
deviation, as it will help us with characterizing the probability distribution. Given
the weighted arithmetic mean, the variance can be calculated as

Variance¼ f1�T2
1 + f2�T2

2 +…+ fn�T2
n

� ��Weighted arithmetic mean time2

It is important to remember the units when computing variance. Let’s assume the
distribution is of time. If time is about 100 milliseconds, then squaring it yields
10,000 square milliseconds. This unit is certainly unusual. It would be more
convenient if we had a unitless measure.

To avoid this unit problem, we use the squared coefficient of variance,
traditionally called C2:

C2 ¼ Variance

Weighted arithmetic mean time2

We can solve for C, the coefficient of variance, as

C¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Variance

p

Weighted arithmetic mean time
¼ Standard deviation
Weighted arithmetic mean time

Weare trying to characterize randomevents, but to be able to predict performance
we need a distribution of randomeventswhere themathematics is tractable. Themost
popular such distribution is the exponential distribution, which has a C value of 1.

Note that we are using a constant to characterize variability about the mean. The

invariance of C over time reflects the property that the history of events has no impact

Example

Answer

D-28 ■ Appendix D Storage Systems
on the probability of an event occurring now. This forgetful property is called mem-
oryless, and this property is an important assumption used to predict behavior using
these models. (Suppose this memoryless property did not exist; then, we would have
to worry about the exact arrival times of requests relative to each other, which would
make the mathematics considerably less tractable!)

One of the most widely used exponential distributions is called a Poisson dis-
tribution, named after the mathematician Sim�eon Poisson. It is used to characterize
random events in a given time interval and has several desirable mathematical
properties. The Poisson distribution is described by the following equation (called
the probability mass function):

Probability kð Þ¼ e�a�ak

k!

where a¼Rate of events�Elapsed time. If interarrival times are exponentially dis-
tributed and we use the arrival rate from above for rate of events, the number of
arrivals in a time interval t is a Poisson process, which has the Poisson distribution
with a¼Arrival rate� t. As mentioned on page D-26, the equation for Timeserver
has another restriction on task arrival: It holds only for Poisson processes.

Finally, we can answer the question about the length of time a new task must
wait for the server to complete a task, called the average residual service time,
which again assumes Poisson arrivals:

Average residual service time¼ 1=2�Arithemtic mean� 1 +C2
� �

Although we won’t derive this formula, we can appeal to intuition. When the dis-
tribution is not random and all possible values are equal to the average, the standard
deviation is 0 and so C is 0. The average residual service time is then just half the
average service time, as we would expect. If the distribution is random and it is
Poisson, then C is 1 and the average residual service time equals the weighted arith-
metic mean time.
Using the definitions and formulas above, derive the average time waiting in the
queue (Timequeue) in terms of the average service time (Timeserver) and server

utilization.

All tasks in the queue (Lengthqueue) ahead of the new task must be completed
before the task can be serviced; each takes on average Timeserver. If a task is at
the server, it takes average residual service time to complete. The chance the server
is busy is server utilization; hence, the expected time for service is Server utiliza-
tion�Average residual service time. This leads to our initial formula:

Timequeue ¼Lengthqueue�Timeserver

+ Server utilization�Average residual service time

Replacing the average residual service time by its definition and Lengthqueue by
Arrival rate�Timequeue yields

Example

Answer

D.5 A Little Queuing Theory ■ D-29
Timequeue ¼Server utilization� 1=2�Timeserver� 1 +C2
� �� �

+ Arrival rate�Timequeue
� ��Timeserver

Since this section is concerned with exponential distributions, C2 is 1. Thus

Timequeue ¼ Server utilization�Timeserver + Arrival rate�Timequeue
� ��Timeserver

Rearranging the last term, let us replace Arrival rate�Timeserver by Server
utilization:

Timequeue ¼ Server utilization�Timeserver + Arrival rate�Timeserverð Þ�Timequeue

¼ Server utilization�Timeserver + Server utilization�Timequeue

Rearranging terms and simplifying gives us the desired equation:

Timequeue ¼ Server utilization�Timeserver + Server utilization�Timequeue

Timequeue�Server utilization�Timequeue ¼ Server utilization�Timeserver

Timequeue� 1�Server utilizationð Þ¼ Server utilization�Timeserver

Timequeue ¼Timeserver� Server utilization
1�Server utilizationð Þ

Little’s law can be applied to the components of the black box as well, since they
must also be in equilibrium:

Lengthqueue ¼Arrival rate�Timequeue

If we substitute for Timequeue from above, we get:

Lengthqueue ¼Arrival rate�Timeserver� Server utilization
1�Server utilizationð Þ

Since Arrival rate�Timeserver¼Server utilization, we can simplify further:

Lengthqueue ¼ Server utilization� Server utilization
1�Server utilizationð Þ¼

Server utilization2

1�Server utilizationð Þ
This relates number of items in queue to service utilization.
For the system in the example on page D-26, which has a server utilization of 0.5,

what is the mean number of I/O requests in the queue?

Using the equation above,

Lengthqueue ¼
Server uti1ization2

1�Server uti1izationð Þ¼
0:52

1�0:5ð Þ¼
0:25
0:50

¼ 0:5

Therefore, there are 0.5 requests on average in the queue.

As mentioned earlier, these equations and this section are based on an area of

applied mathematics called queuing theory, which offers equations to predict

D-30 ■ Appendix D Storage Systems
behavior of such random variables. Real systems are too complex for queuing
theory to provide exact analysis, hence queuing theory works best when only
approximate answers are needed.

Queuing theory makes a sharp distinction between past events, which can be
characterized by measurements using simple arithmetic, and future events, which
are predictions requiring more sophisticated mathematics. In computer systems,
we commonly predict the future from the past; one example is least recently used
block replacement (see Chapter 2). Hence, the distinction between measurements
and predicted distributions is often blurred; we use measurements to verify the type
of distribution and then rely on the distribution thereafter.

Let’s review the assumptions about the queuing model:

■ The system is in equilibrium.

■ The times between two successive requests arriving, called the interarrival times,
are exponentially distributed, which characterizes the arrival rate mentioned
earlier.

■ The number of sources of requests is unlimited. (This is called an infinite
population model in queuing theory; finite population models are used when
arrival rates vary with the number of jobs already in the system.)

■ The server can start on the next job immediately after finishing the prior one.

■ There is no limit to the length of the queue, and it follows the first in, first out
order discipline, so all tasks in line must be completed.

■ There is one server.

Such a queue is called M/M/1:

M5exponentially random request arrival (C2¼1), with M standing for A. A.
Markov, the mathematician who defined and analyzed the memoryless
processes mentioned earlier

M5exponentially random service time (C2¼1), with M again for Markov

1¼ single server

The M/M/1 model is a simple and widely used model.
The assumption of exponential distribution is commonly used in queuing exam-

ples for three reasons—one good, one fair, and one bad. The good reason is that a
superpositionofmanyarbitrarydistributionsactsasanexponentialdistribution.Many
times in computer systems, a particular behavior is the result of many components
interacting, so an exponential distribution of interarrival times is the right model.
The fair reason is that when variability is unclear, an exponential distribution with
intermediate variability (C¼1) is a safer guess than low variability (C�0) or high
variability (large C). The bad reason is that the math is simpler if you assume expo-

nential distributions.

Example

Answer

Example

Answer

D.5 A Little Queuing Theory ■ D-31
Let’s put queuing theory to work in a few examples.
Suppose a processor sends 40 disk I/Os per second, these requests are exponen-
tially distributed, and the average service time of an older disk is 20 ms. Answer
the following questions:

1. On average, how utilized is the disk?

2. What is the average time spent in the queue?

3. What is the average response time for a disk request, including the queuing

time and disk service time?

Let’s restate these facts:

Average number of arriving tasks/second is 40.

Average disk time to service a task is 20 ms (0.02 sec).

The server utilization is then

Server utilization¼Arrival rate�Timeserver ¼ 40�0:02¼ 0:8

Since the service times are exponentially distributed, we can use the simplified for-
mula for the average time spent waiting in line:

Timequeue ¼ Timeserver� Server utilization
1�Server utilizationð Þ

¼ 20 ms� 0:8
1�0:8

¼ 20�0:8
0:2

¼ 20�4¼ 80 ms

The average response time is

Time system¼Timequeue + Timeserver ¼ 80 + 20 ms¼ 100 ms
Thus, on average we spend 80% of our time waiting in the queue!
Suppose we get a new, faster disk. Recalculate the answers to the questions above,

assuming the disk service time is 10 ms.

The disk utilization is then

Server utilization¼Arrival rate�Timeserver ¼ 40�0:01¼ 0:4

The formula for the average time spent waiting in line:

Timequeue ¼ Timeserver� Server utilization
1�Server utilizationð Þ

¼ 10 ms� 0:4
1�0:4

¼ 10�0:4
0:6

¼ 10�2
3
¼ 6:7 ms

The average response time is 10+6.7 ms or 16.7 ms, 6.0 times faster than the old

response time even though the new service time is only 2.0 times faster.

Arrivals

Queue
Server

I/O controller
and device

Server

I/O controller
and device

Server

I/O controller
and device

D-32 ■ Appendix D Storage Systems
Thus far, we have been assuming a single server, such as a single disk. Many real
systems have multiple disks and hence could use multiple servers, as in
Figure D.17. Such a system is called an M/M/m model in queuing theory.

Let’s give the same formulas for the M/M/m queue, using Nservers to represent
the number of servers. The first two formulas are easy:

Utilization ¼ Arrival rate�Timeserver
Nservers

Lengthqueue ¼ Arrival rate�Timequeue

The time waiting in the queue is

Timequeue ¼Timeserver� Ptasks�Nservers

Nservers� 1�Utilizationð Þ
This formula is related to the one for M/M/1, except we replace utilization of
a single server with the probability that a task will be queued as opposed to being
immediately serviced, and divide the time in queue by the number of servers.
Alas, calculating the probability of jobs being in the queue is much more compli-
cated when there are Nservers. First, the probability that there are no tasks in the
system is

Prob0 tasks ¼ 1 +
Nservers�Utilizationð ÞNservers

Nservers!� 1�Utilizationð Þ +
XNservers�1

n¼1

Nservers�Utilizationð Þn
n!

