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“The Medium is the Message” because it is the medium that shapes
and controls the search and form of human associations and actions.

Marshall McLuhan
Understanding Media (1964)

The marvels—of film, radio, and television—are marvels of one-
way communication, which is not communication at all.

Milton Mayer
On the Remote Possibility of

Communication (1967)

The interconnection network is the heart of parallel architecture.
Chuan-Lin Wu and Tse-Yun Feng
Interconnection Networks for Parallel

and Distributed Processing (1984)

Indeed, as system complexity and integration continues to
increase, many designers are finding it more efficient to route
packets, not wires.

Bill Dally
Principles and Practices of
Interconnection Networks (2004)
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F.1
 Introduction

Previous chapters and appendices cover the components of a single computer but
give little consideration to the interconnection of those components and how mul-
tiple computer systems are interconnected. These aspects of computer architecture
have gained significant importance in recent years. In this appendix we see how to
connect individual devices together into a community of communicating devices,
where the term device is generically used to signify anything from a component or
set of components within a computer to a single computer to a system of com-
puters. Figure F.1 shows the various elements comprising this community: end
nodes consisting of devices and their associated hardware and software interfaces,
links from end nodes to the interconnection network, and the interconnection net-
work. Interconnection networks are also called networks, communication subnets,
or communication subsystems. The interconnection of multiple networks is called
internetworking. This relies on communication standards to convert information
from one kind of network to another, such as with the Internet.

There are several reasons why computer architects should devote attention to
interconnection networks. In addition to providing external connectivity, networks
are commonly used to interconnect the components within a single computer at
many levels, including the processor microarchitecture. Networks have long been
used in mainframes, but today such designs can be found in personal computers as
well, given the high demand on communication bandwidth needed to enable
increased computing power and storage capacity. Switched networks are replacing
buses as the normal means of communication between computers, between I/O
devices, between boards, between chips, and even between modules inside chips.
Computer architects must understand interconnect problems and solutions in order
to more effectively design and evaluate computer systems.

Interconnection networks cover a wide range of application domains, very
much like memory hierarchy covers a wide range of speeds and sizes. Networks
implemented within processor chips and systems tend to share characteristics
much in common with processors and memory, relying more on high-speed hard-
ware solutions and less on a flexible software stack. Networks implemented across
systems tend to share much in common with storage and I/O, relying more on the
operating system and software protocols than high-speed hardware—though we
are seeing a convergence these days. Across the domains, performance includes
latency and effective bandwidth, and queuing theory is a valuable analytical tool
in evaluating performance, along with simulation techniques.

This topic is vast—portions of Figure F.1 are the subject of entire books and
college courses. The goal of this appendix is to provide for the computer architect
an overview of network problems and solutions. This appendix gives introductory
explanations of key concepts and ideas, presents architectural implications of inter-
connection network technology and techniques, and provides useful references to
more detailed descriptions. It also gives a common framework for evaluating all

types of interconnection networks, using a single set of terms to describe the basic
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Figure F.1 A conceptual illustration of an interconnected community of devices.
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alternatives. As we will see, many types of networks have common preferred alter-
natives, but for others the best solutions are quite different. These differences
become very apparent when crossing between the networking domains.

Interconnection Network Domains

Interconnection networks are designed for use at different levels within and across
computer systems to meet the operational demands of various application areas—
high-performance computing, storage I/O, cluster/workgroup/enterprise systems,
internetworking, and so on. Depending on the number of devices to be connected
and their proximity, we can group interconnection networks into four major net-
working domains:

■ On-chip networks (OCNs)—Also referred to as network-on-chip (NoC), this
type of network is used for interconnecting microarchitecture functional units,
register files, caches, compute tiles, and processor and IP cores within chips or
multichip modules. Current and near future OCNs support the connection of a
few tens to a few hundred of such devices with a maximum interconnection
distance on the order of centimeters. Most OCNs used in high-performance
chips are custom designed to mitigate chip-crossing wire delay problems
caused by increased technology scaling and transistor integration, though some
proprietary designs are gaining wider use (e.g., IBM’s CoreConnect, ARM’s
AMBA, and Sonic’s Smart Interconnect). Examples of current OCNs are those
found in the Intel Teraflops processor chip [Hoskote07], connecting 80 simple
cores; the Intel Single-Chip Cloud Computer (SCCC) [Howard10], connecting
48 IA-32 architecture cores; and Tilera’s TILE-Gx line of processors [TILE-
GX], connecting 100 processing cores in 4Q 2011 using TSMC’s 40 nanome-

ter process and 200 cores planned for 2013 (code named “Stratton”) using
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TSMC’s 28 nanometer process. The networks peak at 256 GBps for both Intel
prototypes and up to 200 Tbps for the TILE-Gx100 processor. More detailed
information for OCNs is provided in Flich [2010].

■ System/storage area networks (SANs)—This type of network is used for inter-
processor and processor-memory interconnections within multiprocessor and
multicomputer systems, and also for the connection of storage and I/O compo-
nents within server and data center environments. Typically, several hundreds
of such devices can be connected, although some supercomputer SANs support
the interconnection of many thousands of devices, like the IBM Blue Gene/L
supercomputer. The maximum interconnection distance covers a relatively
small area—on the order of a few tens of meters usually—but some SANs have
distances spanning a few hundred meters. For example, InfiniBand, a popular
SAN standard introduced in late 2000, supports system and storage I/O inter-
connects at up to 120 Gbps over a distance of 300 m.

■ Local area networks (LANs)—This type of network is used for intercon-
necting autonomous computer systems distributed across a machine room
or throughout a building or campus environment. Interconnecting PCs in
a cluster is a prime example. Originally, LANs connected only up to a hun-
dred devices, but with bridging LANs can now connect up to a few thou-
sand devices. The maximum interconnect distance covers an area of a few
kilometers usually, but some have distance spans of a few tens of kilome-
ters. For instance, the most popular and enduring LAN, Ethernet, has a 10
Gbps standard version that supports maximum performance over a distance
of 40 km.

■ Wide area networks (WANs)—Also called long-haul networks, WANs con-
nect computer systems distributed across the globe, which requires internet-
working support. WANs connect many millions of computers over distance
scales of many thousands of kilometers. Asynchronous Transfer Mode
(ATM) is an example of a WAN.

Figure F.2 roughly shows the relationship of these networking domains in
terms of the number of devices interconnected and their distance scales. Overlap
exists for some of these networks in one or both dimensions, which leads to
product competition. Some network solutions have become commercial stan-
dards while others remain proprietary. Although the preferred solutions may sig-
nificantly differ from one interconnection network domain to another depending
on the design requirements, the problems and concepts used to address network
problems remain remarkably similar across the domains. No matter the target
domain, networks should be designed so as not to be the bottleneck to system
performance and cost efficiency. Hence, the ultimate goal of computer architects
is to design interconnection networks of the lowest possible cost that are capable
of transferring the maximum amount of available information in the shortest

possible time.
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Figure F.2 Relationship of the four interconnection network domains in terms of
number of devices connected and their distance scales: on-chip network (OCN), sys-
tem/storage area network (SAN), local area network (LAN), and wide area
network (WAN). Note that there are overlapping ranges where some of these networks
compete. Some supercomputer systems use proprietary custom networks to intercon-
nect several thousands of computers, while other systems, such as multicomputer clus-
ters, use standard commercial networks.
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Approach and Organization of This Appendix

Interconnection networks can be well understood by taking a top-down approach
to unveiling the concepts and complexities involved in designing them. We do this
by viewing the network initially as an opaque “black box” that simply and ideally
performs certain necessary functions. Then we systematically open various layers
of the black box, allowing more complex concepts and nonideal network behavior
to be revealed. We begin this discussion by first considering the interconnection of
just two devices in Section F.2, where the black box network can be viewed as a
simple dedicated link network—that is, wires or collections of wires running bidi-
rectionally between the devices.We then consider the interconnection of more than
two devices in Section F.3, where the black box network can be viewed as a shared
link network or as a switched point-to-point network connecting the devices. We
continue to peel away various other layers of the black box by considering in more
detail the network topology (Section F.4); routing, arbitration, and switching
(Section F.5); and switch microarchitecture (Section F.6). Practical issues for com-
mercial networks are considered in Section F.7, followed by examples illustrating
the trade-offs for each type of network in Section F.8. Internetworking is briefly
discussed in Section F.9, and additional crosscutting issues for interconnection net-

works are presented in Section F.10. Section F.11 gives some common fallacies
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and pitfalls related to interconnection networks, and Section F.12 presents some
concluding remarks. Finally, we provide a brief historical perspective and some

suggested reading in Section F.13.
Interconnecting Two Devices

This section introduces the basic concepts required to understand how communi-
cation between just two networked devices takes place. This includes concepts that
deal with situations in which the receiver may not be ready to process incoming
data from the sender and situations in which transport errors may occur. To ease
understanding, the black box network at this point can be conceptualized as an
ideal network that behaves as simple dedicated links between the two devices.
Figure F.3 illustrates this, where unidirectional wires run from device A to device
B and vice versa, and each end node contains a buffer to hold the data. Regardless
of the network complexity, whether dedicated link or not, a connection exists from
each end node device to the network to inject and receive information to/from the
network. We first describe the basic functions that must be performed at the end
nodes to commence and complete communication, and then we discuss network
media and the basic functions that must be performed by the network to carry
out communication. Later, a simple performance model is given, along with sev-
eral examples to highlight implications of key network parameters.

Network Interface Functions: Composing and Processing
Messages

Suppose we want two networked devices to read a word from each other’s mem-
ory. The unit of information sent or received is called a message. To acquire the
desired data, the two devices must first compose and send a certain type of message
in the form of a request containing the address of the data within the other device.
The address (i.e., memory or operand location) allows the receiver to identify
where to find the information being requested. After processing the request, each
device then composes and sends another type of message, a reply, containing the
data. The address and data information is typically referred to as the message

payload.

B enihcaMA enihcaM

Figure F.3 A simple dedicated link network bidirectionally interconnecting two
devices.
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In addition to payload, every message contains some control bits needed by the
network to deliver the message and process it at the receiver. The most typical are
bits to distinguish between different types of messages (e.g., request, reply, request
acknowledge, reply acknowledge) and bits that allow the network to transport the
information properly to the destination. These additional control bits are encoded
in the header and/or trailer portions of the message, depending on their location
relative to the message payload. As an example, Figure F.4 shows the format of a
message for the simple dedicated link network shown in Figure F.3. This example
shows a single-word payload, but messages in some interconnection networks can
include several thousands of words.

Before message transport over the network occurs, messages have to be com-
posed. Likewise, upon receipt from the network, they must be processed. These
and other functions described below are the role of the network interface (also
referred to as the channel adapter) residing at the end nodes. Together with some
direct memory access (DMA) engine and link drivers to transmit/receive messages
to/from the network, some dedicated memory or register(s) may be used to buffer
outgoing and incoming messages. Depending on the network domain and design
specifications for the network, the network interface hardware may consist of noth-
ing more than the communicating device itself (i.e., for OCNs and some SANs) or
a separate card that integrates several embedded processors and DMA engines with
thousands of megabytes of RAM (i.e., for many SANs and most LANs
and WANs).

In addition to hardware, network interfaces can include software or firmware to
perform the needed operations. Even the simple example shown in Figure F.3 may
invoke messaging software to translate requests and replies into messages with the
appropriate headers. This way, user applications need not worry about composing
and processing messages as these tasks can be performed automatically at a lower

level. An application program usually cooperates with the operating or runtime
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Figure F.4 An example packet format with header, payload, and checksum in the
trailer.
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system to send and receive messages. As the network is likely to be shared bymany
processes running on each device, the operating system cannot allow messages
intended for one process to be received by another. Thus, the messaging software
must include protection mechanisms that distinguish between processes. This dis-
tinction could be made by expanding the header with a port number that is known
by both the sender and intended receiver processes.

In addition to composing and processing messages, additional functions need
to be performed by the end nodes to establish communication among the commu-
nicating devices. Although hardware support can reduce the amount of work, some
can be done by software. For example, most networks specify a maximum amount
of information that can be transferred (i.e., maximum transfer unit) so that network
buffers can be dimensioned appropriately. Messages longer than the maximum
transfer unit are divided into smaller units, called packets (or datagrams), that
are transported over the network. Packets are reassembled into messages at the des-
tination end node before delivery to the application. Packets belonging to the same
message can be distinguished from others by including a message ID field in the
packet header. If packets arrive out of order at the destination, they are reordered
when reassembled into a message. Another field in the packet header containing a
sequence number is usually used for this purpose.

The sequence of steps the end node follows to commence and complete com-
munication over the network is called a communication protocol. It generally has
symmetric but reversed steps between sending and receiving information. Commu-
nication protocols are implemented by a combination of software and hardware to
accelerate execution. For instance, many network interface cards implement hard-
ware timers as well as hardware support to split messages into packets and reas-
semble them, compute the cyclic redundancy check (CRC) checksum, handle
virtual memory addresses, and so on.

Some network interfaces include extra hardware to offload protocol processing
from the host computer, such as TCP offload engines for LANs and WANs. But,
for interconnection networks such as SANs that have low latency requirements,
this may not be enough even when lighter-weight communication protocols are
used such as message passing interface (MPI). Communication performance
can be further improved by bypassing the operating system (OS). OS bypassing
can be implemented by directly allocating message buffers in the network interface
memory so that applications directly write into and read from those buffers. This
avoids extra memory-to-memory copies. The corresponding protocols are referred
to as zero-copy protocols or user-level communication protocols. Protection can
still be maintained by calling the OS to allocate those buffers at initialization
and preventing unauthorized memory accesses in hardware.