" #�1

Then the probability there are as many or more tasks than we have servers is

Probtasks�Nservers ¼
Nservers�UtilizationNservers

�Prob0 tasks

Figure D.17 The M/M/m multiple-server model.
Nservers!� 1�Utilizationð Þ

Example

Answer

D.5 A Little Queuing Theory ■ D-33
Note that if Nservers is 1, Probtask�Nservers simplifies back to Utilization, and we get the
same formula as for M/M/1. Let’s try an example.
Suppose instead of a new, faster disk, we add a second slow disk and duplicate the
data so that reads can be serviced by either disk. Let’s assume that the requests are
all reads. Recalculate the answers to the earlier questions, this time using an M/M/

m queue.

The average utilization of the two disks is then

Server utilization¼Arrival rate�Timeserver
Nservers

¼ 40�0:02
2

¼ 0:4

We first calculate the probability of no tasks in the queue:

Prob0 tasks ¼ 1 +
2�Utilizationð Þ2

2!� 1�Utilizationð Þ +
X1
n¼1

2�Utilizationð Þn
n!

" #�1

¼ 1 +
2�0:4ð Þ2

2� 1�0:4ð Þ + 2�0:4ð Þ
" #�1

¼ 1 +
0:640
1:2

+ 0:800

� ��1

¼ 1 + 0:533 + 0:800½ ��1 ¼ 2:333�1

We use this result to calculate the probability of tasks in the queue:

Probtasks�Nservers ¼
2�Utilization2

2!� 1�Utilizationð Þ�Prob0 tasks

¼ 2�0:4ð Þ2
2� 1�0:4ð Þ�2:333�1 ¼ 0:640

1:2
�2:333�1

¼ 0:533=2:333¼ 0:229

Finally, the time waiting in the queue:

Timequeue ¼ Timeserver� Probtasks�Nservers

Nservers� 1�Utilizationð Þ

¼ 0:020� 0:229
2� 1�0:4ð Þ¼ 0:020�0:229

1:2

¼ 0:020�0:190¼ 0:0038

The average response time is 20+3.8 ms or 23.8 ms. For this workload, two disks
cut the queue waiting time by a factor of 21 over a single slow disk and a factor of
1.75 versus a single fast disk. The mean service time of a system with a single fast
disk, however, is still 1.4 times faster than one with two disks since the disk service

time is 2.0 times faster.

D.6

D-34 ■ Appendix D Storage Systems
It would be wonderful if we could generalize the M/M/mmodel to multiple queues
andmultiple servers, as this step is muchmore realistic. Alas, these models are very

hard to solve and to use, and so we won’t cover them here.

Crosscutting Issues

Point-to-Point Links and Switches Replacing Buses

Point-to-point links and switches are increasing in popularity as Moore’s law con-
tinues to reduce the cost of components. Combined with the higher I/O bandwidth
demands from faster processors, faster disks, and faster local area networks, the
decreasing cost advantage of buses means the days of buses in desktop and server
computers are numbered. This trend started in high-performance computers in the
last edition of the book, and by 2011 has spread itself throughout storage.
Figure D.18 shows the old bus-based standards and their replacements.

The number of bits and bandwidth for the new generation is per direction, so
they double for both directions. Since these new designs use many fewer wires, a
commonway to increase bandwidth is to offer versions with several times the num-
ber of wires and bandwidth.

Block Servers versus Filers

Thus far, we have largely ignored the role of the operating system in storage. In a
manner analogous to the way compilers use an instruction set, operating systems
determine what I/O techniques implemented by the hardware will actually be used.
The operating system typically provides the file abstraction on top of blocks stored
on the disk. The terms logical units, logical volumes, and physical volumes are
related terms used in Microsoft and UNIX systems to refer to subset collections

of disk blocks.

Figure D.18 Parallel I/O buses and their point-to-point replacements. Note the
bandwidth and wires are per direction, so bandwidth doubles when sending both
directions.

D.6 Crosscutting Issues ■ D-35
A logical unit is the element of storage exported from a disk array, usually con-
structed from a subset of the array’s disks. A logical unit appears to the server as a
single virtual “disk.” In a RAID disk array, the logical unit is configured as a par-
ticular RAID layout, such as RAID 5. A physical volume is the device file used by
the file system to access a logical unit. A logical volume provides a level of vir-
tualization that enables the file system to split the physical volume across multiple
pieces or to stripe data across multiple physical volumes. A logical unit is an
abstraction of a disk array that presents a virtual disk to the operating system, while
physical and logical volumes are abstractions used by the operating system to
divide these virtual disks into smaller, independent file systems.

Having covered some of the terms for collections of blocks, we must now ask:
Where should the file illusion be maintained: in the server or at the other end of the
storage area network?

The traditional answer is the server. It accesses storage as disk blocks and
maintains the metadata. Most file systems use a file cache, so the server must main-
tain consistency of file accesses. The disks may be direct attached—found inside a
server connected to an I/O bus—or attached over a storage area network, but the
server transmits data blocks to the storage subsystem.

The alternative answer is that the disk subsystem itself maintains the file
abstraction, and the server uses a file system protocol to communicate with
storage. Example protocols are Network File System (NFS) for UNIX systems
and Common Internet File System (CIFS) for Windows systems. Such devices
are called network attached storage (NAS) devices since it makes no sense for
storage to be directly attached to the server. The name is something of a misnomer
because a storage area network like FC-AL can also be used to connect to
block servers. The term filer is often used for NAS devices that only provide file
service and file storage. Network Appliance was one of the first companies to make
filers.

The driving force behind placing storage on the network is to make it easier for
many computers to share information and for operators to maintain the shared

system.
Asynchronous I/O and Operating Systems

Disks typically spend much more time in mechanical delays than in transferring
data. Thus, a natural path to higher I/O performance is parallelism, trying to get
many disks to simultaneously access data for a program.

The straightforward approach to I/O is to request data and then start using it.
The operating system then switches to another process until the desired data arrive,
and then the operating system switches back to the requesting process. Such a style
is called synchronous I/O—the process waits until the data have been read
from disk.

The alternative model is for the process to continue after making a request, and

it is not blocked until it tries to read the requested data. Such asynchronous I/O

D.7

D-36 ■ Appendix D Storage Systems
allows the process to continue making requests so that many I/O requests can be
operating simultaneously. Asynchronous I/O shares the same philosophy as caches
in out-of-order CPUs, which achieve greater bandwidth by having multiple out-

standing events.

Designing and Evaluating an I/O System—
The Internet Archive Cluster

The art of I/O system design is to find a design that meets goals for cost, depend-
ability, and variety of devices while avoiding bottlenecks in I/O performance
and dependability. Avoiding bottlenecks means that components must be bal-
anced between main memory and the I/O device, because performance and
dependability—and hence effective cost-performance or cost-dependability—
can only be as good as the weakest link in the I/O chain. The architect must also
plan for expansion so that customers can tailor the I/O to their applications. This
expansibility, both in numbers and types of I/O devices, has its costs in longer I/O
buses and networks, larger power supplies to support I/O devices, and larger
cabinets.

In designing an I/O system, we analyze performance, cost, capacity, and avail-
ability using varying I/O connection schemes and different numbers of I/O devices
of each type. Here is one series of steps to follow in designing an I/O system. The
answers for each step may be dictated by market requirements or simply by cost,
performance, and availability goals.

1. List the different types of I/O devices to be connected to the machine, or list the
standard buses and networks that the machine will support.

2. List the physical requirements for each I/O device. Requirements include size,
power, connectors, bus slots, expansion cabinets, and so on.

3. List the cost of each I/O device, including the portion of cost of any controller
needed for this device.

4. List the reliability of each I/O device.

5. Record the processor resource demands of each I/O device. This list should
include:

■ Clock cycles for instructions used to initiate an I/O, to support operation of
an I/O device (such as handling interrupts), and to complete I/O

■ Processor clock stalls due to waiting for I/O to finish using the memory, bus,
or cache

■ Processor clock cycles to recover from an I/O activity, such as a cache flush

6. List the memory and I/O bus resource demands of each I/O device. Even when
the processor is not using memory, the bandwidth of main memory and the I/O

connection is limited.

D.7 Designing and Evaluating an I/O System—The Internet Archive Cluster ■ D-37
7. The final step is assessing the performance and availability of the different ways
to organize these I/O devices. When you can afford it, try to avoid single points
of failure. Performance can only be properly evaluated with simulation,
although it may be estimated using queuing theory. Reliability can be calculated
assuming I/O devices fail independently and that the times to failure are expo-
nentially distributed. Availability can be computed from reliability by estimat-
ing MTTF for the devices, taking into account the time from failure to repair.

Given your cost, performance, and availability goals, you then select the best
organization.

Cost-performance goals affect the selection of the I/O scheme and physical
design. Performance can be measured either as megabytes per second or I/Os
per second, depending on the needs of the application. For high performance,
the only limits should be speed of I/O devices, number of I/O devices, and speed
of memory and processor. For low cost, most of the cost should be the I/O devices
themselves. Availability goals depend in part on the cost of unavailability to an
organization.

Rather than create a paper design, let’s evaluate a real system.

The Internet Archive Cluster

To make these ideas clearer, we’ll estimate the cost, performance, and availability
of a large storage-oriented cluster at the Internet Archive. The Internet Archive
began in 1996 with the goal of making a historical record of the Internet as it chan-
ged over time. You can use theWayback Machine interface to the Internet Archive
to perform time travel to see what the Web site at a URL looked like sometime in
the past. It contains over a petabyte (1015 bytes) and is growing by 20 terabytes
(1012 bytes) of new data per month, so expansible storage is a requirement. In addi-
tion to storing the historical record, the same hardware is used to crawl the Web
every few months to get snapshots of the Internet.

Clusters of computers connected by local area networks have become a very
economical computation engine that works well for some applications. Clusters
also play an important role in Internet services such the Google search engine,
where the focus is more on storage than it is on computation, as is the case here.

Although it has used a variety of hardware over the years, the Internet Archive
is moving to a new cluster to become more efficient in power and in floor space.
The basic building block is a 1U storage node called the PetaBox GB2000 from
Capricorn Technologies. In 2006, it used four 500 GB Parallel ATA (PATA) disk
drives, 512 MB of DDR266 DRAM, one 10/100/1000 Ethernet interface, and a
1 GHz C3 processor from VIA, which executes the 80x86 instruction set. This
node dissipates about 80 watts in typical configurations.

Figure D.19 shows the cluster in a standard VME rack. Forty of the GB2000s
fit in a standard VME rack, which gives the rack 80 TB of raw capacity. The 40

nodes are connected together with a 48-port 10/100 or 10/100/1000 switch, and it

Figure D.19 The TB-80 VME rack from Capricorn Systems used by the Internet
Archive. All cables, switches, and displays are accessible from the front side, and the
back side is used only for airflow. This allows two racks to be placed back-to-back, which

D-38 ■ Appendix D Storage Systems
dissipates about 3 KW. The limit is usually 10 KW per rack in computer facilities,
so it is well within the guidelines.

A petabyte needs 12 of these racks, connected by a higher-level switch that
connects the Gbit links coming from the switches in each of the racks.

Estimating Performance, Dependability, and Cost of the
Internet Archive Cluster

To illustrate how to evaluate an I/O system, we’ll make some guesses about the
cost, performance, and reliability of the components of this cluster. We make
the following assumptions about cost and performance:

■ The VIA processor, 512 MB of DDR266 DRAM, ATA disk controller, power
supply, fans, and enclosure cost $500.

■ Each of the four 7200 RPM Parallel ATA drives holds 500 GB, has an average
time seek of 8.5 ms, transfers at 50 MB/sec from the disk, and costs $375. The

reduces the floor space demands in machine rooms.
PATA link speed is 133 MB/sec.

Example

Answer

M

D.7 Designing and Evaluating an I/O System—The Internet Archive Cluster ■ D-39
■ The 48-port 10/100/1000 Ethernet switch and all cables for a rack cost $3000.

■ The performance of the VIA processor is 1000 MIPS.

■ The ATA controller adds 0.1 ms of overhead to perform a disk I/O.

■ The operating system uses 50,000 CPU instructions for a disk I/O.

■ The network protocol stacks use 100,000 CPU instructions to transmit a data
block between the cluster and the external world.

■ The average I/O size is 16 KB for accesses to the historical record via theWay-
back interface, and 50 KB when collecting a new snapshot.
Evaluate the cost per I/O per second (IOPS) of the 80 TB rack. Assume that every
disk I/O requires an average seek and average rotational delay. Assume that the
workload is evenly divided among all disks and that all devices can be used at
100% of capacity; that is, the system is limited only by the weakest link, and it
e

can operate that link at 100% utilization. Calculate for both average I/O sizes.

I/O performance is limited by the weakest link in the chain, so we evaluate the max-
imum performance of each link in the I/O chain for each organization to determine
the maximum performance of that organization.

Let’s start by calculating the maximum number of IOPS for the CPU, main
memory, and I/O bus of one GB2000. The CPU I/O performance is determined
by the speed of the CPU and the number of instructions to perform a disk I/O
and to send it over the network:

aximum IOPS for CPU ¼ 1000 MIPS
50,000 instructions per I=O+ 100,000 instructions per messag

¼ 6667 IOPS

The maximum performance of the memory system is determined by the memory
bandwidth and the size of the I/O transfers:

Maximum IOPS for main memory¼ 266�8
16 KB per I=O

� 133,000 IOPS

Maximum IOPS for main memory¼ 266�8
50 KB per I=O

� 42,500 IOPS

The Parallel ATA link performance is limited by the bandwidth and the size of the
I/O:

Maximum IOPS for the I=O bus ¼ 133 MB=sec
16 KB per I=O

� 8300 IOPS

Maximum IOPS for the I=O bus ¼ 133 MB=sec
50 KB per I=O

� 2700 IOPS

Since the box has two buses, the I/O bus limits the maximum performance to no
more than 18,600 IOPS for 16 KB blocks and 5400 IOPS for 50 KB blocks.

D-40 ■ Appendix D Storage Systems
Now it’s time to look at the performance of the next link in the I/O chain, the
ATA controllers. The time to transfer a block over the PATA channel is

Parallel ATA transfer time¼ 16 KB
133 MB=sec

� 0:1 ms

Parallel ATA transfer time¼ 50 KB
133 MB=sec

� 0:4 ms

Adding the 0.1 ms ATA controller overhead means 0.2 ms to 0.5 ms per I/O, mak-
ing the maximum rate per controller

Maximum IOPS per ATA controller ¼ 1
0:2 ms

¼ 5000 IOPS

Maximum IOPS per ATA controller ¼ 1
0:5 ms

¼ 2000 IOPS

The next link in the chain is the disks themselves. The time for an average
disk I/O is

I=O time¼ 8:5 ms +
0:5

7200 RPM
+

16 KB
50 MB=sec

¼ 8:5 + 4:2 + 0:3¼ 13:0 ms

I=O time¼ 8:5 ms +
0:5

7200 RPM
+

50 KB
50 MB=sec

¼ 8:5 + 4:2 + 1:0¼ 13:7 ms

Therefore, disk performance is

Maximum IOPS using average seeksð Þ per disk¼ 1
13:0 ms

� 77 IOPS

Maximum IOPS using average seeksð Þ per disk¼ 1
13:7 ms

� 73 IOPS

or 292 to 308 IOPS for the four disks.
The final link in the chain is the network that connects the computers to the out-

side world. The link speed determines the limit:

Maximum IOPS per 1000 Mbit Ethernet link¼ 1000 Mbit
16 K�8

¼ 7812 IOPS

Maximum IOPS per 1000 Mbit Ethernet link¼ 1000 Mbit
50 K�8

¼ 2500 IOPS

Clearly, the performance bottleneck of the GB2000 is the disks. The IOPS for the
whole rack is 40�308 or 12,320 IOPS to 40�292 or 11,680 IOPS. The network
switch would be the bottleneck if it couldn’t support 12,320�16 K�8 or 1.6
Gbits/sec for 16 KB blocks and 11,680�50 K�8 or 4.7 Gbits/sec for 50 KB
blocks. We assume that the extra 8 Gbit ports of the 48-port switch connects
the rack to the rest of the world, so it could support the full IOPS of the collective
160 disks in the rack.

Using these assumptions, the cost is 40� ($500+4�$375)+$3000+$1500 or
$84,500 for an 80 TB rack. The disks themselves are almost 60% of the cost. The
cost per terabyte is almost $1000, which is about a factor of 10 to 15 better than

storage cluster from the prior edition in 2001. The cost per IOPS is about $7.

Example

Answer

Failur

D.8

D.8 Putting It All Together: NetApp FAS6000 Filer ■ D-41
Calculating MTTF of the TB-80 Cluster

Internet services such as Google rely on many copies of the data at the application
level to provide dependability, often at different geographic sites to protect against
environmental faults as well as hardware faults. Hence, the Internet Archive has
two copies of the data in each site and has sites in San Francisco, Amsterdam,
and Alexandria, Egypt. Each site maintains a duplicate copy of the high-value con-
tent—music, books, film, and video—and a single copy of the historical Web
crawls. To keep costs low, there is no redundancy in the 80 TB rack.
Let’s look at the resulting mean time to fail of the rack. Rather than use the man-
ufacturer’s quoted MTTF of 600,000 hours, we’ll use data from a recent survey of
disk drives [Gray and van Ingen 2005]. As mentioned in Chapter 1, about 3% to
7% of ATA drives fail per year, for an MTTF of about 125,000 to 300,000 hours.
Make the following assumptions, again assuming exponential lifetimes:

■ CPU/memory/enclosure MTTF is 1,000,000 hours.

■ PATA Disk MTTF is 125,000 hours.

■ PATA controller MTTF is 500,000 hours.

■ Ethernet Switch MTTF is 500,000 hours.

■ Power supply MTTF is 200,000 hours.

■ Fan MTTF is 200,000 hours.
■ PATA cable MTTF is 1,000,000 hours.

Collecting these together, we compute these failure rates:

e rate¼ 40
1,000,000

+
160

125,000
+

40
500,000

+
1

500,000
+

40
200,000

+
40

200,000
+

80
1,000,000

¼ 40 + 1280 + 80 + 2 + 200 + 200 + 80
1,000,000 hours

¼ 1882
1,000,000 hours

The MTTF for the system is just the inverse of the failure rate:

MTTF¼ 1
Failure rate

¼ 1,000,000 hours
1882

¼ 531 hours

That is, given these assumptions about the MTTF of components, something in a
rack fails on average every 3 weeks. About 70% of the failures would be the disks,

and about 20% would be fans or power supplies.
Putting It All Together: NetApp FAS6000 Filer

Network Appliance entered the storage market in 1992 with a goal of providing an
easy-to-operate file server running NSF using their own log-structured file system

and a RAID 4 disk array. The company later added support for the Windows CIFS

D-42 ■ Appendix D Storage Systems
file system and a RAID 6 scheme called row-diagonal parity or RAID-DP (see
page D-8). To support applications that want access to raw data blocks without
the overhead of a file system, such as database systems, NetApp filers can serve
data blocks over a standard Fibre Channel interface. NetApp also supports iSCSI,
which allows SCSI commands to run over a TCP/IP network, thereby allowing the
use of standard networking gear to connect servers to storage, such as Ethernet, and
hence at a greater distance.

The latest hardware product is the FAS6000. It is a multiprocessor based on
the AMD Opteron microprocessor connected using its HyperTransport links.
The microprocessors run the NetApp software stack, including NSF, CIFS,
RAID-DP, SCSI, and so on. The FAS6000 comes as either a dual processor
(FAS6030) or a quad processor (FAS6070). As mentioned in Chapter 5, DRAM
is distributed to each microprocessor in the Opteron. The FAS6000 connects 8 GB
of DDR2700 to each Opteron, yielding 16 GB for the FAS6030 and 32 GB for the
FAS6070. As mentioned in Chapter 4, the DRAM bus is 128 bits wide, plus extra
bits for SEC/DED memory. Both models dedicate four HyperTransport links
to I/O.