In general, some or all of the following are the steps needed to send a message
at end node devices over a network:

1. The application executes a system call, which copies data to be sent into an
operating system or network interface buffer, divides the message into packets

(if needed), and composes the header and trailer for packets.
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2. The checksum is calculated and included in the header or trailer of packets.

3. The timer is started, and the network interface hardware sends the packets.

Message reception is in the reverse order:

3. The network interface hardware receives the packets and puts them into its
buffer or the operating system buffer.

2. The checksum is calculated for each packet. If the checksum matches the
sender’s checksum, the receiver sends an acknowledgment back to the packet
sender. If not, it deletes the packet, assuming that the sender will resend the
packet when the associated timer expires.

1. Once all packets pass the test, the system reassembles the message, copies the
data to the user’s address space, and signals the corresponding application.

The sender must still react to packet acknowledgments:

■ When the sender gets an acknowledgment, it releases the copy of the corre-
sponding packet from the buffer.

■ If the sender reaches the time-out instead of receiving an acknowledgment, it
resends the packet and restarts the timer.

Just as a protocol is implemented at network end nodes to support communi-
cation, protocols are also used across the network structure at the physical, data
link, and network layers responsible primarily for packet transport, flow control,

error handling, and other functions described next.
Basic Network Structure and Functions: Media and Form Factor,
Packet Transport, Flow Control, and Error Handling

Once a packet is ready for transmission at its source, it is injected into the network
using some dedicated hardware at the network interface. The hardware includes
some transceiver circuits to drive the physical network media—either electrical
or optical. The type of media and form factor depends largely on the interconnect
distances over which certain signaling rates (e.g., transmission speed) should be
sustainable. For centimeter or less distances on a chip or multichip module, typi-
cally the middle to upper copper metal layers can be used for interconnects at multi-
Gbps signaling rates per line. A dozen or more layers of copper traces or tracks
imprinted on circuit boards, midplanes, and backplanes can be used for Gbps
differential-pair signaling rates at distances of about a meter or so. Category 5E
unshielded twisted-pair copper wiring allows 0.25 Gbps transmission speed over
distances of 100 meters. Coaxial copper cables can deliver 10Mbps over kilometer
distances. In these conductor lines, distance can usually be traded off for higher

transmission speed, up to a certain point. Optical media enable faster transmission
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speeds at distances of kilometers. Multimode fiber supports 100 Mbps transmis-
sion rates over a few kilometers, and more expensive single-mode fiber supports
Gbps transmission speeds over distances of several kilometers. Wavelength divi-
sion multiplexing allows several times more bandwidth to be achieved in fiber (i.e.,
by a factor of the number of wavelengths used).

The hardware used to drive network links may also include some encoders to
encode the signal in a format other than binary that is suitable for the given trans-
port distance. Encoding techniques can use multiple voltage levels, redundancy,
data and control rotation (e.g., 4b5b encoding), and/or a guaranteed minimum
number of signal transitions per unit time to allow for clock recovery at the
receiver. The signal is decoded at the receiver end, and the packet is stored in
the corresponding buffer. All of these operations are performed at the network
physical layer, the details of which are beyond the scope of this appendix. Fortu-
nately, we do not need to worry about them. From the perspective of the data link
and higher layers, the physical layer can be viewed as a long linear pipeline without
staging in which signals propagate as waves through the network transmission
medium. All of the above functions are generally referred to as packet transport.

Besides packet transport, the network hardware and software are jointly
responsible at the data link and network protocol layers for ensuring reliable
delivery of packets. These responsibilities include: (1) preventing the sender
from sending packets at a faster rate than they can be processed by the receiver,
and (2) ensuring that the packet is neither garbled nor lost in transit. The first
responsibility is met by either discarding packets at the receiver when its buffer
is full and later notifying the sender to retransmit them, or by notifying the sender
to stop sending packets when the buffer becomes full and to resume later once it has
room for more packets. The latter strategy is generally known as flow control.

There are several interesting techniques commonly used to implement flow
control beyond simple handshaking between the sender and receiver. The more
popular techniques are Xon/Xoff (also referred to as Stop & Go) and credit-based
flow control. Xon/Xoff consists of the receiver notifying the sender either to stop or
to resume sending packets once high and low buffer occupancy levels are reached,
respectively, with some hysteresis to reduce the number of notifications. Notifica-
tions are sent as “stop” and “go” signals using additional control wires or encoded
in control packets. Credit-based flow control typically uses a credit counter at the
sender that initially contains a number of credits equal to the number of buffers at
the receiver. Every time a packet is transmitted, the sender decrements the credit
counter. When the receiver consumes a packet from its buffer, it returns a credit to
the sender in the form of a control packet that notifies the sender to increment its
counter upon receipt of the credit. These techniques essentially control the flow of
packets into the network by throttling packet injection at the sender when the
receiver reaches a low watermark or when the sender runs out of credits.

Xon/Xoff usually generates much less control traffic than credit-based flow
control because notifications are only sent when the high or low buffer occupancy
levels are crossed. On the other hand, credit-based flow control requires less than

half the buffer size required by Xon/Xoff. Buffers for Xon/Xoff must be large
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enough to prevent overflow before the “stop” control signal reaches the sender.
Overflow cannot happen when using credit-based flow control because the sender
will run out of credits, thus stopping transmission. For both schemes, full link
bandwidth utilization is possible only if buffers are large enough for the distance
over which communication takes place.

Let’s compare the buffering requirements of the two flow control techniques in
a simple example covering the various interconnection network domains.

Suppose we have a dedicated-link network with a raw data bandwidth of 8 Gbps

for each link in each direction interconnecting two devices. Packets of 100 bytes
(including the header) are continuously transmitted from one device to the other to
fully utilize network bandwidth.What is the minimum amount of credits and buffer
space required by credit-based flow control assuming interconnect distances of
1 cm, 1 m, 100 m, and 10 km if only link propagation delay is taken into account?

How does the minimum buffer space compare against Xon/Xoff?

At the start, the receiver buffer is initially empty and the sender contains a number
of credits equal to buffer capacity. The sender will consume a credit every time a
packet is transmitted. For the sender to continue transmitting packets at network
speed, the first returned credit must reach the sender before the sender runs out
of credits. After receiving the first credit, the sender will keep receiving credits
at the same rate it transmits packets. As we are considering only propagation delay
over the link and no other sources of delay or overhead, null processing time at the
sender and receiver are assumed. The time required for the first credit to reach the
sender since it started transmission of the first packet is equal to the round-trip
propagation delay for the packet transmitted to the receiver and the return credit
transmitted back to the sender. This time must be less than or equal to the packet
transmission time multiplied by the initial credit count:

Packet propagation delay +Credit propagation delay� Packet size
Bandwidth

�Credit count

The speed of light is about 300,000 km/sec. Assume we can achieve 66% of that in
a conductor. Thus, the minimum number of credits for each distance is given by

Distance
2=3�300,000 km=sec

� �
�2� 100 bytes

8 Gbits=sec
�Credit count

As each credit represents one packet-sized buffer entry, the minimum amount of
credits (and, likewise, buffer space) needed by each device is one for the 1 cm and
1 m distances, 10 for the 100 m distance, and 1000 packets for the 10 km distance.
For Xon/Xoff, this minimum buffer size corresponds to the buffer fragment from
the high occupancy level to the top of the buffer and from the low occupancy level
to the bottom of the buffer. With the added hysteresis between both occupancy
levels to reduce notifications, the minimum buffer space for Xon/Xoff turns out

to be more than twice that for credit-based flow control.
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Networks that implement flow control do not need to drop packets and are
sometimes referred to as lossless networks; networks that drop packets are some-
times referred to as lossy networks. This single difference in the way packets are
handled by the network drastically constrains the kinds of solutions that can be
implemented to address other related network problems, including packet routing,
congestion, deadlock, and reliability, as we will see later in this appendix. This
difference also affects performance significantly as dropped packets need to be
retransmitted, thus consuming more link bandwidth and suffering extra delay.
These behavioral and performance differences ultimately restrict the interconnec-
tion network domains for which certain solutions are applicable. For instance, most
networks delivering packets over relatively short distances (e.g., OCNs and SANs)
tend to implement flow control; on the other hand, networks delivering packets
over relatively long distances (e.g., LANs and WANs) tend to be designed to drop
packets. For the shorter distances, the delay in propagating flow control informa-
tion back to the sender can be negligible, but not so for longer distance scales. The
kinds of applications that are usually run also influence the choice of lossless ver-
sus lossy networks. For instance, dropping packets sent by an Internet client like a
Web browser affects only the delay observed by the corresponding user. However,
dropping a packet sent by a process from a parallel application may lead to a sig-
nificant increase in the overall execution time of the application if that packet’s
delay is on the critical path.

The second responsibility of ensuring that packets are neither garbled nor lost
in transit can be met by implementing somemechanisms to detect and recover from
transport errors. Adding a checksum or some other error detection field to the
packet format, as shown in Figure F.4, allows the receiver to detect errors. This
redundant information is calculated when the packet is sent and checked upon
receipt. The receiver then sends an acknowledgment in the form of a control packet
if the packet passes the test. Note that this acknowledgment control packet may
simultaneously contain flow control information (e.g., a credit or stop signal), thus
reducing control packet overhead. As described earlier, the most common way to
recover from errors is to have a timer record the time each packet is sent and to
presume the packet is lost or erroneously transported if the timer expires before
an acknowledgment arrives. The packet is then resent.

The communication protocol across the network and network end nodes must
handle many more issues other than packet transport, flow control, and reliability.
For example, if two devices are from different manufacturers, they might order
bytes differently within a word (Big Endian versus Little Endian byte ordering).
The protocol must reverse the order of bytes in each word as part of the delivery
system. It must also guard against the possibility of duplicate packets if a delayed
packet were to become unstuck. Depending on the system requirements, the pro-
tocol may have to implement pipelining among operations to improve perfor-
mance. Finally, the protocol may need to handle network congestion to prevent
performance degradation when more than two devices are connected, as described

later in Section F.7.
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Characterizing Performance: Latency and Effective Bandwidth

Now that we have covered the basic steps for sending and receiving messages
between two devices, we can discuss performance. We start by discussing the
latency when transporting a single packet. Then we discuss the effective bandwidth
(also known as throughput) that can be achieved when the transmission of multiple
packets is pipelined over the network at the packet level.

Figure F.5 shows the basic components of latency for a single packet. Note that
some latency components will be broken down further in later sections as the inter-
nals of the “black box” network are revealed. The timing parameters in Figure F.5
apply to many interconnection network domains: inside a chip, between chips on a
board, between boards in a chassis, between chassis within a computer, between
computers in a cluster, between clusters, and so on. The values may change, but the
components of latency remain the same.

The following terms are often used loosely, leading to confusion, so we define
them here more precisely:

■ Bandwidth—Strictly speaking, the bandwidth of a transmission medium refers
to the range of frequencies for which the attenuation per unit length introduced
by that medium is below a certain threshold. It must be distinguished from the
transmission speed, which is the amount of information transmitted over a
medium per unit time. For example, modems successfully increased transmis-
sion speed in the late 1990s for a fixed bandwidth (i.e., the 3 KHz bandwidth
provided by voice channels over telephone lines) by encoding more voltage

levels and, hence, more bits per signal cycle. However, to be consistent with
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Figure F.5 Components of packet latency. Depending on whether it is an OCN, SAN,
LAN, or WAN, the relative amounts of sending and receiving overhead, time of flight,
and transmission time are usually quite different from those illustrated here.
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its more widely understood meaning, we use the term band-width to refer to the
maximum rate at which information can be transferred, where information
includes packet header, payload, and trailer. The units are traditionally bits
per second, although bytes per second is sometimes used. The term bandwidth
is also used to mean the measured speed of the medium (i.e., network links).
Aggregate bandwidth refers to the total data bandwidth supplied by the net-
work, and effective bandwidth or throughput is the fraction of aggregate band-
width delivered by the network to an application.

■ Time of flight—This is the time for the first bit of the packet to arrive at the
receiver, including the propagation delay over the links and delays due to other
hardware in the network such as link repeaters and network switches. The unit
of measure for time of flight can be in milliseconds for WANs, microseconds
for LANs, nanoseconds for SANs, and picoseconds for OCNs.

■ Transmission time—This is the time for the packet to pass through the network,
not including time of flight. One way to measure it is the difference in time
between when the first bit of the packet arrives at the receiver and when the
last bit of that packet arrives at the receiver. By definition, transmission time
is equal to the size of the packet divided by the data bandwidth of network
links. This measure assumes there are no other packets contending for that
bandwidth (i.e., a zero-load or no-load network).

■ Transport latency—This is the sum of time of flight and transmission time.
Transport latency is the time that the packet spends in the interconnection net-
work. Stated alternatively, it is the time between when the first bit of the packet
is injected into the network and when the last bit of that packet arrives at the
receiver. It does not include the overhead of preparing the packet at the sender
or processing it when it arrives at the receiver.

■ Sending overhead—This is the time for the end node to prepare the packet (as
opposed to the message) for injection into the network, including both hard-
ware and software components. Note that the end node is busy for the entire
time, hence the use of the term overhead. Once the end node is free, any sub-
sequent delays are considered part of the transport latency. We assume that
overhead consists of a constant term plus a variable term that depends on
packet size. The constant term includes memory allocation, packet header
preparation, setting up DMA devices, and so on. The variable term is mostly
due to copies from buffer to buffer and is usually negligible for very short
packets.