As a filer, the FAS6000 needs a lot of I/O to connect to the disks and to connect
to the servers. The integrated I/O consists of:

■ 8 Fibre Channel (FC) controllers and ports

■ 6 Gigabit Ethernet links

■ 6 slots for x8 (2 GB/sec) PCI Express cards

■ 3 slots for PCI-X 133 MHz, 64-bit cards

■ Standard I/O options such as IDE, USB, and 32-bit PCI

The 8 Fibre Channel controllers can each be attached to 6 shelves containing 14
3.5-inch FC disks. Thus, the maximum number of drives for the integrated I/O is
8�6�14 or 672 disks. Additional FC controllers can be added to the option slots
to connect up to 1008 drives, to reduce the number of drives per FC network so as
to reduce contention, and so on. At 500 GB per FC drive, if we assume the RAID
RDP group is 14 data disks and 2 check disks, the available data capacity is 294 TB
for 672 disks and 441 TB for 1008 disks.

It can also connect to Serial ATA disks via a Fibre Channel to SATA bridge
controller, which, as its name suggests, allows FC and SATA to communicate.

The six 1-gigabit Ethernet links connect to servers to make the FAS6000 look
like a file server if running NTFS or CIFS or like a block server if running iSCSI.

For greater dependability, FAS6000 filers can be paired so that if one fails, the
other can take over. Clustered failover requires that both filers have access to all
disks in the pair of filers using the FC interconnect. This interconnect also allows
each filer to have a copy of the log data in the NVRAMof the other filer and to keep
the clocks of the pair synchronized. The health of the filers is constantly monitored,
and failover happens automatically. The healthy filer maintains its own network

identity and its own primary functions, but it also assumes the network identity

D.9

Fallacy

Fallacy

D.9 Fallacies and Pitfalls ■ D-43
of the failed filer and handles all its data requests via a virtual filer until an admin-

e to the original state.
istrator restores the data servic
Fallacies and Pitfalls
Components fail fast

A good deal of the fault-tolerant literature is based on the simplifying assumption
that a component operates perfectly until a latent error becomes effective, and then
a failure occurs that stops the component.

The Tertiary Disk project had the opposite experience. Many components
started acting strangely long before they failed, and it was generally up to the sys-
tem operator to determine whether to declare a component as failed. The compo-
nent would generally be willing to continue to act in violation of the service
agreement until an operator “terminated” that component.

Figure D.20 shows the history of four drives that were terminated, and the num-

ber of hours they started acting strangely before they were replaced.

Computers systems achieve 99.999% availability (“five nines”), as advertised

Marketing departments of companies making servers started bragging about the
availability of their computer hardware; in terms of Figure D.21, they claim avail-
ability of 99.999%, nicknamed five nines. Even the marketing departments of oper-
ating system companies tried to give this impression.

Five minutes of unavailability per year is certainly impressive, but given the
failure data collected in surveys, it’s hard to believe. For example, Hewlett-Packard

claims that the HP-9000 server hardware and HP-UX operating system can deliver

Figure D.20 Record in system log for 4 of the 368 disks in Tertiary Disk that were
replaced over 18 months. See Talagala and Patterson [1999]. These messages, match-
ing the SCSI specification, were placed into the system log by device drivers. Messages
started occurring as much as a week before one drive was replaced by the operator. The
third and fourth messages indicate that the drive’s failure prediction mechanism
detected and predicted imminent failure, yet it was still hours before the drives were
replaced by the operator.

Pitfall

Fallacy

Figure D.21 Minutes unavailable per year to achieve availability class. (From Gray
and Siewiorek [1991].) Note that five nines mean unavailable five minutes per year.

D-44 ■ Appendix D Storage Systems
a 99.999% availability guarantee “in certain pre-defined, pre-tested customer envi-
ronments” (see Hewlett-Packard [1998]). This guarantee does not include failures
due to operator faults, application faults, or environmental faults, which are likely
the dominant fault categories today. Nor does it include scheduled downtime. It is
also unclear what the financial penalty is to a company if a system does not match
its guarantee.

Microsoft also promulgated a five nines marketing campaign. In January 2001,
www.microsoft.com was unavailable for 22 hours. For its Web site to achieve
99.999% availability, it will require a clean slate for 250 years.

In contrast to marketing suggestions, well-managed servers typically achieve

99% to 99.9% availability.

Where a function is implemented affects its reliability

In theory, it is fine to move the RAID function into software. In practice, it is very
difficult to make it work reliably.

The software culture is generally based on eventual correctness via a series of
releases and patches. It is also difficult to isolate from other layers of software. For
example, proper software behavior is often based on having the proper version and
patch release of the operating system. Thus, many customers have lost data due to
software bugs or incompatibilities in environment in software RAID systems.

Obviously, hardware systems are not immune to bugs, but the hardware culture
tends to place a greater emphasis on testing correctness in the initial release. In
addition, the hardware is more likely to be independent of the version of the oper-

ating system.

Operating systems are the best place to schedule disk accesses

Higher-level interfaces such as ATA and SCSI offer logical block addresses to the
host operating system. Given this high-level abstraction, the best an OS can do is to
try to sort the logical block addresses into increasing order. Since only the disk
knows the mapping of the logical addresses onto the physical geometry of sectors,

tracks, and surfaces, it can reduce the rotational and seek latencies.

Fallacy

D.9 Fallacies and Pitfalls ■ D-45
For examp the work ads [And 03]:

The host migh

the seek of thi

Figure D.22 E
ordered versus
while the latter
le, suppose
er the four rea

s distance to offer a

724

100

9987

xample showing OS
drive-ordered. The fo
completes them in ju
load is four re
ds gical block or

consistent basis for com

26

Host-ord
Drive-or

versus disk schedule a
rmer takes 3 revolutions
st 3/4 of a revolution. (F
erson 20
Operation
 Starting LBA
 Length

Read
 724
 8
Read
 100
 16
Read
 9987
 1
Read 26 128
der
t reord
 into lo
pa

ered
dered

cce
to c
rom
:

Read
 26
 128
Read
 100
 16
Read
 724
 8
Read 9987 1

Depending on the relative location of the data on the disk, reordering could make it
worse, as Figure D.22 shows. The disk-scheduled reads complete in three-quarters

of a disk revolution, but the OS-scheduled reads take three revolutions.

The time of an average seek of a disk in a computer system is the time for a seek of
one-third the number of cylinders

This fallacy comes from confusing the way manufacturers market disks with the
expected performance, and from the false assumption that seek times are linear in dis-
tance. The one-third-distance rule of thumb comes from calculating the distance of a
seek from one random location to another random location, not including the current
track and assuming there is a large number of tracks. In the past, manufacturers listed
rison. (Today, they

 queue
 queue

sses, labeled host-
omplete the 4 reads,
Anderson [2003].)

D-46 ■ Appendix D Storage Systems
calculate the “average” by timing all seeks and dividing by the number.) Assuming
(incorrectly) that seek time is linear in distance, and using themanufacturer’s reported
minimum and “average” seek times, a common technique to predict seek time is

Timeseek ¼Timeminimum +
Distance

Distanceaverage
� Timeaverage�Timeminimum
� �

The fallacy concerning seek time is twofold. First, seek time is not linear with
distance; the armmust accelerate to overcome inertia, reach its maximum traveling
speed, decelerate as it reaches the requested position, and then wait to allow the
arm to stop vibrating (settle time). Moreover, sometimes the arm must pause to
control vibrations. For disks with more than 200 cylinders, Chen and Lee
[1995] modeled the seek distance as:

Seek time Distanceð Þ¼ a�
ffi
Distance�1

p
+ b� Distance�1ð Þ+ c

where a, b, and c are selected for a particular disk so that this formula will match the
quoted times for Distance¼1, Distance¼max, and Distance¼1/3 max.
Figure D.23 plots this equation versus the fallacy equation. Unlike the first equa-
tion, the square root of the distance reflects acceleration and deceleration.

The second problem is that the average in the product specification would only
be true if there were no locality to disk activity. Fortunately, there is both temporal
and spatial locality (see page B-2 in Appendix B). For example, Figure D.24 shows
sample measurements of seek distances for two workloads: a UNIX time-sharing

workload and a business-processing workload. Notice the high percentage of disk

30

25

20

15

10

5

A
cc

es
s

tim
e

(m
s)

0

Seek distance

0 250 500 750 1000 1250 1500

Naive seek formula

New seek formula

1750 2000 2250 2500

a =
3 × Number of cylinders

– 10 × Time
min

+ 15 × Time
avg

– 5 × Time
max

b =
3 × Number of cylinders

7 × Time
min

– 15 × Time
avg

+ 8 × Time
max

c = Time
min

Figure D.23 Seek time versus seek distance for sophisticated model versus
naive model. Chen and Lee [1995] found that the equations shown above for param-
eters a, b, and c worked well for several disks.

D.10

0% 10%

Percentage of seeks (UNIX time-sharing workload)

23%

8%

4%

20% 40%30% 50% 60% 70%

24%

3%

3%

1%

3%

3%

3%

3%

3%

2%

2%

0% 10%

Percentage of seeks (business workload)

Seek
distance

Seek
distance

11%

20% 40%30% 50% 60% 70%

61%

3%

0%

3%

0%

0%

1%

1%

1%

1%

1%

3%

0%195

180

165

150

135

120

105

90

75

60

45

30

15

0

208

192

176

160

144

128

112

96

80

64

48

32

16

0

Figure D.24 Sample measurements of seek distances for two systems. The measurements on the left were taken
on a UNIX time-sharing system. Themeasurements on the right were taken from a business-processing application in
which the disk seek activity was scheduled to improve throughput. Seek distance of 0 means the access was made to
the same cylinder. The rest of the numbers show the collective percentage for distances between numbers on the y-
axis. For example, 11% for the bar labeled 16 in the business graph means that the percentage of seeks between 1
and 16 cylinders was 11%. The UNIXmeasurements stopped at 200 of the 1000 cylinders, but this captured 85% of the
accesses. The business measurements tracked all 816 cylinders of the disks. The only seek distances with 1% or
greater of the seeks that are not in the graph are 224 with 4%, and 304, 336, 512, and 624, each having 1%. This
total is 94%, with the difference being small but nonzero distances in other categories. Measurements courtesy
of Dave Anderson of Seagate.