■ Receiving overhead—This is the time for the end node to process an incoming
packet, including both hardware and software components. We also assume
here that overhead consists of a constant term plus a variable term that depends
on packet size. In general, the receiving overhead is larger than the sending
overhead. For example, the receiver may pay the cost of an interrupt or may

have to reorder and reassemble packets into messages.
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The total latency of a packet can be expressed algebraically by the following:

Latency¼ Sending overhead +Time of flight +
Packet size
Bandwidth

+Receiving overhead

Let’s see how the various components of transport latency and the sending and
receiving overheads change in importance as we go across the interconnection
network domains: from OCNs to SANs to LANs to WANs.

Assume that we have a dedicated link network with a data bandwidth of 8 Gbps

for each link in each direction interconnecting two devices within an OCN, SAN,
LAN, or WAN, and we wish to transmit packets of 100 bytes (including the
header) between the devices. The end nodes have a per-packet sending overhead
of x+0.05 ns/byte and receiving overhead of 4/3(x)+0.05 ns/byte, where x is 0 μs
for the OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the WAN, which
are typical for these network types. Calculate the total latency to send packets from
one device to the other for interconnection distances of 0.5 cm, 5 m, 5000 m, and
5000 km assuming that time of flight consists only of link propagation delay

(i.e., no switching or other sources of delay).

Using the above expression and the calculation for propagation delay through a
conductor given in the previous example, we can plug in the parameters for each
of the networks to find their total packet latency. For the OCN:

Latency¼Sending overhead +Time of flight +
Packet size
Bandwidth

+Receiving overhead

¼5 ns +
0:5 cm

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 5 ns

Converting all terms into nanoseconds (ns) leads to the following for
the OCN:

Total latency OCNð Þ¼5 ns +
0:5 cm

2=3�300,000 km=sec
+
100�8

8
ns + 5 ns

¼5 ns + 0:025 ns + 100 ns + 5 ns

¼110:025 ns

Substituting in the appropriate values for the SAN gives the following latency:

Total latency SANð Þ¼0:305 μs +
5 m

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 0:405 μs

¼0:305 μs + 0:025 μs + 0:1 μs + 0:405 μs

¼0:835 μs
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Substituting in the appropriate values for the LAN gives the following latency:

Total latency LANð Þ¼3:005 μs +
5 km

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 4:005 μs

¼3:005 μs + 25 μs + 0:1 μs + 4:005 μs

¼32:11 μs

Substituting in the appropriate values for the WAN gives the following latency:

Total latency WANð Þ¼30:005 μs +
5000 km

2=3�300,000 km=sec
+

100 bytes
8 Gbits=sec

+ 40:005 μs

¼30:005 μs + 25000 μs + 0:1 μs + 40:005 μs

¼25:07 ms

The increased fraction of the latency required by time of flight for the longer
distances along with the greater likelihood of errors over the longer distances are
among the reasonswhyWANsandLANsusemore sophisticatedand time-consuming
communication protocols, which increase sending and receiving overheads. The need
for standardization is another reason. Complexity also increases due to the require-
ments imposed on the protocol by the typical applications that run over the various
interconnectionnetworkdomains aswego fromtens tohundreds to thousands tomany
thousands of devices.Wewill consider this in later sectionswhenwe discuss connect-
ingmore than twodevices. The above example shows that the propagation delay com-
ponent of time of flight for WANs and some LANs is so long that other latency
components—including the sending and receiving overheads—can practically be
ignored. This is not so for SANs andOCNswhere the propagation delay pales in com-
parison to the overheadsand transmissiondelay.Remember that time-of-flight latency
due to switches and other hardware in the network besides sheer propagation delay
through the links is neglected in the above example. For noncongested networks,
switch latency generally is small compared to the overheads and propagation delay
through the links inWANs andLANs, but this is not necessarily so formultiprocessor
SANs and multicore OCNs, as we will see in later sections.

So far, we have considered the transport of a single packet and computed the
associated end-to-end total packet latency. In order to compute the effective band-
width for two networked devices, we have to consider a continuous stream of
packets transported between them. We must keep in mind that, in addition to min-
imizing packet latency, the goal of any network optimized for a given cost and
power consumption target is to transfer the maximum amount of available infor-
mation in the shortest possible time, as measured by the effective bandwidth deliv-
ered by the network. For applications that do not require a response before sending
the next packet, the sender can overlap the sending overhead of later packets with
the transport latency and receiver overhead of prior packets. This essentially pipe-
lines the transmission of packets over the network, also known as link pipelining.

Fortunately, as discussed in prior chapters of this book, there are many application
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areas where communication from either several applications or several threads
from the same application can run concurrently (e.g., a Web server concurrently
serving thousands of client requests or streaming media), thus allowing a device
to send a stream of packets without having to wait for an acknowledgment or a
reply. Also, as long messages are usually divided into packets of maximum size
before transport, a number of packets are injected into the network in succession
for such cases. If such overlap were not possible, packets would have to wait for
prior packets to be acknowledged before being transmitted and thus suffer signif-
icant performance degradation.

Packets transported in a pipelined fashion can be acknowledged quite straight-
forwardly simply by keeping a copy at the source of all unacknowledged packets
that have been sent and keeping track of the correspondence between returned
acknowledgments and packets stored in the buffer. Packets will be removed from
the buffer when the corresponding acknowledgment is received by the sender. This
can be done by including the message ID and packet sequence number associated
with the packet in the packet’s acknowledgment. Furthermore, a separate timer
must be associated with each buffered packet, allowing the packet to be resent
if the associated time-out expires.

Pipelining packet transport over the network has many similarities with pipe-
lining computation within a processor. However, among some differences are that
it does not require any staging latches. Information is simply propagated through
network links as a sequence of signal waves. Thus, the network can be considered
as a logical pipeline consisting of as many stages as are required so that the time of
flight does not affect the effective bandwidth that can be achieved. Transmission of
a packet can start immediately after the transmission of the previous one, thus over-
lapping the sending overhead of a packet with the transport and receiver latency of
previous packets. If the sending overhead is smaller than the transmission time,
packets follow each other back-to-back, and the effective bandwidth approaches
the raw link bandwidth when continuously transmitting packets. On the other hand,
if the sending overhead is greater than the transmission time, the effective band-
width at the injection point will remain well below the raw link bandwidth. The
resulting link injection bandwidth, BWLinkInjection, for each link injecting a contin-
uous stream of packets into a network is calculated with the following expression:

BWLinkInjection ¼ Packet size
max Sending overhead,Transmission timeð Þ

We must also consider what happens if the receiver is unable to consume packets
at the same rate they arrive. This occurs if the receiving overhead is greater than the
sending overhead and the receiver cannot process incoming packets fast enough.
In this case, the link reception bandwidth, BWLinkReception, for each reception link
of the network is less than the link injection bandwidth and is obtained with this
expression:

BWLinkReception ¼ Packet size

max Receiving overhead,Transmission timeð Þ
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When communication takes place between two devices interconnected by ded-
icated links, all the packets sent by one device will be received by the other. If the
receiver cannot process packets fast enough, the receiver buffer will become full,
and flowcontrolwill throttle transmission at the sender.As this situation is produced
by causes external to the network, we will not consider it further here. Moreover, if
the receiving overhead is greater than the sending overhead, the receiver buffer will
fill up and flow controlwill, likewise, throttle transmission at the sender. In this case,
the effect of flow control is, on average, the same as if we replace sending overhead
with receiving overhead. Assuming an ideal network that behaves like two dedi-
cated links running in opposite directions at the full link bandwidth between the
two devices—which is consistent with our black box view of the network to this
point—the resulting effective bandwidth is the smaller of twice the injection band-
width (to account for the two injection links, one for each device) or twice the recep-
tion bandwidth. This results in the following expression for effective bandwidth:

h¼ min 2�BWLinkInjection,2�BWLinkReception
� �¼ 2�Packet size

max Overhead,Transmission timeð Þ
where Overhead¼max(Sending overhead, Receiving overhead). Taking into
account the expression for the transmission time, it is obvious that the effective
bandwidth delivered by the network is identical to the aggregate network band-
width when the transmission time is greater than the overhead. Therefore, full
network utilization is achieved regardless of the value for the time of flight
and, thus, regardless of the distance traveled by packets, assuming ideal network
behavior (i.e., enough credits and buffers are provided for credit-based and Xon/
Xoff flow control). This analysis assumes that the sender and receiver network
interfaces can process only one packet at a time. If multiple packets can be pro-
cessed in parallel (e.g., as is done in IBM’s Federation network interfaces),
the overheads for those packets can be overlapped, which increases effective band-
width by that overlap factor up to the amount bounded by the transmission time.

Let’s use the equation on page F-17 to explore the impact of packet size, trans-
mission time, and overhead on BWLink Injection, BWLinkReception, and effective band-

width for the various network domains: OCNs, SANs, LANs, and WANs.
As in the previous example, assume we have a dedicated link network with a data

bandwidth of 8 Gbps for each link in each direction interconnecting the two
devices within an OCN, SAN, LAN, or WAN. Plot effective bandwidth versus
packet size for each type of network for packets ranging in size from 4 bytes
(i.e., a single 32-bit word) to 1500 bytes (i.e., the maximum transfer unit for Ether-
net), assuming that end nodes have the same per-packet sending and receiving
overheads as before: x+0.05 ns/byte and 4/3(x)+0.05 ns/byte, respectively, where
x is 0 μs for the OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the
WAN. What limits the effective bandwidth, and for what packet sizes is the effec-
tive bandwidth within 10% of the aggregate network bandwidth?
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Figure F.6 Effective bandwidth versus packet size plotted in semi-log form for the
four network domains. Overhead can be amortized by increasing the packet size, but
for too large of an overhead (e.g., for WANs and some LANs) scaling the packet size is of
little help. Other considerations come into play that limit the maximum packet size.
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Answer
 Figure F.6 plots effective bandwidth versus packet size for the four network
domains using the simple equation and parameters given above. For all packet
sizes in the OCN, transmission time is greater than overhead (sending or receiv-
ing), allowing full utilization of the aggregate bandwidth, which is 16 Gbps—that
is, injection link (alternatively, reception link) bandwidth times two to account for
both devices. For the SAN, overhead—specifically, receiving overhead—is larger
than transmission time for packets less than about 800 bytes; consequently, packets
of 655 bytes and larger are needed to utilize 90% or more of the aggregate band-
width. For LANs andWANs, most of the link bandwidth is not utilized since over-
head in this example is many times larger than transmission time for all
packet sizes.

This example highlights the importance of reducing the sending and receiving
overheads relative to packet transmission time in order to maximize the effective

bandwidth delivered by the network.
The analysis above suggests that it is possible to provide some upper bound for
the effective bandwidth by analyzing the path followed by packets and determining
where the bottleneck occurs. We can extend this idea beyond the network

interfaces by defining a model that considers the entire network from end to
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end as a pipe and identifying the narrowest section of that pipe. There are three
areas of interest in that pipe: the aggregate of all network injection links and the
corresponding network injection bandwidth (BWNetworkInjection), the aggregate of
all network reception links and the corresponding network reception bandwidth
(BWNetworkReception), and the aggregate of all network links and the corresponding
network bandwidth (BWNetwork). Expressions for these will be given in
later sections as various layers of the black box view of the network are
peeled away.

To this point, we have assumed that for just two interconnected devices the
black box network behaves ideally and the network bandwidth is equal to
the aggregate raw network bandwidth. In reality, it can be much less than the aggre-
gate bandwidth as we will see in the following sections. In general, the effective
bandwidth delivered end-to-end by the network to an application is upper bounded
by the minimum across all three potential bottleneck areas:

Effective bandwidth¼ min BWNetworkInjection, BWNetwork, BWNetworkReception
� �

We will expand upon this expression further in the following sections as we reveal
more about interconnection networks and consider the more general case of inter-
connecting more than two devices.

In some sections of this appendix, we show how the concepts introduced in
the section take shape in example high-end commercial products. Figure F.7
lists several commercial computers that, at one point in time in their existence,
were among the highest-performing systems in the world within their class.
Although these systems are capable of interconnecting more than two devices,
they implement the basic functions needed for interconnecting only two
devices. In addition to being applicable to the SANs used in those systems,
the issues discussed in this section also apply to other interconnect domains:

from OCNs to WANs.
Connecting More than Two Devices

To this point, we have considered the connection of only two devices communi-
cating over a network viewed as a black box, but what makes interconnection net-
works interesting is the ability to connect hundreds or even many thousands of
devices together. Consequently, what makes them interesting also makes them
more challenging to build. In order to connect more than two devices, a suitable
structure and more functionality must be supported by the network. This section
continues with our black box approach by introducing, at a conceptual level, addi-
tional network structure and functions that must be supported when interconnect-
ing more than two devices. More details on these individual subjects are given in
Sections F.4 through F.7. Where applicable, we relate the additional structure and
functions to network media, flow control, and other basics presented in the previ-

ous section. In this section, we also classify networks into two broad categories



Figure F.7 Basic characteristics of interconnection networks in commercial high-performance computer systems.
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based on their connection structure—shared-media versus switched-media net-
works—and we compare them. Finally, expanded expressions for characterizing
network performance are given, followed by an example.

Additional Network Structure and Functions: Topology,
Routing, Arbitration, and Switching

Networks interconnecting more than two devices require mechanisms to physi-
cally connect the packet source to its destination in order to transport the packet
and deliver it to the correct destination. These mechanisms can be implemented
in different ways and significantly vary across interconnection network domains.
However, the types of network structure and functions performed by those mech-
anisms are very much the same, regardless of the domain.

When multiple devices are interconnected by a network, the connections

between them oftentimes cannot be permanently established with dedicated links.
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This could either be too restrictive as all the packets from a given source would go
to the same one destination (and not to others) or prohibitively expensive as a ded-
icated link would be needed from every source to every destination (we will eval-
uate this further in the next section). Therefore, networks usually share paths
among different pairs of devices, but how those paths are shared is determined
by the network connection structure, commonly referred to as the network topol-
ogy. Topology addresses the important issue of “What paths are possible for
packets?” so packets reach their intended destinations.

Every network that interconnects more than two devices also requires some
mechanism to deliver each packet to the correct destination. The associated func-
tion is referred to as routing, which can be defined as the set of operations that need
to be performed to compute a valid path from the packet source to its destinations.
Routing addresses the important issue of “Which of the possible paths are allow-
able (valid) for packets?” so packets reach their intended destinations. Depending
on the network, this function may be executed at the packet source to compute the
entire path, at some intermediate devices to compute fragments of the path on
the fly, or even at every possible destination device to verify whether that device
is the intended destination for the packet. Usually, the packet header shown in
Figure F.4 is extended to include the necessary routing information.

In general, as networks usually contain shared paths or parts thereof among dif-
ferent pairs of devices, packets may request some shared resources. When several
packets request the same resources at the same time, an arbitration function is
required to resolve the conflict. Arbitration, along with flow control, addresses
the important issue of “When are paths available for packets?” Every time arbitra-
tion is performed, there is a winner and possibly several losers. The losers are not
granted access to the requested resources and are typically buffered. As indicated in
the previous section, flow control may be implemented to prevent buffer overflow.
The winner proceeds toward its destination once the granted resources are switched
in, providing a path for the packet to advance. This function is referred to as switch-
ing. Switching addresses the important issue of “How are paths allocated to
packets?” To achieve better utilization of existing communication resources, most
networks do not establish an entire end-to-end path at once. Instead, as explained in
Section F.5, paths are usually established one fragment at a time.

These three network functions—routing, arbitration, and switching—must be
implemented in every network connecting more than two devices, no matter what
form the network topology takes. This is in addition to the basic functions men-
tioned in the previous section. However, the complexity of these functions and
the order in which they are performed depends on the category of network topol-
ogy, as discussed below. In general, routing, arbitration, and switching are required
to establish a valid path from source to destination from among the possible paths
provided by the network topology. Once the path has been established, the packet
transport functions previously described are used to reliably transmit packets and
receive them at the corresponding destination. Flow control, if implemented, pre-
vents buffer overflow by throttling the sender. It can be implemented at the end-to-

end level, the link level within the network, or both.
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Shared-Media Networks

The simplest way to connect multiple devices is to have them share the network
media, as shown for the bus in Figure F.8 (a). This has been the traditional way
of interconnecting devices. The shared media can operate in half-duplex mode,
where data can be carried in either direction over the media but simultaneous trans-
mission and reception of data by the same device is not allowed, or in full-duplex,
where the data can be carried in both directions and simultaneously transmitted and
received by the same device. Until very recently, I/O devices in most systems typ-
ically shared a single I/O bus, and early system-on-chip (SoC) designs made use of
a shared bus to interconnect on-chip components. The most popular LAN, Ether-
net, was originally implemented as a half-duplex bus shared by up to a hundred
computers, although now switched-media versions also exist.

Given that network media are shared, there must be a mechanism to coordinate
and arbitrate the use of the shared media so that only one packet is sent at a time. If
the physical distance between network devices is small, it may be possible to have
a central arbiter to grant permission to send packets. In this case, the network nodes
may use dedicated control lines to interface with the arbiter. Centralized arbitration
is impractical, however, for networks with a large number of nodes spread over
large distances, so distributed forms of arbitration are also used. This is the case
for the original Ethernet shared-media LAN.

A first step toward distributed arbitration of shared media is “looking before
you leap.” A node first checks the network to avoid trying to send a packet while
another packet is already in the network. Listening before transmission to avoid
collisions is called carrier sensing. If the interconnection is idle, the node tries
to send. Looking first is not a guarantee of success, of course, as some other node

may also decide to send at the same instant. When two nodes send at the same time,

Node Node

Shared-media network

Switched-media network

(B)

Switch fabric

(A)

Node

Node Node

Node Node

Figure F.8 (a) A shared-media network versus (b) a switched-media network. Ether-
net was originally a shared media network, but switched Ethernet is now available. All
nodes on the shared-media networksmust dynamically share the raw bandwidth of one
link, but switched-media networks can support multiple links, providing higher raw
aggregate bandwidth.
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a collision occurs. Let’s assume that the network interface can detect any resulting
collisions by listening to hear if the data become garbled by other data appearing
on the line. Listening to detect collisions is called collision detection. This is the
second step of distributed arbitration.

The problem is not solved yet. If, after detecting a collision, every node on the
network waited exactly the same amount of time, listened to be sure there was no
traffic, and then tried to send again, we could still have synchronized nodes that
would repeatedly bump heads. To avoid repeated head-on collisions, each node
whose packet gets garbled waits (or backs off) a random amount of time before
resending. Randomization breaks the synchronization. Subsequent collisions
result in exponentially increasing time between attempts to retransmit, so as not
to tax the network.

Although this approach controls congestion on the shared media, it is not guar-
anteed to be fair—some subsequent node may transmit while those that collided
are waiting. If the network does not have high demand from many nodes, this
simple approach works well. Under high utilization, however, performance
degrades since the media are shared and fairness is not ensured. Another distrib-
uted approach to arbitration of shared media that can support fairness is to pass a
token between nodes. The function of the token is to grant the acquiring node the
right to use the network. If the token circulates in a cyclic fashion between the
nodes, a certain amount of fairness is ensured in the arbitration process.

Once arbitration has been performed and a device has been granted access to
the shared media, the function of switching is straightforward. The granted device
simply needs to connect itself to the shared media, thus establishing a path to every
possible destination. Also, routing is very simple to implement. Given that the
media are shared and attached to all the devices, every device will see every packet.
Therefore, each device just needs to check whether or not a given packet is
intended for that device. A beneficial side effect of this strategy is that a device
can send a packet to all the devices attached to the shared media through a single
transmission. This style of communication is called broadcasting, in contrast to
unicasting, in which each packet is intended for only one device. The shared media
make it easy to broadcast a packet to every device or, alternatively, to a subset of

devices, called multicasting.
Switched-Media Networks

The alternative to sharing the entire network media at once across all attached
nodes is to switch between disjoint portions of it shared by the nodes. Those por-
tions consist of passive point-to-point links between active switch components that
dynamically establish communication between sets of source-destination pairs.
These passive and active components make up what is referred to as the network
switch fabric or network fabric, to which end nodes are connected. This approach
is shown conceptually in Figure F.8(b). The switch fabric is described in greater
detail in Sections F.4 through F.7, where various black box layers for switched-

media networks are further revealed. Nevertheless, the high-level view shown
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in Figure F.8(b) illustrates the potential bandwidth improvement of switched-
media networks over shared-media networks: aggregate bandwidth can be many
times higher than that of shared-media networks, allowing the possibility of greater
effective bandwidth to be achieved. At best, only one node at a time can transmit
packets over the shared media, whereas it is possible for all attached nodes to do so
over the switched-media network.

Like their shared-media counterparts, switched-media networks must imple-
ment the three additional functions previously mentioned: routing, arbitration,
and switching. Every time a packet enters the network, it is routed in order to select
a path toward its destination provided by the topology. The path requested by the
packet must be granted by some centralized or distributed arbiter, which resolves
conflicts among concurrent requests for resources along the same path. Once the
requested resources are granted, the network “switches in” the required connec-
tions to establish the path and allows the packet to be forwarded toward its desti-
nation. If the requested resources are not granted, the packet is usually buffered, as
mentioned previously. Routing, arbitration, and switching functions are usually
performed within switched networks in this order, whereas in shared-media net-
works routing typically is the last function performed.

Comparison of Shared- and Switched-Media Networks

In general, the advantage of shared-media networks is their low cost, but, conse-
quently, their aggregate network bandwidth does not scale at all with the number of
interconnected devices. Also, a global arbitration scheme is required to resolve
conflicting demands, possibly introducing another type of bottleneck and again
limiting scalability. Moreover, every device attached to the shared media increases
the parasitic capacitance of the electrical conductors, thus increasing the time of
flight propagation delay accordingly and, possibly, clock cycle time. In addition,
it is more difficult to pipeline packet transmission over the network as the shared
media are continuously granted to different requesting devices.

The main advantage of switched-media networks is that the amount of network
resources implemented scales with the number of connected devices, increasing
the aggregate network bandwidth. These networks allow multiple pairs of nodes
to communicate simultaneously, allowing much higher effective network band-
width than that provided by shared-media networks. Also, switched-media net-
works allow the system to scale to very large numbers of nodes, which is not
feasible when using shared media. Consequently, this scaling advantage can, at
the same time, be a disadvantage if network resources grow superlinearly. Net-
works of superlinear cost that provide an effective network bandwidth that grows
only sublinearly with the number of interconnected devices are inefficient designs
for many applications and interconnection network domains.

Characterizing Performance: Latency and Effective Bandwidth

The routing, switching, and arbitration functionality described above introduces

some additional components of packet transport latency that must be taken into
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account in the expression for total packet latency. Assuming there is no contention
for network resources—as would be the case in an unloaded network—total packet
latency is given by the following:

ncy¼ Sending overhead + TTotalProp + TR +TA +TS
� �

+
Packet size
Bandwidth

+Receiving overhead

Here TR, TA, and TS are the total routing time, arbitration time, and switching time
experienced by the packet, respectively, and are either measured quantities or cal-
culated quantities derived from more detailed analyses. These components are
added to the total propagation delay through the network links, TTotalProp, to give
the overall time of flight of the packet.

The expression above gives only a lower bound for the total packet latency as it
does not account for additional delays due to contention for resources that may
occur. When the network is heavily loaded, several packets may request the same
network resources concurrently, thus causing contention that degrades perfor-
mance. Packets that lose arbitration have to be buffered, which increases packet
latency by some contention delay amount of waiting time. This additional delay
is not included in the above expression. When the network or part of it approaches
saturation, contention delay may be several orders of magnitude greater than the
total packet latency suffered by a packet under zero load or even under slightly
loaded network conditions. Unfortunately, it is not easy to compute analytically
the total packet latency when the network is more than moderately loaded. Mea-
surement of these quantities using cycle-accurate simulation of a detailed network
model is a better and more precise way of estimating packet latency under such
circumstances. Nevertheless, the expression given above is useful in calculating
best-case lower bounds for packet latency.

For similar reasons, effective bandwidth is not easy to compute exactly, but we
can estimate best-case upper bounds for it by appropriately extending the model
presented at the end of the previous section. What we need to do is to find the nar-
rowest section of the end-to-end network pipe by finding the network injection
bandwidth (BWNetworkInjection), the network reception bandwidth (BWNetworkRecep-

tion), and the network bandwidth (BWNetwork) across the entire network intercon-
necting the devices.

The BWNetworkInjection can be calculated simply by multiplying the expression
for link injection bandwidth, BWLinkInjection, by the total number of network injec-
tion links. The BWNetworkReception is calculated similarly using BWLinkReception, but
it must also be scaled by a factor that reflects application traffic and other charac-
teristics. For more than two interconnected devices, it is no longer valid to assume a
one-to-one relationship among sources and destinations when analyzing the effect
of flow control on link reception bandwidth. It could happen, for example, that
several packets from different injection links arrive concurrently at the same recep-
tion link for applications that have many-to-one traffic characteristics, which
causes contention at the reception links. This effect can be taken into account
by an average reception factor parameter, σ, which is either a measured quantity

or a calculated quantity derived from detailed analysis. It is defined as the average
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fraction or percentage of packets arriving at reception links that can be accepted.
Only those packets can be immediately delivered, thus reducing network reception
bandwidth by that factor. This reduction occurs as a result of application behavior
regardless of internal network characteristics. Finally, BWNetwork takes into
account the internal characteristics of the network, including contention. We
will progressively derive expressions in the following sections that will enable
us to calculate this as more details are revealed about the internals of our black
box interconnection network.

Overall, the effective bandwidth delivered by the network end-to-end to an
application is determined by the minimum across the three sections, as described
by the following:

Effective bandwidth¼min BWNetworkInjection,BWNetwork,σ�BWNetworkReception
� �

¼min N�BWLinkInjection,BWNetwork,σ�N�BWLinkReception
� �

Let’s use the above expressions to compare the latency and effective bandwidth
of shared-media networks against switched-media networks for the four intercon-

nection network domains: OCNs, SANs, LANs, and WANs.
Plot the total packet latency and effective bandwidth as the number of intercon-

nected nodes, N, scales from 4 to 1024 for shared-media and switched-media
OCNs, SANs, LANs, and WANs. Assume that all network links, including the
injection and reception links at the nodes, each have a data bandwidth of 8 Gbps,
and unicast packets of 100 bytes are transmitted. Shared-media networks share one
link, and switched-media networks have at least as many network links as there are
nodes. For both, ignore latency and bandwidth effects due to contention within
the network. End nodes have per-packet sending and receiving overheads of
x+0.05 ns/byte and 4/3(x)+0.05 ns/byte, respectively, where x is 0 μs for the
OCN, 0.3 μs for the SAN, 3 μs for the LAN, and 30 μs for the WAN, and inter-
connection distances are 0.5 cm, 5 m, 5000 m, and 5000 km, respectively. Also
assume that the total routing, arbitration, and switching times are constants or func-
tions of the number of interconnected nodes: TR¼2.5 ns, TA¼2.5(N) ns, and
TS¼2.5 ns for shared-media networks and TR¼TA¼TS¼2.5(log2 N) ns for
switched-media networks. Finally, taking into account application traffic charac-
teristics for the network structure, the average reception factor, σ, is assumed to be

�1 �1/4
N for shared media and polylogarithmic (log2 N) for switched media.