D.10 Concluding Remarks ■ D-47
accesses to the same cylinder, labeled distance 0 in the graphs, in both workloads.

Thus, this fallacy couldn’t be more misleading.

Concluding Remarks

Storage is one of those technologies that we tend to take for granted. And yet, if
we look at the true status of things today, storage is king. One can even argue that
servers, which have become commodities, are now becoming peripheral to
storage devices. Driving that point home are some estimates from IBM, which

expects storage sales to surpass server sales in the next two years.

Michael Vizard

Editor-in-chief, Infoworld (August 11, 2001)

As their value is becoming increasingly evident, storage systems have become the
target of innovation and investment.

The challenges for storage systems today are dependability and maintainabil-

ity. Not only do users want to be sure their data are never lost (reliability),

D.11

D-48 ■ Appendix D Storage Systems
applications today increasingly demand that the data are always available to access
(availability). Despite improvements in hardware and software reliability and fault
tolerance, the awkwardness of maintaining such systems is a problem both for cost
and for availability. A widely mentioned statistic is that customers spend $6 to
$8 operating a storage system for every $1 of purchase price. When dependability
is attacked by having many redundant copies at a higher level of the system—such
as for search—then very large systems can be sensitive to the price-performance of
the storage components.

Today, challenges in storage dependability and maintainability dominate the

challenges of I/O.
Historical Perspective and References

SectionM.9 (available online) covers the development of storage devices and tech-
niques, including who invented disks, the story behind RAID, and the history of

operating systems and databases. References for further reading are included.
Case Studies with Exercises by Andrea C. Arpaci-Dusseau
and Remzi H. Arpaci-Dusseau

Case Study 1: Deconstructing a Disk

Concepts illustrated by this case study

■ Performance Characteristics

■ Microbenchmarks

The internals of a storage system tend to be hidden behind a simple interface, that
of a linear array of blocks. There are many advantages to having a common inter-
face for all storage systems: An operating system can use any storage system with-
out modification, and yet the storage system is free to innovate behind this
interface. For example, a single disk can map its internal< sector, track, surfa-
ce>geometry to the linear array in whatever way achieves the best performance;
similarly, a multidisk RAID system can map the blocks on any number of disks to
this same linear array. However, this fixed interface has a number of disadvantages,
as well; in particular, the operating system is not able to perform some perfor-
mance, reliability, and security optimizations without knowing the precise layout
of its blocks inside the underlying storage system.

In this case study, we will explore how software can be used to uncover the
internal structure of a storage system hidden behind a block-based interface.
The basic idea is to fingerprint the storage system: by running a well-defined work-
load on top of the storage system and measuring the amount of time required for
different requests, one is able to infer a surprising amount of detail about the under-

lying system.

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-49
The Skippy algorithm, from work by Nisha Talagala and colleagues at the Uni-
versity of California–Berkeley, uncovers the parameters of a single disk. The key is
to factor out disk rotational effects by making consecutive seeks to individual sec-
tors with addresses that differ by a linearly increasing amount (increasing by 1, 2, 3,
and so forth). Thus, the basic algorithm skips through the disk, increasing the dis-
tance of the seek by one sector before every write, and outputs the distance and
time for each write. The raw device interface is used to avoid file system optimi-
zations. The SECTOR SIZE is set equal to the minimum amount of data that can be
read at once from the disk (e.g., 512 bytes). (Skippy is described in more detail in
Talagala and Patterson [1999].)

fd = open("raw disk device");
for (i = 0; i < measurements; i++) {

begin_time = gettime();
lseek(fd, i*SECTOR_SIZE, SEEK_CUR);
write(fd, buffer, SECTOR_SIZE);
interval_time = gettime() -begin_time;

printf("Stride: %d Time: %d\n", i, interval_time);
}
close(fd);

By graphing the time required for each write as a function of the seek distance,
one can infer the minimal transfer time (with no seek or rotational latency), head
switch time, cylinder switch time, rotational latency, and the number of heads in
the disk. A typical graph will have four distinct lines, each with the same slope, but
with different offsets. The highest and lowest lines correspond to requests that
incur different amounts of rotational delay, but no cylinder or head switch costs;
the difference between these two lines reveals the rotational latency of the disk. The
second lowest line corresponds to requests that incur a head switch (in addition to
increasing amounts of rotational delay). Finally, the third line corresponds to

requests that incur a cylinder switch (in addition to rotational delay).

D.1 [10/10/10/10/10]<D.2>The results of running Skippy are shown for a mock disk

(Disk Alpha) in Figure D.25.

a. [10]<D.2>What is the minimal transfer time?

b. [10]<D.2>What is the rotational latency?

c. [10]<D.2>What is the head switch time?

d. [10]<D.2>What is the cylinder switch time?
e. [10]<D.2>What is the number of disk heads?

D.2 [25]<D.2>Draw an approximation of the graph that would result from running

Skippy on Disk Beta, a disk with the following parameters:

■ Minimal transfer time, 2.0 ms
■ Rotational latency, 6.0 ms

T
im

e
(m

s)

14

12

10

0

6

4

2

8

0

Distance (sectors)

30025020015010050

Figure D.25 Results from running Skippy on Disk Alpha.

D-50 ■ Appendix D Storage Systems
■ Head switch time, 1.0 ms

■ Cylinder switch time, 1.5 ms

■ Number of disk heads, 4
■ Sectors per track, 100

D.3 [10/10/10/10/10/10/10]<D.2> Implement and run the Skippy algorithm on a disk

drive of your choosing.

a. [10]<D.2>Graph the results of running Skippy. Report the manufacturer and
model of your disk.

b. [10]<D.2>What is the minimal transfer time?

c. [10]<D.2>What is the rotational latency?

d. [10]<D.2>What is the head switch time?

e. [10]<D.2>What is the cylinder switch time?

f. [10]<D.2>What is the number of disk heads?

g. [10]<D.2>Do the results of running Skippy on a real disk differ in any qual-

itative way from that of the mock disk?

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-51
Case Study 2: Deconstructing a Disk Array

Concepts illustrated by this case study

■ Performance Characteristics

■ Microbenchmarks

The Shear algorithm, from work by Timothy Denehy and colleagues at the Uni-
versity of Wisconsin [Denehy et al. 2004], uncovers the parameters of a RAID sys-
tem. The basic idea is to generate a workload of requests to the RAID array and
time those requests; by observing which sets of requests take longer, one can infer
which blocks are allocated to the same disk.

We define RAID properties as follows. Data are allocated to disks in the RAID
at the block level, where a block is the minimal unit of data that the file system reads
or writes from the storage system; thus, block size is known by the file system and
the fingerprinting software. A chunk is a set of blocks that is allocated contiguously
within a disk. A stripe is a set of chunks across each of D data disks. Finally, a
pattern is the minimum sequence of data blocks such that block offset i within

the pattern is always located on disk j.

D.4 [20/20]<D.2>One can uncover the pattern size with the following code. The
code accesses the raw device to avoid file system optimizations. The key to all
of the Shear algorithms is to use random requests to avoid triggering any of the
prefetch or caching mechanisms within the RAID or within individual disks.
The basic idea of this code sequence is to accessN random blocks at a fixed interval

p within the RAID array and to measure the completion time of each interval.

for (p = BLOCKSIZE; p <= testsize; p += BLOCKSIZE) {
for (i = 0; i < N; i++) {

request[i] = random()*p;
}
begin_time = gettime();

issues all request[N] to raw device in parallel;

wait for all request[N] to complete;
interval_time = gettime() - begin_time;
printf("PatternSize: %d Time: %d\n", p,

interval_time);
}

If you run this code on a RAID array and plot the measured time for the N
requests as a function of p, then you will see that the time is highest when all N
requests fall on the same disk; thus, the value of p with the highest time corre-
sponds to the pattern size of the RAID.

a. [20]<D.2>Figure D.26 shows the results of running the pattern size algorithm

on an unknown RAID system.

T
im

e
(s

)

1.5

0

1.0

0.5

0.0

Pattern size assumed (KB)

256160 192 224128966432

Figure D.26 Results from r

D-52 ■ Appendix D Storage Systems
■ What is the pattern size of this storage system?

■ What do the measured times of 0.4, 0.8, and 1.6 seconds correspond to in
this storage system?

■ If this is a RAID 0 array, then how many disks are present?

■ If this is a RAID 0 array, then what is the chunk size?

b. [20]<D.2>Draw the graph that would result from running this Shear code on
a storage system with the following characteristics:

■ Number of requests, N¼1000

■ Time for a random read on disk, 5 ms

■ RAID level, RAID 0

■ Number of disks, 4

unning the pattern size algorithm of Shear on a mock storage system.
■ Chunk size, 8 KB

D.5 [20/20]<D.2>One can uncover the chunk size with the following code. The basic
idea is to perform reads from N patterns chosen at random but always at controlled

offsets, c and c�1, within the pattern.

for (c = 0; c < patternsize; c += BLOCKSIZE) {
for (i = 0; i < N; i++) {

requestA[i] = random()*patternsize + c;
requestB[i] = random()*patternsize +

(c-1)%patternsize;
}

begin_time = gettime();

issue all requestA[N] and requestB[N] to raw device
in parallel;

wait for requestA[N] and requestB[N] to complete;

interval_time = gettime() - begin_time;
printf("ChunkSize: %d Time: %d\n", c,

interval_time);

}

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-53
If you run this code and plot the measured time as a function of c, then you will
see that the measured time is lowest when the requestA and requestB reads fall on
two different disks. Thus, the values of c with low times correspond to the chunk
boundaries between disks of the RAID.

a. [20]<D.2>Figure D.27 shows the results of running the chunk size algorithm
on an unknown RAID system.

■ What is the chunk size of this storage system?