All components of total packet latency are the same as in the example given in the
previous section except for time of flight, which now has additional routing, arbi-
tration, and switching delays. For shared-media networks, the additional delays
total 5+2.5(N) ns; for switched-media networks, they total 7.5(log2 N) ns. Latency
is plotted only for OCNs and SANs in Figure F.9 as these networks give the more
interesting results. For OCNs, TR, TA, and TS combine to dominate time of flight
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and are much greater than each of the other latency components for a moderate to
large number of nodes. This is particularly so for the shared-media network. The
latency increases much more dramatically with the number of nodes for shared
media as compared to switched media given the difference in arbitration delay
between the two. For SANs, TR, TA, and TS dominate time of flight for most net-
work sizes but are greater than each of the other latency components in shared-
media networks only for large-sized networks; they are less than the other latency
components for switched-media networks but are not negligible. For LANs and
WANs, time of flight is dominated by propagation delay, which dominates other
latency components as calculated in the previous section; thus, TR, TA, and TS are
negligible for both shared and switched media.

Figure F.10 plots effective bandwidth versus number of interconnected nodes
for the four network domains. The effective bandwidth for all shared-media net-
works is constant through network scaling as only one unicast packet can be
received at a time over all the network reception links, and that is further limited
by the receiving overhead of each network for all but the OCN. The effective band-
width for all switched-media networks increases with the number of intercon-
nected nodes, but it is scaled down by the average reception factor. The
receiving overhead further limits effective bandwidth for all but the OCN.
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idth versus number of interconnected nodes plotted in semi-log form for the four
rity in effective bandwidth between shared- and switched-media networks for all inter-
nificantly as the number of nodes in the network increases. Only the switched on-chip
effective bandwidth equal to the aggregate bandwidth for the parameters given in this
Given the obvious advantages, why weren’t switched networks always used?
Earlier computers were much slower and could share the network media with little
impact on performance. In addition, the switches for earlier LANs andWANs took
up several large boards and were about as large as an entire computer. As a con-
sequence of Moore’s law, the size of switches has reduced considerably, and sys-
tems have a much greater need for high-performance communication. Switched
networks allow communication to harvest the same rapid advancements from sil-
icon as processors and main memory. Whereas switches from telecommunication
companies were once the size of mainframe computers, today we see single-chip
switches and even entire switched networks within a chip. Thus, technology and
application trends favor switched networks today. Just as single-chip processors
led to processors replacing logic circuits in a surprising number of places,
single-chip switches and switched on-chip networks are increasingly replacing
shared-media networks (i.e., buses) in several application domains. As an example,
PCI-Express (PCIe)—a switched network—was introduced in 2005 to replace the
traditional PCI-X bus on personal computer motherboards.

The previous example also highlights the importance of optimizing the routing,
arbitration, and switching functions in OCNs and SANs. For these network

domains in particular, the interconnect distances and overheads typically are small
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enough to make latency and effective bandwidth much more sensitive to how well
these functions are implemented, particularly for larger-sized networks. This leads
mostly to implementations based mainly on the faster hardware solutions for these
domains. In LANs andWANs, implementations based on the slower but more flex-
ible software solutions suffice given that performance is largely determined by
other factors. The design of the topology for switched-media networks also plays
a major role in determining how close to the lower bound on latency and the upper
bound on effective bandwidth the network can achieve for OCN and SAN
domains.

The next three sections touch on these important issues in switched networks,

with the next section focused on topology.
Network Topology

When the number of devices is small enough, a single switch is sufficient to inter-
connect them within a switched-media network. However, the number of switch
ports is limited by existing very-large-scale integration (VLSI) technology, cost
considerations, power consumption, and so on. When the number of required net-
work ports exceeds the number of ports supported by a single switch, a fabric of
interconnected switches is needed. To embody the necessary property of full
access (i.e., connectedness), the network switch fabric must provide a path from
every end node device to every other device. All the connections to the network
fabric and between switches within the fabric use point-to-point links as opposed
to shared links—that is, links with only one switch or end node device on either
end. The interconnection structure across all the components—including switches,
links, and end node devices—is referred to as the network topology.

The number of network topologies described in the literature would be difficult
to count, but the number that have been used commercially is no more than about a
dozen or so. During the 1970s and early 1980s, researchers struggled to propose
new topologies that could reduce the number of switches through which packets
must traverse, referred to as the hop count. In the 1990s, thanks to the introduction
of pipelined transmission and switching techniques, the hop count became less crit-
ical. Nevertheless, today, topology is still important, particularly for OCNs and
SANs, as subtle relationships exist between topology and other network design
parameters that impact performance, especially when the number of end nodes
is very large (e.g., 64 K in the Blue Gene/L supercomputer) or when the latency
is critical (e.g., in multicore processor chips). Topology also greatly impacts the
implementation cost of the network.

Topologies for parallel supercomputer SANs have been the most visible and
imaginative, usually converging on regularly structured ones to simplify routing,
packaging, and scalability. Those for LANs and WANs tend to be more haphazard
or ad hoc, having more to do with the challenges of long distance or connecting
across different communication subnets. Switch-based topologies for OCNs are

only recently emerging but are quickly gaining in popularity. This section
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describes the more popular topologies used in commercial products. Their advan-
tages, disadvantages, and constraints are also briefly discussed.

Centralized Switched Networks

As mentioned above, a single switch suffices to interconnect a set of devices when
the number of switch ports is equal to or larger than the number of devices. This
simple network is usually referred to as a crossbar or crossbar switch. Within the
crossbar, crosspoint switch complexity increases quadratically with the number of
ports, as illustrated in Figure F.11(a). Thus, a cheaper solution is desirable when
the number of devices to be interconnected scales beyond the point supportable by
implementation technology.

A common way of addressing the crossbar scaling problem consists of splitting
the large crossbar switch into several stages of smaller switches interconnected in
such a way that a single pass through the switch fabric allows any destination to be
reached from any source. Topologies arranged in this way are usually referred to as
multistage interconnection networks or multistage switch fabrics, and these net-
works typically have complexity that increases in proportion toN logN. Multistage
interconnection networks (MINs) were initially proposed for telephone exchanges
in the 1950s and have since been used to build the communication backbone for
parallel supercomputers, symmetric multiprocessors, multicomputer clusters, and

IP router switch fabrics.
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The interconnection pattern or patterns between MIN stages are permutations
that can be represented mathematically by a set of functions, one for each stage.
Figure F.11(b) shows a well-known MIN topology, the Omega, which uses the
perfect-shuffle permutation as its interconnection pattern for each stage, followed
by exchange switches, giving rise to a perfect-shuffle exchange for each stage. In
this example, eight input-output ports are interconnected with three stages of 2�2
switches. It is easy to see that a single pass through the three stages allows any input
port to reach any output port. In general, when using k�k switches, a MIN with N
input-output ports requires at least logk N stages, each of which contains N/k
switches, for a total of N/k (logk N) switches.

Despite their internal structure, MINs can be seen as centralized switch fabrics
that have end node devices connected at the network periphery, hence the name
centralized switched network. From another perspective, MINs can be viewed
as interconnecting nodes through a set of switches that may not have any nodes
directly connected to them, which gives rise to another popular name for central-

ized switched networks—indirect networks.
Compute the cost of interconnecting 4096 nodes using a single crossbar switch

relative to doing so using aMIN built from 2�2, 4�4, and 16�16 switches. Con-
sider separately the relative cost of the unidirectional links and the relative cost of
the switches. Switch cost is assumed to grow quadratically with the number of

input (alternatively, output) ports, k, for k�k switches.

The switch cost of the network when using a single crossbar is proportional to
40962. The unidirectional link cost is 8192, which accounts for the set of links from
the end nodes to the crossbar and also from the crossbar back to the end nodes.
When using a MIN with k�k switches, the cost of each switch is proportional
to k2 but there are 4096/k (logk 4096) total switches. Likewise, there are (logk
4096) stages of N unidirectional links per stage from the switches plus N links
to the MIN from the end nodes. Therefore, the relative costs of the crossbar with
respect to each MIN is given by the following:

Relative cost 2�2ð Þswitches ¼ 40962= 22�4096=2� log2 4096
� �¼ 170

Relative cost 4�4ð Þswitches ¼ 40962= 42�4096=4� log4 4096
� �¼ 170

Relative cost 16�16ð Þswitches ¼ 40962= 162�4096=16� log16 4096
� �¼ 85

Relative cost 2�2ð Þlinks ¼ 8192= 4096� log2 4096 + 1ð Þð Þ¼ 2=13¼ 0:1538

Relative cost 4�4ð Þlinks ¼ 8192= 4096� log4 4096 + 1ð Þð Þ¼ 2=7¼ 0:2857

Relative cost 16�16ð Þlinks ¼ 8192= 4096� log16 4096 + 1ð Þð Þ¼ 2=4¼ 0:5

In all cases, the single crossbar has much higher switch cost than the MINs. The
most dramatic reduction in cost comes from the MIN composed from the smallest
sized but largest number of switches, but it is interesting to see that the MINs with
2�2 and 4�4 switches yield the same relative switch cost. The relative link cost
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of the crossbar is lower than the MINs, but by less than an order of magnitude in
all cases. We must keep in mind that end node links are different from switch links
in their length and packaging requirements, so they usually have different associ-

ated costs. Despite the lower link cost, the crossbar has higher overall relative cost.
The reduction in switch cost of MINs comes at the price of performance: con-
tention is more likely to occur on network links, thus degrading performance. Con-
tention in the form of packets blocking in the network arises due to paths from
different sources to different destinations simultaneously sharing one or more
links. The amount of contention in the network depends on communication traffic
behavior. In the Omega network shown in Figure F.11(b), for example, a packet
from port 0 to port 1 blocks in the first stage of switches while waiting for a packet
from port 4 to port 0. In the crossbar, no such blocking occurs as links are not
shared among paths to unique destinations. The crossbar, therefore, is nonblock-
ing. Of course, if two nodes try to send packets to the same destination, there will
be blocking at the reception link even for crossbar networks. This is accounted for
by the average reception factor parameter (σ) when analyzing performance, as dis-
cussed at the end of the previous section.

To reduce blocking in MINs, extra switches must be added or larger ones need
to be used to provide alternative paths from every source to every destination. The
first commonly used solution is to add a minimum of logk N�1 extra switch stages
to the MIN in such a way that they mirror the original topology. The resulting net-
work is rearrangeably nonblocking as it allows nonconflicting paths among new
source-destination pairs to be established, but it also doubles the hop count and
could require the paths of some existing communicating pairs to be rearranged
under some centralized control. The second solution takes a different approach.
Instead of using more switch stages, larger switches—which can be implemented
by multiple stages if desired—are used in the middle of two other switch stages in
such a way that enough alternative paths through the middle-stage switches allow
for nonconflicting paths to be established between the first and last stages. The
best-known example of this is the Clos network, which is nonblocking. The multi-
path property of the three-stage Clos topology can be recursively applied to the
middle-stage switches to reduce the size of all the switches down to 2�2, assum-
ing that switches of this size are used in the first and last stages to begin with. What
results is a Beneŝ topology consisting of 2(log2 N)�1 stages, which is rearrange-
ably nonblocking. Figure F.12(a) illustrates both topologies, where all switches not
in the first and last stages comprise the middle-stage switches (recursively) of the
Clos network.

The MINs described so far have unidirectional network links, but bidirectional
forms are easily derived from symmetric networks such as the Clos and Beneŝ sim-
ply by folding them. The overlapping unidirectional links run in different direc-
tions, thus forming bidirectional links, and the overlapping switches merge into
a single switch with twice the ports (i.e., 4�4 switch). Figure F.12(b) shows

the resulting folded Beneŝ topology but in this case with the end nodes connected
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Figure F.12 Two Beneŝ networks. (a) A 16-port Clos topology, where themiddle-stage switches shown in the darker
shading are implemented with another Clos network whose middle-stage switches shown in the lighter shading are
implemented with yet another Clos network, and so on, until a Beneŝ network is produced that uses only 2�2
switches everywhere. (b) A folded Beneŝ network (bidirectional) in which 4�4 switches are used; end nodes attach
to the innermost set of the Beneŝ network (unidirectional) switches. This topology is equivalent to a fat tree, where
tree vertices are shown in shades.
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to the innermost switch stage of the original Beneŝ. Ports remain free at the other
side of the network but can be used for later expansion of the network to larger
sizes. These kind of networks are referred to as bidirectional multistage intercon-
nection networks. Among many useful properties of these networks are their mod-
ularity and their ability to exploit communication locality, which saves packets
from having to hop across all network stages. Their regularity also reduces routing
complexity and their multipath property enables traffic to be routed more evenly
across network resources and to tolerate faults.