■ What do the measured times of 0.75 and 1.5 seconds correspond to in this
storage system?

b. [20]<D.2>Draw the graph that would result from running this Shear code on
a storage system with the following characteristics:

■ Number of requests, N¼1000

■ Time for a random read on disk, 5 ms

■ RAID level, RAID 0

■ Number of disks, 8
■ Chunk size, 12 KB

D.6 [10/10/10/10]<D.2>Finally, one can determine the layout of chunks to disks with
the following code. The basic idea is to selectN random patterns and to exhaustively

read together all pairwise combinations of the chunks within the pattern.

for (a = 0; a < numchunks; a += chunksize) {

for (b = a; b < numchunks; b += chunksize) {

for (i = 0; i < N; i++) {
requestA[i] = random()*patternsize + a;
requestB[i] = random()*patternsize + b;

}
begin_time = gettime();
issue all requestA[N] and requestB[N] to raw device
in parallel;

T
im

e
(s

)

1.5

0

1.0

0.5

0.0

Boundary offset assumed (KB)

64483216

Figure D.27 Results from running the chunk size algorithm of Shear on a mock stor-
age system.

D-54 ■ Appendix D Storage Systems
wait for all requestA[N] and requestB[N] to
complete;

interval_time = gettime() - begin_time;
printf("A: %d B: %d Time: %d\n", a, b,

interval_time);
}

}

After running this code, you can report the measured time as a function of a and b.
The simplest way to graph this is to create a two-dimensional table with a and b as
the parameters and the time scaled to a shaded value; we use darker shadings for
faster times and lighter shadings for slower times. Thus, a light shading indicates
that the two offsets of a and b within the pattern fall on the same disk.

Figure D.28 shows the results of running the layout algorithm on a storage system
that is known to have a pattern size of 384 KB and a chunk size of 32 KB.

a. [20]<D.2>How many chunks are in a pattern?

b. [20]<D.2>Which chunks of each pattern appear to be allocated on the
same disks?

c. [20]<D.2>How many disks appear to be in this storage system?
d. [20]<D.2>Draw the likely layout of blocks across the disks.

D.7 [20]<D.2>Draw the graph that would result from running the layout algorithm
on the storage system shown in Figure D.29. This storage system has four disks and
a chunk size of four 4 KB blocks (16 KB) and is using a RAID 5 Left-Asymmetric

layout.

C
hu

nk

10

0

6

4

2

8

0

Chunk
108642

Figure D.28 Results from running the layout algorithm of Shear on a mock storage
system.

00 01 02 03 04 05 06 07 08 09 10 11 P P P P

12 13 14 15 16 17 18 19 P P P P 20 21 22 23

24 25 26 27 P P P P 28 29 30 31 32 33 34 35

P P P P 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 P P P P

60 61 62 63 64 65 66 67 P P P P 68 69 70 71

72 73 74 75 P P P P 76 77 78 79 80 81 82 83

P P P P 84 85 86 87 88 89 90 91 92 93 94 95

Parity: RAID 5 Left-Asymmetric, stripe = 16, pattern = 48

Figure D.29 A storage system with four disks, a chunk size of four 4 KB blocks, and
using a RAID 5 Left-Asymmetric layout. Two repetitions of the pattern are shown.

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-55
Case Study 3: RAID Reconstruction

Concepts illustrated by this case study

■ RAID Systems

■ RAID Reconstruction

■ Mean Time to Failure (MTTF)

■ Mean Time until Data Loss (MTDL)

■ Performability

■ Double Failures

A RAID system ensures that data are not lost when a disk fails. Thus, one of the key
responsibilities of a RAID is to reconstruct the data that were on a disk when it
failed; this process is called reconstruction and is what you will explore in this case
study. You will consider both a RAID system that can tolerate one disk failure and
a RAID-DP, which can tolerate two disk failures.

Reconstruction is commonly performed in two different ways. In offline recon-
struction, the RAID devotes all of its resources to performing reconstruction and
does not service any requests from the workload. In online reconstruction, the
RAID continues to service workload requests while performing the reconstruction;
the reconstruction process is often limited to use some fraction of the total band-
width of the RAID system.

How reconstruction is performed impacts both the reliability and the perform-
ability of the system. In a RAID 5, data are lost if a second disk fails before the data
from the first disk can be recovered; therefore, the longer the reconstruction time
(MTTR), the lower the reliability or the mean time until data loss (MTDL). Per-

formability is a metric meant to combine both the performance of a system and its

D-56 ■ Appendix D Storage Systems
availability; it is defined as the performance of the system in a given state multi-
plied by the probability of that state. For a RAID array, possible states include nor-
mal operation with no disk failures, reconstruction with one disk failure, and
shutdown due to multiple disk failures.

For these exercises, assume that you have built a RAID system with six disks,
plus a sufficient number of hot spares. Assume that each disk is the 37 GB SCSI
disk shown in Figure D.3 and that each disk can sequentially read data at a peak of
142 MB/sec and sequentially write data at a peak of 85 MB/sec. Assume that the
disks are connected to an Ultra320 SCSI bus that can transfer a total of 320 MB/
sec. You can assume that each disk failure is independent and ignore other potential
failures in the system. For the reconstruction process, you can assume that the over-
head for any XOR computation or memory copying is negligible. During online
reconstruction, assume that the reconstruction process is limited to use a total band-

width of 10 MB/sec from the RAID system.

D.8 [10]<D.2>Assume that you have a RAID 4 system with six disks. Draw a simple
diagram showing the layout of blocks across disks for this RAID system.

D.9 [10]<D.2, D.4>When a single disk fails, the RAID 4 system will perform recon-
struction. What is the expected time until a reconstruction is needed?

D.10 [10/10/10]<D.2, D.4>Assume that reconstruction of the RAID 4 array begins at

time t.

a. [10]<D.2, D.4>What read and write operations are required to perform the
reconstruction?

b. [10]<D.2, D.4>For offline reconstruction, when will the reconstruction pro-
cess be complete?

c. [10]<D.2, D.4>For online reconstruction, when will the reconstruction pro-

cess be complete?

D.11 [10/10/10/10]<D.2, D.4> In this exercise, we will investigate the mean time until
data loss (MTDL). In RAID 4, data are lost only if a second disk fails before the

first failed disk is repaired.

a. [10]<D.2, D.4>What is the likelihood of having a second failure during off-
line reconstruction?

b. [10]<D.2, D.4>Given this likelihood of a second failure during reconstruc-
tion, what is the MTDL for offline reconstruction?

c. [10]<D.2, D.4>What is the likelihood of having a second failure during
online reconstruction?

d. [10]<D.2, D.4>Given this likelihood of a second failure during reconstruc-

tion, what is the MTDL for online reconstruction?

D.12 [10]<D.2, D.4>What is performability for the RAID 4 array for offline recon-
struction? Calculate the performability using IOPS, assuming a random readonly

workload that is evenly distributed across the disks of the RAID 4 array.

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-57
D.13 [10]<D.2, D.4>What is the performability for the RAID 4 array for online recon-
struction? During online repair, you can assume that the IOPS drop to 70% of their
peak rate. Does offline or online reconstruction lead to better performability?

D.14 [10]<D.2, D.4>RAID 6 is used to tolerate up to two simultaneous disk failures.
Assume that you have a RAID 6 system based on row-diagonal parity, or RAID-
DP; your six-disk RAID-DP system is based on RAID 4, with p¼5, as shown in
Figure D.5. If data disk 0 and data disk 3 fail, how can those disks be recon-
structed? Show the sequence of steps that are required to compute the missing

blocks in the first four stripes.

Case Study 4: Performance Prediction for RAIDs

Concepts illustrated by this case study

■ RAID Levels

■ Queuing Theory

■ Impact of Workloads

■ Impact of Disk Layout

In this case study, you will explore how simple queuing theory can be used to pre-
dict the performance of the I/O system. You will investigate how both storage sys-
tem configuration and the workload influence service time, disk utilization, and
average response time.

The configuration of the storage system has a large impact on performance. Dif-
ferent RAID levels can be modeled using queuing theory in different ways. For
example, a RAID 0 array containing N disks can be modeled as N separate systems
of M/M/1 queues, assuming that requests are appropriately distributed across the N
disks. The behavior of a RAID 1 array depends upon the workload: A read operation
can be sent to either mirror, whereas a write operation must be sent to both disks.
Therefore, for a read-only workload, a two-disk RAID 1 array can be modeled as
an M/M/2 queue, whereas for a write-only workload, it can be modeled as an M/
M/1 queue. The behavior of a RAID 4 array containing N disks also depends upon
the workload: A read will be sent to a particular data disk, whereas writes must all
update the parity disk, which becomes the bottleneck of the system. Therefore, for a
read-only workload, RAID 4 can be modeled asN�1 separate systems, whereas for
a write-only workload, it can be modeled as one M/M/1 queue.

The layout of blocks within the storage system can have a significant impact on
performance. Consider a single disk with a 40 GB capacity. If the workload ran-
domly accesses 40 GB of data, then the layout of those blocks to the disk does not
have much of an impact on performance. However, if the workload randomly
accesses only half of the disk’s capacity (i.e., 20 GB of data on that disk), then
layout does matter: To reduce seek time, the 20 GB of data can be compacted
within 20 GB of consecutive tracks instead of allocated uniformly distributed over

the entire 40 GB capacity.

D-58 ■ Appendix D Storage Systems
For this problem, we will use a rather simplistic model to estimate the service
time of a disk. In this basic model, the average positioning and transfer time for a
small random request is a linear function of the seek distance. For the 40 GB disk in
this problem, assume that the service time is 5 ms * space utilization. Thus, if the
entire 40 GB disk is used, then the average positioning and transfer time for a ran-
dom request is 5 ms; if only the first 20 GB of the disk is used, then the average
positioning and transfer time is 2.5 ms.

Throughout this case study, you can assume that the processor sends 167 small
random disk requests per second and that these requests are exponentially
distributed. You can assume that the size of the requests is equal to the block size
of 8 KB. Each disk in the system has a capacity of 40 GB. Regardless of the storage
system configuration, the workload accesses a total of 40 GB of data; you should
allocate the 40 GB of data across the disks in the system in the most efficient

manner.

D.15 [10/10/10/10/10]<D.5>Begin by assuming that the storage system consists of a

single 40 GB disk.

a. [10]<D.5>Given this workload and storage system, what is the average
service time?

b. [10]<D.5>On average, what is the utilization of the disk?

c. [10]<D.5>On average, how much time does each request spend waiting for
the disk?

d. [10]<D.5>What is the mean number of requests in the queue?
e. [10]<D.5>Finally, what is the average response time for the disk requests?

D.16 [10/10/10/10/10/10]<D.2, D.5> Imagine that the storage system is now config-
ured to contain two 40 GB disks in a RAID 0 array; that is, the data are striped in

blocks of 8 KB equally across the two disks with no redundancy.

a. [10]<D.2, D.5>How will the 40 GB of data be allocated across the disks?
Given a random request workload over a total of 40 GB, what is the expected
service time of each request?

b. [10]<D.2, D.5>How can queuing theory be used to model this storage
system?

c. [10]<D.2, D.5>What is the average utilization of each disk?

d. [10]<D.2, D.5>On average, how much time does each request spend waiting
for the disk?

e. [10]<D.2, D.5>What is the mean number of requests in each queue?

f. [10]<D.2, D.5>Finally, what is the average response time for the disk

requests?

D.17 [20/20/20/20/20]<D.2, D.5> Instead imagine that the storage system is config-

ured to contain two 40 GB disks in a RAID 1 array; that is, the data are mirrored

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-59
across the two disks. Use queuing theory to model this system for a read-only

workload.

a. [20]<D.2, D.5>How will the 40 GB of data be allocated across the disks?
Given a random request workload over a total of 40 GB, what is the expected
service time of each request?

b. [20]<D.2, D.5>How can queuing theory be used to model this storage
system?

c. [20]<D.2, D.5>What is the average utilization of each disk?

d. [20]<D.2, D.5>On average, how much time does each request spend waiting
for the disk?

e. [20]<D.2, D.5>Finally, what is the average response time for the disk

requests?

D.18 [10/10]<D.2, D.5> Imagine that instead of a read-only workload, you now have a

write-only workload on a RAID 1 array.

a. [10]<D.2, D.5>Describe how you can use queuing theory to model this sys-
tem and workload.

b. [10]<D.2, D.5>Given this system and workload, what are the average utili-
zation, average waiting time, and average response time?

Case Study 5: I/O Subsystem Design

Concepts illustrated by this case study

■ RAID Systems

■ Mean Time to Failure (MTTF)

■ Performance and Reliability Trade-Offs

In this case study, you will design an I/O subsystem, given a monetary budget.
Your system will have a minimum required capacity and you will optimize for per-
formance, reliability, or both. You are free to use as many disks and controllers as
fit within your budget.

Here are your building blocks:

■ A 10,000 MIPS CPU costing $1000. Its MTTF is 1,000,000 hours.

■ A 1000 MB/sec I/O bus with room for 20 Ultra320 SCSI buses and controllers.

■ Ultra320 SCSI buses that can transfer 320 MB/sec and support up to 15 disks
per bus (these are also called SCSI strings). The SCSI cable MTTF is
1,000,000 hours.

■ An Ultra320 SCSI controller that is capable of 50,000 IOPS, costs $250, and

has an MTTF of 500,000 hours.

D-60 ■ Appendix D Storage Systems
■ A $2000 enclosure supplying power and cooling to up to eight disks. The
enclosure MTTF is 1,000,000 hours, the fan MTTF is 200,000 hours, and
the power supply MTTF is 200,000 hours.

■ The SCSI disks described in Figure D.3.

■ Replacing any failed component requires 24 hours.

You may make the following assumptions about your workload:

■ The operating system requires 70,000 CPU instructions for each disk I/O.

■ The workload consists of many concurrent, random I/Os, with an average size
of 16 KB.

All of your constructed systems must have the following properties:

■ You have a monetary budget of $28,000.
■ You must provide at least 1 TB of capacity.
D.19 [10]<D.2>You will begin by designing an I/O subsystem that is optimized only
for capacity and performance (and not reliability), specifically IOPS. Discuss the
RAID level and block size that will deliver the best performance.

D.20 [20/20/20/20]<D.2, D.4, D.7>What configuration of SCSI disks, controllers,
and enclosures results in the best performance given your monetary and capacity

constraints?

a. [20]<D.2, D.4, D.7>How many IOPS do you expect to deliver with your
system?

b. [20]<D.2, D.4, D.7>How much does your system cost?

c. [20]<D.2, D.4, D.7>What is the capacity of your system?
d. [20]<D.2, D.4, D.7>What is the MTTF of your system?

D.21 [10]<D.2, D.4, D.7>You will now redesign your system to optimize for reliabil-
ity, by creating a RAID 10 or RAID 01 array. Your storage system should be robust
not only to disk failures but also to controller, cable, power supply, and fan failures
as well; specifically, a single component failure should not prohibit accessing both
replicas of a pair. Draw a diagram illustrating how blocks are allocated across disks
in the RAID 10 and RAID 01 configurations. Is RAID 10 or RAID 01 more appro-
priate in this environment?

D.22 [20/20/20/20/20]<D.2, D.4, D.7>Optimizing your RAID 10 or RAID 01 array
only for reliability (but staying within your capacity and monetary constraints),

what is your RAID configuration?

a. [20]<D.2, D.4, D.7>What is the overall MTTF of the components in your

system?

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-61
b. [20]<D.2, D.4, D.7>What is the MTDL of your system?

c. [20]<D.2, D.4, D.7>What is the usable capacity of this system?

d. [20]<D.2, D.4, D.7>How much does your system cost?

e. [20]<D.2, D.4, D.7>Assuming a write-only workload, how many IOPS can

you expect to deliver?

D.23 [10]<D.2, D.4, D.7>Assume that you now have access to a disk that has twice
the capacity, for the same price. If you continue to design only for reliability, how

would you change the configuration of your storage system? Why?
Case Study 6: Dirty Rotten Bits

Concepts illustrated by this case study

■ Partial Disk Failure

■ Failure Analysis

■ Performance Analysis

■ Parity Protection

■ Checksumming

You are put in charge of avoiding the problem of “bit rot”—bits or blocks in a file
going bad over time. This problem is particularly important in archival scenarios,
where data are written once and perhaps accessed many years later; without taking
extra measures to protect the data, the bits or blocks of a file may slowly change or
become unavailable due to media errors or other I/O faults.

Dealing with bit rot requires two specific components: detection and recovery.
To detect bit rot efficiently, one can use checksums over each block of the file in
question; a checksum is just a function of some kind that takes a (potentially long)
string of data as input and outputs a fixed-size string (the checksum) of the data as
output. The property you will exploit is that if the data changes then the computed
checksum is very likely to change as well.

Once detected, recovering from bit rot requires some form of redundancy.
Examples include mirroring (keeping multiple copies of each block) and parity
(some extra redundant information, usually more space efficient than mirroring).

In this case study, you will analyze how effective these techniques are given
various scenarios. You will also write code to implement data integrity protection

over a set of files.

D.24 [20/20/20]<D.2>Assume that you will use simple parity protection in Exercises
D.24 through D.27. Specifically, assume that you will be computing one parity
block for each file in the file system. Further, assume that you will also use a

20-byte MD5 checksum per 4 KB block of each file.

26.6% 11.0% 11

D-62 ■ Appendix D Storage Systems
We first tackle the problem of space overhead. According to studies by Douceur and

sk] fil is ns t in P
Bolo
pro
y [1999
tection in
, these
formatio
e size d
n. Assum
tributio
ing that w
are wha
e perform
is found
10,000 ra
modern
ndom writ
Cs:
�1 KB
 2 KB
 4 KB
 8 KB
 16 KB
 32 KB
 64 KB
 128 KB
 256 KB
 512 KB
 �1 MB
.2% 10.9% 9.5% 8.5% 7.1% 5.1% 3.7% 2.4% 4.0%

The study also finds that file systems are usually about half full. Assume that you
have a 37 GB disk volume that is roughly half full and follows that same distribu-
tion, and answer the following questions:

a. [20]<D.2>Howmuch extra information (both in bytes and as a percent of the vol-
ume) must you keep on disk to be able to detect a single error with checksums?

b. [20]<D.2>How much extra information (both in bytes and as a percent of the
volume) would you need to be able to both detect a single error with checksums
as well as correct it?

c. [20]<D.2>Given this file distribution, is the block size you are using to com-

pute checksums too big, too little, or just right?

D.25 [10/10]<D.2, D.3>One big problem that arises in data protection is error detec-
tion. One approach is to perform error detection lazily—that is, wait until a file is
accessed, and at that point, check it and make sure the correct data are there. The
problem with this approach is that files that are not accessed frequently may slowly
rot away and when finally accessed have too many errors to be corrected. Hence, an
eager approach is to perform what is sometimes called disk scrubbing—

periodically go through all data and find errors proactively.

a. [10]<D.2, D.3>Assume that bit flips occur independently, at a rate of 1 flip
per GB of data per month. Assuming the same 20 GB volume that is half full,
and assuming that you are using the SCSI disk as specified in Figure D.3 (4 ms
seek, roughly 100 MB/sec transfer), how often should you scan through files to
check and repair their integrity?

b. [10]<D.2, D.3>At what bit flip rate does it become impossible to maintain

data integrity? Again assume the 20 GB volume and the SCSI disk.

D.26 [10/10/10/10]<D.2, D.4>Another potential cost of added data protection is
found in performance overhead. We now study the performance overhead of this

data protection approach.

a. [10]<D.2, D.4>Assume we write a 40 MB file to the SCSI disk sequentially,
and then write out the extra information to implement our data protection
scheme to disk once. How much write traffic (both in total volume of bytes
and as a percentage of total traffic) does our scheme generate?

b. [10]<D.2, D.4>Assume we now are updating the file randomly, similar to a
database table. That is, assume we perform a series of 4 KB random writes to
the file, and each time we perform a single write, we must update the on-disk
es, how

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-63
much I/O traffic (both in total volume of bytes and as a percentage of total traf-
fic) does our scheme generate?

c. [10]<D.2, D.4>Now assume that the data protection information is always
kept in a separate portion of the disk, away from the file it is guarding (that
is, assume for each file A, there is another file Achecksums that holds all the
check-sums for A). Hence, one potential overhead we must incur arises upon
reads—that is, upon each read, we will use the checksum to detect data
corruption.