Another way of deriving bidirectional MINs with nonblocking (rearrangeable)
properties is to form a balanced tree, where end node devices occupy leaves of the
tree and switches occupy vertices within the tree. Enough links in each tree level
must be provided such that the total link bandwidth remains constant across all
levels.Also, except for the root, switch ports for each vertex typically growas ki�ki,
where i is the tree level. This can be accomplished by using ki�1 total switches at
each vertex,where each switch has k input and k output ports, or k bidirectional ports
(i.e., k�k input-output ports). Networks having such topologies are called fat tree
networks. As only half of the k bidirectional ports are used in each direction, 2 N/k
switches are needed in each stage, totaling 2 N/k (logk/2 N) switches in the fat tree.
The number of switches in the root stage can be halved as no forward links are
needed, reducing switch count by N/k. Figure F.12(b) shows a fat tree for 4�4
switches. As can be seen, this is identical to the folded Beneŝ.

The fat tree is the topology of choice across a wide range of network sizes
for most commercial systems that use multistage interconnection networks. Most

SANs used in multicomputer clusters, and many used in the most powerful
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supercomputers, are based on fat trees. Commercial communication subsystems
offered by Myrinet, Mellanox, and Quadrics are also built from fat trees.

Distributed Switched Networks

Switched-media networks provide a very flexible framework to design communi-
cation subsystems external to the devices that need to communicate, as presented
above. However, there are cases where it is convenient to more tightly integrate the
end node devices with the network resources used to enable them to communicate.
Instead of centralizing the switch fabric in an external subsystem, an alternative
approach is to distribute the network switches among the end nodes, which then
become network nodes or simply nodes, yielding a distributed switched network.
As a consequence, each network switch has one or more end node devices directly
connected to it, thus forming a network node. These nodes are directly connected to
other nodes without indirectly going through some external switch, giving rise to
another popular name for these networks—direct networks.

The topology for distributed switched networks takes on a form much differ-
ent from centralized switched networks in that end nodes are connected across
the area of the switch fabric, not just at one or two of the peripheral edges of
the fabric. This causes the number of switches in the system to be equal to the
total number of nodes. A quite obvious way of interconnecting nodes consists
of connecting a dedicated link between each node and every other node in the
network. This fully connected topology provides the best connectivity (full con-
nectivity in fact), but it is more costly than a crossbar network, as the following
example shows.

Compute the cost of interconnecting N nodes using a fully connected topology rel-

ative to doing so using a crossbar topology. Consider separately the relative cost of
the unidirectional links and the relative cost of the switches. Switch cost is assumed
to grow quadratically with the number of unidirectional ports for k�k switches but

to grow only linearly with 1�k switches.

The crossbar topology requires an N�N switch, so the switch cost is proportional
to N2. The link cost is 2N, which accounts for the unidirectional links from the end
nodes to the centralized crossbar, and vice versa. In the fully connected topology,
two sets of 1� (N�1) switches (possibly merged into one set) are used in each of
the N nodes to connect nodes directly to and from all other nodes. Thus, the total
switch cost for all N nodes is proportional to 2N(N�1). Regarding link cost, each
of the N nodes requires two unidirectional links in opposite directions between its
end node device and its local switch. In addition, each of the N nodes has N�1
unidirectional links from its local switch to other switches distributed across
all the other end nodes. Thus, the total number of unidirectional links is
2N+N(N�1), which is equal to N(N+1) for all N nodes. The relative costs of
the fully connected topology with respect to the crossbar is, therefore, the
following:
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Relative costswitches ¼ 2N N�1ð Þ=N2 ¼ 2 N�1ð Þ=N¼ 2 1�1=Nð Þ
Relative costlinks ¼N N + 1ð Þ=2N¼ N + 1ð Þ=2

As the number of interconnected devices increases, the switch cost of the fully
connected topology is nearly double the crossbar, with both being very high
(i.e., quadratic growth). Moreover, the fully connected topology always has higher
relative link cost, which grows linearly with the number of nodes. Again, keep in
mind that end node links are different from switch links in their length and pack-
aging, particularly for direct networks, so they usually have different associated
costs. Despite its higher cost, the fully connected topology provides no extra per-
formance benefits over the crossbar as both are nonblocking. Thus, crossbar net-

works are usually used in practice instead of fully connected networks.
A lower-cost alternative to fully connecting all nodes in the network is to
directly connect nodes in sequence along a ring topology, as shown in
Figure F.13. For bidirectional rings, each of the N nodes now uses only 3�3
switches and just two bidirectional network links (shared by neighboring nodes),
for a total ofN switches andN bidirectional network links. This linear cost excludes
the N injection-reception bidirectional links required within nodes.

Unlike shared-media networks, rings can allow many simultaneous transfers:
the first node can send to the second while the second sends to the third, and so on.
However, as dedicated links do not exist between logically nonadjacent node pairs,
packets must hop across intermediate nodes before arriving at their destination,
increasing their transport latency. For bidirectional rings, packets can be trans-
ported in either direction, with the shortest path to the destination usually being
the one selected. In this case, packets must travel N/4 network switch hops, on
average, with total switch hop count being one more to account for the local switch
at the packet source node. Along the way, packets may block on network resources
due to other packets contending for the same resources simultaneously.

Fully connected and ring-connected networks delimit the two extremes of dis-
tributed switched topologies, but there are many points of interest in between for a
given set of cost-performance requirements. Generally speaking, the ideal

switched-media topology has cost approaching that of a ring but performance

Figure F.13 A ring network topology, folded to reduce the length of the longest link.
Shaded circles represent switches, and black squares represent end node devices. The
gray rectangle signifies a network node consisting of a switch, a device, and its
connecting link.



(A) 2D grid or mesh of 16 nodes (B) 2D torus of 16 nodes

(C) Hypercube of 16 nodes (16 = 24 so n = 4)

Figure F.14 Direct network topologies that have appeared in commercial systems,
mostly supercomputers.
The shaded circles represent switches, and the black squares represent end node
devices. Switches have many bidirectional network links, but at least one link goes
to the end node device. These basic topologies can be supplemented with extra links
to improve performance and reliability. For example, connecting the switches on the
periphery of the 2D mesh, shown in (a), using the unused ports on each switch forms
a 2D torus, shown in (b). The hypercube topology, shown in (c) is an n-dimensional inter-
connect for 2n nodes, requiring n+1 ports per switch: one for the n nearest neighbor
nodes and one for the end node device.
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approaching that of a fully connected topology. Figure F.14 illustrates three pop-
ular direct network topologies commonly used in systems spanning the cost-
performance spectrum. All of them consist of sets of nodes arranged along multiple
dimensions with a regular interconnection pattern among nodes that can be
expressed mathematically. In the mesh or grid topology, all the nodes in each
dimension form a linear array. In the torus topology, all the nodes in each dimen-
sion form a ring. Both of these topologies provide direct communication to neigh-
boring nodes with the aim of reducing the number of hops suffered by packets in
the network with respect to the ring. This is achieved by providing greater connec-
tivity through additional dimensions, typically no more than three in commercial
systems. The hypercube or n-cube topology is a particular case of the mesh in
which only two nodes are interconnected along each dimension, leading to a num-
ber of dimensions, n, that must be large enough to interconnect all N nodes in the

system (i.e., n¼ log2 N). The hypercube provides better connectivity than meshes



Example

Answer

F-38 ■ Appendix F Interconnection Networks
and tori at the expense of higher link and switch costs, in terms of the number of

links and number of ports per node.
Compute the cost of interconnecting N devices using a torus topology relative to

doing so using a fat tree topology. Consider separately the relative cost of the bidi-
rectional links and the relative cost of the switches—which is assumed to grow
quadratically with the number of bidirectional ports. Provide an approximate

expression for the case of switches being similar in size.

Using k�k switches, the fat tree requires 2 N/k (logk/2 N) switches, assuming the
last stage (the root) has the same number of switches as each of the other stages.
Given that the number of bidirectional ports in each switch is k (i.e., there are k
input ports and k output ports for a k�k switch) and that the switch cost grows
quadratically with this, total network switch cost is proportional to 2kN logk/2
N. The link cost is N logk/2 N as each of the logk/2 N stages requires N bidirectional
links, including those between the devices and the fat tree. The torus requires as
many switches as nodes, each of them having 2n+1 bidirectional ports, including
the port to attach the communicating device, where n is the number of dimensions.
Hence, total switch cost for the torus is (2n+1)2N. Each of the torus nodes requires
2n+1 bidirectional links for the n different dimensions and the connection for its
end node device, but as the dimensional links are shared by two nodes, the total
number of links is (2n/2+1)N¼ (n+1)N bidirectional links for all N nodes. Thus,
the relative costs of the torus topology with respect to the fat tree are

Relative costswitches ¼ 2n+ 1ð Þ2N=2kN log k=2 N¼ 2n + 1ð Þ2=2k log k=2 N

Relative costlinks ¼ n + 1ð ÞN=N log k=2 N¼ n + 1ð Þ= log k=2 N

When switch sizes are similar, 2n+1ffik. In this case, the relative cost is

Relative costswitches ¼ 2n+ 1ð Þ2=2k log k=2 N ¼ 2n+ 1ð Þ=2log k=2 N ¼ k=2log k=2 N

When the number of switch ports (also called switch degree) is small, tori have
lower cost, particularly when the number of dimensions is low. This is an espe-
cially useful property when N is large. On the other hand, when larger switches
and/or a high number of tori dimensions are used, fat trees are less costly and pref-
erable. For example, when interconnecting 256 nodes, a fat tree is four times more
expensive in terms of switch and link costs when 4�4 switches are used. This
higher cost is compensated for by lower network contention, on average. The
fat tree is comparable in cost to the torus when 8�8 switches are used (e.g., for
interconnecting 256 nodes). For larger switch sizes beyond this, the torus costs
more than the fat tree as each node includes a switch. This cost can be amortized

by connecting multiple end node devices per switch, called bristling.
The topologies depicted in Figure F.14 all have in common the interesting
characteristic of having their network links arranged in several orthogonal

dimensions in a regular way. In fact, these topologies all happen to be particular
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instances of a larger class of direct network topologies known as k-ary n-cubes,
where k signifies the number of nodes interconnected in each of the n dimen-
sions. The symmetry and regularity of these topologies simplify network imple-
mentation (i.e, packaging) and packet routing as the movement of a
packet along a given network dimension does not modify the number of remain-
ing hops in any other dimension toward its destination. As we will see in the
next section, this topological property can be readily exploited by simple rout-
ing algorithms.

Like their indirect counterpart, direct networks can introduce blocking among
packets that concurrently request the same path, or part of it. The only exception is
fully connected networks. The same way that the number of stages and switch hops
in indirect networks can be reduced by using larger switches, the hop count in
direct networks can likewise be reduced by increasing the number of topological
dimensions via increased switch degree.

It may seem to be a good idea always to maximize the number of dimen-
sions for a system of a certain size and switch cost. However, this is not nec-
essarily the case. Most electronic systems are built within our three-dimensional
(3D) world using planar (2D) packaging technology such as integrated circuit
chips, printed circuit boards, and backplanes. Direct networks with up to three
dimensions can be implemented using relatively short links within this 3D
space, independent of system size. Links in higher-dimensioned networks
would require increasingly longer wires or fiber. This increase in link length
with system size is also indicative of MINs, including fat trees, which require
either long links within all the stages or increasingly longer links as more stages
are added. As we saw in the first example given in Section F.2, flow-controlled
buffers increase in size proportionally to link length, thus requiring greater sil-
icon area. This is among the reasons why the supercomputer with the largest
number of compute nodes existing in 2005, the IBM Blue Gene/L, implemented
a 3D torus network for interprocessor communication. A fat tree would have
required much longer links, rendering a 64K node system less feasible. This
highlights the importance of correctly selecting the proper network topology
that meets system requirements.

Besides link length, other constraints derived from implementing the topology
may also limit the degree to which a topology can scale. These are available pin-out
and achievable bisection bandwidth. Pin count is a local restriction on the band-
width of a chip, printed circuit board, and backplane (or chassis) connector. In
a direct network that integrates processor cores and switches on a single chip or
multichip module, pin bandwidth is used both for interfacing with main memory
and for implementing node links. In this case, limited pin count could reduce the
number of switch ports or bit lines per link. In an indirect network, switches are
implemented separately from processor cores, allowing most of the pins to be ded-
icated to communication bandwidth. However, as switches are grouped onto
boards, the aggregate of all input-output links of the switch fabric on a board
for a given topology must not exceed the board connector pin-outs.

The bisection bandwidth is a more global restriction that gives the interconnect

density and bandwidth that can be achieved by a given implementation
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(packaging) technology. Interconnect density and clock frequency are related to
each other: When wires are packed closer together, crosstalk and parasitic capac-
itance increase, which usually impose a lower clock frequency. For example, the
availability and spacing of metal layers limit wire density and frequency of on-chip
networks, and copper track density limits wire density and frequency on a printed
circuit board. To be implementable, the topology of a network must not exceed the
available bisection bandwidth of the implementation technology. Most networks
implemented to date are constrained more so by pin-out limitations rather than
bisection bandwidth, particularly with the recent move to blade-based systems.
Nevertheless, bisection bandwidth largely affects performance.