Assume you read 10,000 blocks of 4 KB each sequentially from disk. Assuming
a 4 ms average seek cost and a 100 MB/sec transfer rate (like the SCSI disk in
Figure D.3), how long will it take to read the file (and corresponding check-
sums) from disk? What is the time penalty due to adding checksums?

d. [10]<D.2, D.4>Again assuming that the data protection information is kept
separate as in part (c), now assume you have to read 10,000 random blocks of
4 KB each from a very large file (much bigger than 10,000 blocks, that is). For
each read, you must again use the checksum to ensure data integrity. How long
will it take to read the 10,000 blocks from disk, again assuming the same disk

characteristics? What is the time penalty due to adding checksums?

D.27 [40]<D.2, D.3, D.4>Finally, we put theory into practice by developing a user-
level tool to guard against file corruption. Assume you are to write a simple set of
tools to detect and repair data integrity. The first tool is used for checksums and

parity. It should be called build and used like this:

build <filename>

The build program should then store the needed checksum and redundancy
information for the file filename in a file in the same directory called .file
name.cp (so it is easy to find later).

A second program is then used to check and potentially repair damaged files.
It should be called repair and used like this:

repair <filename>

The repair program should consult the .cp file for the filename in question and
verify that all the stored checksums match the computed checksums for the data. If
the checksums don’t match for a single block, repair should use the redundant
information to reconstruct the correct data and fix the file. However, if two or more
blocks are bad, repair should simply report that the file has been corrupted
beyond repair. To test your system, we will provide a tool to corrupt files called
corrupt. It works as follows:

corrupt <filename> <blocknumber>

All corrupt does is fill the specified block number of the file with random noise.

For checksums you will be using MD5. MD5 takes an input string and gives you a

D-64 ■ Appendix D Storage Systems
128-bit “fingerprint” or checksum as an output. A great and simple implementation
of MD5 is available here:

http://sourceforge.net/project/showfiles.php?group_
id=42360

Parity is computed with the XOR operator. In C code, you can compute the
parity of two blocks, each of size BLOCKSIZE, as follows:

unsigned char block1[BLOCKSIZE];
unsigned char block2[BLOCKSIZE];

unsigned char parity[BLOCKSIZE];

// first, clear parity block
for (int i = 0; i < BLOCKSIZE; i++)

parity[i] = 0;

// then compute parity; carat symbol does XOR in C
for (int i = 0; i < BLOCKSIZE; i++) {

parity[i] = block1[i] ^block2[i];
}

Case Study 7: Sorting Things Out

Concepts illustrated by this case study

■ Benchmarking

■ Performance Analysis

■ Cost/Performance Analysis

■ Amortization of Overhead

■ Balanced Systems

The database field has a long history of using benchmarks to compare systems. In
this question, you will explore one of the benchmarks introduced by Anon. et al.
[1985] (see Chapter 1): external, or disk-to-disk, sorting.

Sorting is an exciting benchmark for a number of reasons. First, sorting exercises
a computer system across all its components, including disk, memory, and proces-
sors. Second, sorting at the highest possible performance requires a great deal of
expertise about how the CPU caches, operating systems, and I/O subsystems work.
Third, it is simple enough to be implemented by a student (see below!).

Depending on how much data you have, sorting can be done in one or multiple
passes. Simply put, if you have enough memory to hold the entire dataset in mem-
ory, you can read the entire dataset into memory, sort it, and then write it out; this is
called a “one-pass” sort.

If you do not have enough memory, you must sort the data in multiple passes.

There are many different approaches possible. One simple approach is to sort each

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-65
chunk of the input file and write it to disk; this leaves (input file size)/(memory
size) sorted files on disk. Then, you have to merge each sorted temporary file into
a final sorted output. This is called a “two-pass” sort. More passes are needed in the
unlikely case that you cannot merge all the streams in the second pass.

In this case study, you will analyze various aspects of sorting, determining its
effectiveness and cost-effectiveness in different scenarios. You will also write your

own version of an external sort, measuring its performance on real hardware.

D.28 [20/20/20]<D.4>We will start by configuring a system to complete a sort in the
least possible time, with no limits on how much we can spend. To get peak band-
width from the sort, we have to make sure all the paths through the system have

sufficient bandwidth.

Assume for simplicity that the time to perform the in-memory sort of keys is lin-
early proportional to the CPU rate and memory bandwidth of the given machine
(e.g., sorting 1 MB of records on a machine with 1 MB/sec of memory bandwidth
and a 1MIPS processor will take 1 second). Assume further that you have carefully
written the I/O phases of the sort so as to achieve sequential bandwidth. And, of
course, realize that if you don’t have enough memory to hold all of the data at once
that sort will take two passes.

One problem you may encounter in performing I/O is that systems often
perform extra memory copies; for example, when the read() system call is
invoked, datamay first be read from disk into a system buffer and then subsequently
copied into the specified user buffer. Hence, memory bandwidth during I/O can be
an issue.

Finally, for simplicity, assume that there is no overlap of reading, sorting, or writ-
ing. That is, when you are reading data from disk, that is all you are doing; when
sorting, you are just using the CPU and memory bandwidth; when writing, you are
just writing data to disk.

Your job in this task is to configure a system to extract peak performance when
sorting 1 GB of data (i.e., roughly 10 million 100-byte records). Use the following
table to make choices about which machine, memory, I/O interconnect, and disks

to buy.
Fast
 2 GB/sec
 $500/GB
 Fast
 110 MB/sec
CPU
 I/O interconnect
Slow
 1 GIPS
 $200
 Slow
 80 MB/sec
 $50
Standard
 2 GIPS
 $1000
 Standard
 160 MB/sec
 $100
Fast
 4 GIPS
 $2000
 Fast
 320 MB/sec
 $400
Memory
 Disks
Slow
 512 MB/sec
 $100/GB
 Slow
 30 MB/sec
 $70
Standard
 1 GB/sec
 $200/GB
 Standard
 60 MB/sec
 $120
$300

D-66 ■ Appendix D Storage Systems
Note:Assume that you are buying a single-processor system and that you can have
up to two I/O interconnects. However, the amount of memory and number of disks
are up to you (assume there is no limit on disks per I/O interconnect).

a. [20]<D.4>What is the total cost of your machine? (Break this down by part,
including the cost of the CPU, amount of memory, number of disks, and I/O
bus.)

b. [20]<D.4>How much time does it take to complete the sort of 1 GB worth of
records? (Break this down into time spent doing reads from disk, writes to disk,
and time spent sorting.)
c. [20]<D.4>What is the bottleneck in your system?

D.29 [25/25/25]<D.4>Wewill now examine cost-performance issues in sorting. After
all, it is easy to buy a high-performing machine; it is much harder to buy a

costeffective one.

One place where this issue arises is with the PennySort competition (research.
microsoft.com/barc/SortBenchmark/). PennySort asks that you sort as many
records as you can for a single penny. To compute this, you should assume that
a system you buy will last for 3 years (94,608,000 seconds), and divide this by
the total cost in pennies of the machine. The result is your time budget per penny.

Our task here will be a little simpler. Assume you have a fixed budget of $2000 (or
less). What is the fastest sorting machine you can build? Use the same hardware
table as in Exercise D.28 to configure the winning machine.

(Hint: You might want to write a little computer program to generate all the pos-
sible configurations.)

a. [25]<D.4>What is the total cost of your machine? (Break this down by part,
including the cost of the CPU, amount of memory, number of disks, and I/O
bus.)

b. [25]<D.4>How does the reading, writing, and sorting time break down with
this configuration?
c. [25]<D.4>What is the bottleneck in your system?

D.30 [20/20/20]<D.4, D.6>Getting good disk performance often requires amortiza-
tion of overhead. The idea is simple: If you must incur an overhead of some kind,
do as much useful work as possible after paying the cost and hence reduce its
impact. This idea is quite general and can be applied to many areas of computer
systems; with disks, it arises with the seek and rotational costs (overheads) that
you must incur before transferring data. You can amortize an expensive seek

and rotation by transferring a large amount of data.

In this exercise, we focus on how to amortize seek and rotational costs during the
second pass of a two-pass sort. Assume that when the second pass begins, there are
N sorted runs on the disk, each of a size that fits within main memory. Our task here

is to read in a chunk from each sorted run and merge the results into a final sorted

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau ■ D-67
output. Note that a read from one run will incur a seek and rotation, as it is very
likely that the last read was from a different run.

a. [20]<D.4, D.6>Assume that you have a disk that can transfer at 100 MB/sec,
with an average seek cost of 7 ms, and a rotational rate of 10,000 RPM. Assume
further that every time you read from a run, you read 1 MB of data and that there
are 100 runs each of size 1 GB. Also assume that writes (to the final sorted out-
put) take place in large 1 GB chunks. How long will the merge phase take,
assuming I/O is the dominant (i.e., only) cost?

b. [20]<D.4, D.6>Now assume that you change the read size from 1 MB to
10 MB. How is the total time to perform the second pass of the sort affected?

c. [20]<D.4, D.6> In both cases, assume that what we wish to maximize is disk
efficiency. We compute disk efficiency as the ratio of the time spent transferring
data over the total time spent accessing the disk. What is the disk efficiency in

each of the scenarios mentioned above?

D.31 [40]<D.2, D.4, D.6> In this exercise, you will write your own external sort. To

generate the data set, we provide a tool generate that works as follows:

generate <filename> <size (in MB)>

By running generate, you create a file named filename of size size MB.
The file consists of 100 byte keys, with 10-byte records (the part that must be
sorted).

We also provide a tool called check that checks whether a given input file is
sorted or not. It is run as follows:

check <filename>

The basic one-pass sort does the following: reads in the data, sorts the data, and
then writes the data out. However, numerous optimizations are available to you:
overlapping reading and sorting, separating keys from the rest of the record for
better cache behavior and hence faster sorting, overlapping sorting and writing,
and so forth.

One important rule is that data must always start on disk (and not in the file system
cache). The easiest way to ensure this is to unmount and remount the file system.

One goal: Beat the Datamation sort record. Currently, the record for sorting 1 mil-
lion 100-byte records is 0.44 seconds, which was obtained on a cluster of 32
machines. If you are careful, you might be able to beat this on a single PC config-
ured with a few disks.