For a given topology, bisection bandwidth, BWBisection, is calculated by
dividing the network into two roughly equal parts—each with half the
nodes—and summing the bandwidth of the links crossing the imaginary divid-
ing line. For nonsymmetric topologies, bisection bandwidth is the smallest of all
pairs of equal-sized divisions of the network. For a fully connected network, the
bisection bandwidth is proportional to N2/2 unidirectional links (or N2/4 bidi-
rectional links), where N is the number of nodes. For a bus, bisection bandwidth
is the bandwidth of just the one shared half-duplex link. For other topologies,
values lie in between these two extremes. Network injection and reception
bisection bandwidth is commonly used as a reference value, which is N/2 for
a network with N injection and reception links, respectively. Any network
topology that provides this bisection bandwidth is said to have full bisection
bandwidth.

Figure F.15 summarizes the number of switches and links required, the corre-
sponding switch size, the maximum and average switch hop distances between
nodes, and the bisection bandwidth in terms of links for several topologies

discussed in this section for interconnecting 64 nodes.

d cost of several network topologies for 64 nodes. The bus is the standard reference at
section bandwidth. Values are given in terms of bidirectional links and ports. Hop count
put link, but not the injection link at end nodes. Except for the bus, values are given for
and total number of links, including injection/reception links between end node devices
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Effects of Topology on Network Performance

Switched network topologies require packets to take one or more hops to reach
their destination, where each hop represents the transport of a packet through a
switch and one of its corresponding links. Interestingly, each switch and its corre-
sponding links can be modeled as a black box network connecting more than two
devices, as was described in the previous section, where the term “devices” here
refers to end nodes or other switches. The only differences are that the sending and
receiving overheads are null through the switches, and the routing, switching, and
arbitration delays are not cumulative but, instead, are delays associated with each
switch.

As a consequence of the above, if the average packet has to traverse d hops to
its destination, then TR+TA+TS¼ (Tr +Ta+Ts)�d, where Tr, Ta, and Ts are the
routing, arbitration, and switching delays, respectively, of a switch. With the
assumption that pipelining over the network is staged on each hop at the packet
level (this assumption will be challenged in the next section), the transmission
delay is also increased by a factor of the number of hops. Finally, with the simpli-
fying assumption that all injection links to the first switch or stage of switches and
all links (including reception links) from the switches have approximately the same
length and delay, the total propagation delay through the network TTotalProp is the
propagation delay through a single link, TLinkProp, multiplied by d+1, which is the
hop count plus one to account for the injection link. Thus, the best-case lower-
bound expression for average packet latency in the network (i.e., the latency in
the absence of contention) is given by the following expression:

ead +TLinkProp� d + 1ð Þ+ Tr +Ta +Tsð Þ�d +
Packet size
Bandwidth

� d + 1ð Þ +Receiving overhead

Again, the expression on page F-40 assumes that switches are able to pipeline
packet transmission at the packet level.

Following the method presented previously, we can estimate the best-case
upper bound for effective bandwidth by finding the narrowest section of the
end-to-end network pipe. Focusing on the internal network portion of that pipe,
network bandwidth is determined by the blocking properties of the topology.
Non-blocking behavior can be achieved only by providing many alternative paths
between every source-destination pair, leading to an aggregate network bandwidth
that is many times higher than the aggregate network injection or reception band-
width. This is quite costly. As this solution usually is prohibitively expensive, most
networks have different degrees of blocking, which reduces the utilization of the
aggregate bandwidth provided by the topology. This, too, is costly but not in terms
of performance.

The amount of blocking in a network depends on its topology and the traffic
distribution. Assuming the bisection bandwidth, BWBisection, of a topology is
implementable (as typically is the case), it can be used as a constant measure of
the maximum degree of blocking in a network. In the ideal case, the network

always achieves full bisection bandwidth irrespective of the traffic behavior, thus
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transferring the bottlenecking point to the injection or reception links. However, as
packets destined to locations in the other half of the network necessarily must cross
the bisection links, those links pose as potential bottleneck links—potentially
reducing the network bandwidth to below full bisection bandwidth. Fortunately,
not all of the traffic must cross the network bisection, allowing more of the aggre-
gate network bandwidth provided by the topology to be utilized. Also, network
topologies with a higher number of bisection links tend to have less blocking as
more alternative paths are possible to reach destinations and, hence, a higher per-
centage of the aggregate network bandwidth can be utilized. If only a fraction of the
traffic must cross the network bisection, as captured by a bisection traffic fraction
parameter γ (0<γ�1), the network pipe at the bisection is, effectively, widened by
the reciprocal of that fraction, assuming a traffic distribution that loads the bisec-
tion links at least as heavily, on average, as other network links. This defines the
upper limit on achievable network bandwidth, BWNetwork:

BWNetwork ¼BWBisection

γ

Accordingly, the expression for effective bandwidth becomes the following when
network topology is taken into consideration:

Effective bandwidth¼ min N�BWLinkInjection,
BWBisection

γ
,σ�N�BWLinkReception

� �

It is important to note that γ depends heavily on the traffic patterns generated
by applications. It is a measured quantity or calculated from detailed traffic
analysis.

A common communication pattern in scientific programs is to have nearest neigh-

bor elements of a two-dimensional array to communicate in a given direction. This
pattern is sometimes called NEWS communication, standing for north, east, west,
and south—the directions on a compass. Map an 8�8 array of elements one-to-
one onto 64 end node devices interconnected in the following topologies: bus, ring,
2D mesh, 2D torus, hypercube, fully connected, and fat tree. How long does it take
in the best case for each node to send one message to its northern neighbor and one
to its eastern neighbor, assuming packets are allowed to use any minimal path pro-
vided by the topology?What is the corresponding effective bandwidth? Ignore ele-
ments that have no northern or eastern neighbors. To simplify the analysis, assume
that all networks experience unit packet transport time for each network hop—that
is, TLinkProp, Tr, Ta, Ts, and packet transmission time for each hop sum to one. Also
assume the delay through injection links is included in this unit time, and sending/

receiving overhead is null.

This communication pattern requires us to send 2� (64�8) or 112 total packets—
that is, 56 packets in each of the two communication phases: northward and east-
ward. The number of hops suffered by packets depends on the topology. Commu-
nication between sources and destinations are one-to-one, so σ is 100%.
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The injection and reception bandwidth cap the effective bandwidth to a maximum
of 64 BW units (even though the communication pattern requires only 56 BW
units). However, this maximum may get scaled down by the achievable network
bandwidth, which is determined by the bisection bandwidth and the fraction of
traffic crossing it, γ, both of which are topology dependent. Here are the various
cases:

■ Bus—The mapping of the 8�8 array elements to nodes makes no difference
for the bus as all nodes are equally distant at one hop away. However,
the 112 transfers are done sequentially, taking a total of 112 time units.
The bisection bandwidth is 1, and γ is 100%. Thus, effective bandwidth
is only 1 BW unit.

■ Ring—Assume the first row of the array is mapped to nodes 0 to 7, the second
row to nodes 8 to 15, and so on. It takes just one time unit for all nodes simul-
taneously to send to their eastern neighbor (i.e., a transfer from node i to node
i+1). With this mapping, the northern neighbor for each node is exactly eight
hops away so it takes eight time units, which also is done in parallel for all
nodes. Total communication time is, therefore, 9 time units. The bisection
bandwidth is 2 bidirectional links (assuming a bidirectional ring), which is
less than the full bisection bandwidth of 32 bidirectional links. For eastward
communication, because only 2 of the eastward 56 packets must cross the
bisection in the worst case, the bisection links do not pose as bottlenecks.
For northward communication, 8 of the 56 packets must cross the two bisec-
tion links, yielding a γ of 10/112¼8.93%. Thus, the network bandwidth is
2/.0893¼22.4 BW units. This limits the effective bandwidth at 22.4 BW
units as well, which is less than half the bandwidth required by the commu-
nication pattern.

■ 2D mesh—There are eight rows and eight columns in our grid of 64 nodes,
which is a perfect match to the NEWS communication. It takes a total of just
2 time units for all nodes to send simultaneously to their northern neighbors
followed by simultaneous communication to their eastern neighbors. The
bisection bandwidth is 8 bidirectional links, which is less than full bisection
bandwidth. However, the perfect matching of this nearest neighbor communi-
cation pattern on this topology allows the maximum effective bandwidth to be
achieved regardless. For eastward communication, 8 of the 56 packets must
cross the bisection in the worst case, which does not exceed the bisection band-
width. None of the northward communications crosses the same network bisec-
tion, yielding a γ of 8/112¼7.14% and a network bandwidth of 8/0.0714¼112
BW units. The effective bandwidth is, therefore, limited by the communication
pattern at 56 BW units as opposed to the mesh network.

■ 2D torus—Wrap-around links of the torus are not used for this communication
pattern, so the torus has the same mapping and performance as the mesh.
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■ Hypercube—Assume elements in each row are mapped to the same location
within the eight 3-cubes comprising the hypercube such that consecutive row
elements are mapped to nodes only one hop away. Northern neighbors can be
similarlymapped tonodes only onehopaway in anorthogonal dimension. Thus,
the communication pattern takes just 2 time units. The hypercube provides full
bisection bandwidth of 32 links, but at most only 8 of the 112 packetsmust cross
the bisection. Thus, effective bandwidth is limited only by the communication
pattern to be 56 BW units, not by the hypercube network.

■ Fully connected—Here, nodes are equally distant at one hop away, regardless
of the mapping. Parallel transfer of packets in both the northern and eastern
directions would take only 1 time unit if the injection and reception links
could source and sink two packets at a time. As this is not the case, 2 time units
are required. Effective bandwidth is limited by the communication pattern
at 56 BW units, so the 1024 network bisection links largely go underutilized.

■ Fat tree—Assume the same mapping of elements to nodes as is done for the
ring and the use of switches with eight bidirectional ports. This allows simul-
taneous communication to eastern neighbors that takes at most three hops and,
therefore, 3 time units through the three bidirectional stages interconnecting the
eight nodes in each of the eight groups of nodes. The northern neighbor for
each node resides in the adjacent group of eight nodes, which requires five
hops, or 5 time units. Thus, the total time required on the fat tree is 8 time units.
The fat tree provides full bisection bandwidth, so in the worst case of half the
traffic needing to cross the bisection, an effective bandwidth of 56 BW units (as
limited by the communication pattern and not by the fattree network) is

achieved when packets are continually injected.
The above example should not lead one to the wrong conclusion that meshes
are just as good as tori, hypercubes, fat trees, and other networks with higher bisec-
tion bandwidth. A number of simplifications that benefit low-bisection networks
were assumed to ease the analysis. In practice, packets typically are larger than the
link width and occupy links for many more than just one network cycle. Also,
many communication patterns do not map so cleanly to the 2D mesh network
topology; instead, usually they are more global and irregular in nature. These
and other factors combine to increase the chances of packets blocking in low-
bisection networks, increasing latency and reducing effective bandwidth.

To put this discussion on topologies into further perspective, Figure F.16

listsvariousattributesof topologiesused incommercialhigh-performancecomputers.
Network Routing, Arbitration, and Switching

Routing, arbitration, and switching are performed at every switch along a packet’s
path in a switchedmedia network, nomatter what the network topology. Numerous

interesting techniques for accomplishing these network functions have been
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machines.
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proposed in the literature. In this section, we focus on describing a representative
set of approaches used in commercial systems for the more commonly used net-
work topologies. Their impact on performance is also highlighted.

Routing

The routing algorithm defines which network path, or paths, are allowed for each

packet. Ideally, the routing algorithm supplies shortest paths to all packets such that
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traffic load is evenly distributed across network links to minimize contention.
However, some paths provided by the network topology may not be allowed in
order to guarantee that all packets can be delivered, no matter what the traffic
behavior. Paths that have an unbounded number of allowed nonminimal hops from
packet sources, for instance, may result in packets never reaching their destina-
tions. This situation is referred to as livelock. Likewise, paths that cause a set of
packets to block in the network forever waiting only for network resources (i.e.,
links or associated buffers) held by other packets in the set also prevent packets
from reaching their destinations. This situation is referred to as deadlock. As dead-
lock arises due to the finiteness of network resources, the probability of its occur-
rence increases with increased network traffic and decreased availability of
network resources. For the network to function properly, the routing algorithmmust
guard against this anomaly,which canoccur in various forms—for example, routing
deadlock, request-reply (protocol) deadlock, and fault-induced (reconfiguration)
deadlock, etc. At the same time, for the network to provide the highest possible per-
formance, the routing algorithm must be efficient—allowing as many routing
options to packets as there are paths provided by the topology, in the best case.

The simplest way of guarding against livelock is to restrict routing such that
only minimal paths from sources to destinations are allowed or, less restrictively,
only a limited number of nonminimal hops. The strictest form has the added benefit
of consuming the minimal amount of network bandwidth, but it prevents packets
from being able to use alternative nonminimal paths in case of contention or faults
along the shortest (minimal) paths.

Deadlock is more difficult to guard against. Two common strategies are used in
practice: avoidance and recovery. In deadlock avoidance, the routing algorithm
restricts the paths allowed by packets to only those that keep the global network
state deadlock-free. A common way of doing this consists of establishing an order-
ing between a set of resources—the minimal set necessary to support network full
access—and granting those resources to packets in some total or partial order such
that cyclic dependency cannot form on those resources. This allows an escape path
always to be supplied to packets no matter where they are in the network to avoid
entering a deadlock state. In deadlock recovery, resources are granted to packets
without regard for avoiding deadlock. Instead, as deadlock is possible, some mech-
anism is used to detect the likely existence of deadlock. If detected, one or more
packets are removed from resources in the deadlock set—possibly by regressively
dropping the packets or by progressively redirecting the packets onto special dead-
lock recovery resources. The freed network resources are then granted to other
packets needing them to resolve the deadlock.

Let us consider routing algorithms designed for distributed switched networks.
Figure F.17(a) illustrates one of many possible deadlocked configurations for
packets within a region of a 2D mesh network. The routing algorithm can avoid
all such deadlocks (and livelocks) by allowing only the use of minimal paths that
cross the network dimensions in some total order. That is, links of a given dimen-
sion are not supplied to a packet by the routing algorithm until no other links are

needed by the packet in all of the preceding dimensions for it to reach its
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Figure F.17 A mesh network with packets routing from sources, si, to destinations, di. (a) Deadlock forms from
packets destined to d1 through d4 blocking on others in the same set that fully occupy their requested buffer
resources one hop away from their destinations. This deadlock cycle causes other packets needing those resources
also to block, like packets from s5 destined to d5 that have reached node s3. (b) Deadlock is avoided using dimension-
order routing. In this case, packets exhaust their routes in the X dimension before turning into the Y dimension in
order to complete their routing.
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destination. This is illustrated in Figure F.17(b), where dimensions are crossed in
XY dimension order. All the packets must follow the same order when traversing
dimensions, exiting a dimension only when links are no longer required in that
dimension. This well-known algorithm is referred to as dimension-order routing
(DOR) or e-cube routing in hypercubes. It is used in many commercial systems
built from distributed switched networks and on-chip networks. As this routing
algorithm always supplies the same path for a given source-destination pair, it
is a deterministic routing algorithm.

Crossing dimensions in order on some minimal set of resources required to
support network full access avoids deadlock in meshes and hypercubes. However,
for distributed switched topologies that have wrap-around links (e.g., rings and
tori), a total ordering on a minimal set of resources within each dimension is also
needed if resources are to be used to full capacity. Alternatively, some empty
resources or bubbles along the dimensions would be required to remain below full
capacity and avoid deadlock. To allow full access, either the physical links must be
duplicated or the logical buffers associated with each link must be duplicated,
resulting in physical channels or virtual channels, respectively, on which the
ordering is done. Ordering is not necessary on all network resources to avoid dead-
lock—it is needed only on some minimal set required to support network full
access (i.e., some escape resource set). Routing algorithms based on this technique
(called Duato’s protocol) can be defined that allow alternative paths provided by
the topology to be used for a given source-destination pair in addition to the escape

resource set. One of those allowed paths must be selected, preferably the most
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efficient one. Adapting the path in response to prevailing network traffic condi-
tions enables the aggregate network bandwidth to be better utilized and contention
to be reduced. Such routing capability is referred to as adaptive routing and is used

in many commercial systems.
How many of the possible dimensional turns are eliminated by dimension-order

routing on an n-dimensional mesh network? What is the fewest number of turns
that actually need to be eliminated while still maintaining connectedness and dead-

lock freedom? Explain using a 2D mesh network.

The dimension-order routing algorithm eliminates exactly half of the possible
dimensional turns as it is easily proven that all turns from any lower-ordered
dimension into any higher-ordered dimension are allowed, but the converse is
not true. For example, of the eight possible turns in the 2D mesh shown in
Figure F.17, the four turns from X+ to Y+, X+ to Y�, X� to Y+, and X� to Y�
are allowed, where the signs (+ or�) refer to the direction of travel within a dimen-
sion. The four turns from Y+ to X+, Y+ to X�, Y� to X+, and Y� to X� are dis-
allowed turns. The elimination of these turns prevents cycles of any kind from
forming—and, thus, avoids deadlock—while keeping the network connected.
However, it does so at the expense of not allowing any routing adaptivity.

The Turn Model routing algorithm proves that the minimum number of elim-
inated turns to prevent cycles and maintain connectedness is a quarter of the pos-
sible turns, but the right set of turns must be chosen. Only some particular set of
eliminated turns allow both requirements to be satisfied. With the elimination of
the wrong set of a quarter of the turns, it is possible for combinations of allowed
turns to emulate the eliminated ones (and, thus, form cycles and deadlock) or for
the network not to be connected. For the 2D mesh, for example, it is possible to
eliminate only the two turns ending in the westward direction (i.e., Y+ to X�
and Y� to X�) by requiring packets to start their routes in the westward direction
(if needed) to maintain connectedness. Alternatives to this west-first routing for 2D
meshes are negative-first routing and north-last routing. For these, the extra quarter
of turns beyond that supplied by DOR allows for partial adaptivity in routing, mak-

ing these adaptive routing algorithms.
Routing algorithms for centralized switched networks can similarly be
defined to avoid deadlocks by restricting the use of resources in some total
or partial order. For fat trees, resources can be totally ordered along paths start-
ing from the input leaf stage upward to the root and then back down to the out-
put leaf stage. The routing algorithm can allow packets to use resources in
increasing partial order, first traversing up the tree until they reach some least
common ancestor (LCA) of the source and destination, and then back down the
tree until they reach their destinations. As there are many least common ances-
tors for a given destination, multiple alternative paths are allowed while going

up the tree, making the routing algorithm adaptive. However, only a single
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deterministic path to the destination is provided by the fat tree topology from a
least common ancestor. This self-routing property is common to many MINs
and can be readily exploited: The switch output port at each stage is given sim-
ply by shifts of the destination node address.

More generally, a tree graph can be mapped onto any topology—whether
direct or indirect—and links between nodes at the same tree level can be allowed
by assigning directions to them, where “up” designates paths moving toward the
tree root and “down” designates paths moving away from the root node. This
allows for generic up*/down* routing to be defined on any topology such
that packets follow paths (possibly adaptively) consisting of zero or more up links
followed by zero or more down links to their destination. Up/down ordering pre-
vents cycles from forming, avoiding deadlock. This routing technique was used in
Autonet—a self-configuring switched LAN—and in early Myrinet SANs.

Routing algorithms are implemented in practice by a combination of the rout-
ing information placed in the packet header by the source node and the routing
control mechanism incorporated in the switches. For source routing, the entire
routing path is precomputed by the source—possibly by table lookup—and placed
in the packet header. This usually consists of the output port or ports supplied for
each switch along the predetermined path from the source to the destination, which
can be stripped off by the routing control mechanism at each switch. An additional
bit field can be included in the header to signify whether adaptive routing is
allowed (i.e., that any one of the supplied output ports can be used). For distributed
routing, the routing information usually consists of the destination address. This is
used by the routing control mechanism in each switch along the path to determine
the next output port, either by computing it using a finite-state machine or by look-
ing it up in a local routing table (i.e., forwarding table). Compared to distributed
routing, source routing simplifies the routing control mechanism within the net-
work switches, but it requires more routing bits in the header of each packet, thus
increasing the header overhead.

Arbitration

The arbitration algorithm determines when requested network paths are available
for packets. Ideally, arbiters maximize the matching of free network resources and
packets requesting those resources. At the switch level, arbiters maximize the
matching of free output ports and packets located in switch input ports requesting
those output ports. When all requests cannot be granted simultaneously, switch
arbiters resolve conflicts by granting output ports to packets in a fair way such that
starvation of requested resources by packets is prevented. This could happen to
packets in shorter queues if a serve-longest-queue (SLQ) scheme is used. For
packets having the same priority level, simple round-robin (RR) or age-based
schemes are sufficiently fair and straightforward to implement.

Arbitration can be distributed to avoid centralized bottlenecks. A straightfor-
ward technique consists of two phases: a request phase and a grant phase. Let

us assume that each switch input port has an associated queue to hold incoming
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Figure F.18 Two arbitration techniques. (a) Two-phased arbitration in which two of
the four input ports are granted requested output ports. (b) Three-phased arbitration
in which three of the four input ports are successful in gaining the requested output
ports, resulting in higher switch utilization.
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packets and that each switch output port has an associated local arbiter implement-
ing a round-robin strategy. Figure F.18(a) shows a possible set of requests for a
four-port switch. In the request phase, packets at the head of each input port queue
send a single request to the arbiters corresponding to the output ports requested by
them. Then, each output port arbiter independently arbitrates among the requests it
receives, selecting only one. In the grant phase, one of the requests to each arbiter
is granted the requested output port. When two packets from different input ports
request the same output port, only one receives a grant, as shown in the figure. As a
consequence, some output port bandwidth remains unused even though all input
queues have packets to transmit.

The simple two-phase technique can be improved by allowing several simul-
taneous requests to be made by each input port, possibly coming from different
virtual channels or from multiple adaptive routing options. These requests are sent
to different output port arbiters. By submitting more than one request per input
port, the probability of matching increases. Now, arbitration requires three phases:
request, grant, and acknowledgment. Figure F.18(b) shows the case in which up to
two requests can be made by packets at each input port. In the request phase,
requests are submitted to output port arbiters, and these arbiters select one of
the received requests, as is done for the two-phase arbiter. Likewise, in the grant
phase, the selected requests are granted to the corresponding requesters. Taking
into account that an input port can submit more than one request, it may receive
more than one grant. Thus, it selects among possibly multiple grants using some
arbitration strategy such as round-robin. The selected grants are confirmed to the
corresponding output port arbiters in the acknowledgment phase.

As can be seen in Figure F.18(b), it could happen that an input port that submits
several requests does not receive any grants, while some of the requested ports
remain free. Because of this, a second arbitration iteration can improve the prob-
ability of matching. In this iteration, only the requests corresponding to non-

matched input and output ports are submitted. Iterative arbiters with multiple
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requests per input port are able to increase the utilization of switch output ports and,
thus, the network link bandwidth. However, this comes at the expense of additional
arbiter complexity and increased arbitration delay, which could increase the router
clock cycle time if it is on the critical path.

Switching

The switching technique defines how connections are established in the network. Ide-
ally, connections between network resources are established or “switched in”only for
as long as they are actually needed and exactly at the point that they are ready and
needed to be used, considering both time and space. This allows efficient use of avail-
ablenetworkbandwidthbycompeting traffic flowsandminimal latency.Connections
at eachhopalong the topological pathallowedby the routingalgorithmandgrantedby
the arbitration algorithm can be established in three basicways: prior to packet arrival
using circuit switching, upon receipt of the entire packet using store-and-forward
packet switching, or upon receipt of only portions of the packetwith unit size no smal-
ler than that of the packet header using cut-through packet switching.

Circuit switching establishes a circuit a priori such that network bandwidth is
allocated for packet transmissions along an entire source-destination path. It is
possible to pipeline packet transmission across the circuit using staging at each
hop along the path, a technique known as pipelined circuit switching. As routing,
arbitration, and switching are performed only once for one or more packets, routing
bits are not needed in the header of packets, thus reducing latency andoverhead.This
can be very efficient when information is continuously transmitted between devices
for the same circuit setup. However, as network bandwidth is removed from the
shared pool andpreallocated regardless ofwhether sources are in need of consuming
it or not, circuit switching can be very inefficient and highly wasteful of bandwidth.

Packet switching enables network bandwidth to be shared and used more
efficiently when packets are transmitted intermittently, which is the more common
case. Packet switching comes in two main varieties—store-and-forward and
cutthrough switching, both of which allow network link bandwidth to be multi-
plexed on packet-sized or smaller units of information. This better enables band-
width sharing by packets originating from different sources. The finer granularity
of sharing, however, increases the overhead needed to perform switching: Routing,
arbitration, and switching must be performed for every packet, and routing and
flow control bits are required for every packet if flow control is used.

Store-and-forward packet switching establishes connections such that a packet
is forwarded to the next hop in sequence along its source-destination path only after
the entire packet is first stored (staged) at the receiving switch. As packets are
completely stored at every switch before being transmitted, links are completely
decoupled, allowing full link bandwidth utilization even if links have very different
bandwidths. This property is very important in WANs, but the price to pay is
packet latency; the total routing, arbitration, and switching delay is multiplicative
with the number of hops, as we have seen in Section F.4 when analyzing perfor-

mance under this assumption.
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Cut-through packet switching establishes connections such that a packet can “cut
through” switches in a pipelined manner once the header portion of the packet
(or equivalent amount of payload trailing the header) is staged at receiving switches.
That is, the rest of the packet neednot arrive before switching in the granted resources.
This allows routing, arbitration, and switching delay to be additivewith the number of
hops rather than multiplicative to reduce total packet latency. Cut-through comes
in two varieties, the main differences being the size of the unit of information on
which flow control is applied and, consequently, the buffer requirements at switches.
Virtual cut-through switching implements flow control at the packet level, whereas
wormhole switching implements it on flow units, or flits, which are smaller than
the maximum packet size but usually at least as large as the packet header. Since
wormhole switches need to be capable of storing only a small portion of a packet,
packets that block in the network may span several switches. This can cause other
packets to block on the links they occupy, leading to premature network saturation
and reduced effective bandwidth unless some centralized buffer is used within the
switch to store them—a technique called buffered wormhole switching. As chips
can implement relatively large buffers in current technology, virtual cut-through is
the more commonly used switching technique. However, wormhole switching
may still be preferred in OCNs designed to minimize silicon resources.

Premature network saturation caused by wormhole switching can be mitigated
by allowing several packets to share the physical bandwidth of a link simulta-
neously via time-multiplexed switching at the flit level. This requires physical links
to have a set of virtual channels (i.e., the logical buffers mentioned previously) at
each end, into which packets are switched. Before, we saw how virtual channels
can be used to decouple physical link bandwidth from buffered packets in such a
way as to avoid deadlock. Now, virtual channels are multiplexed in such a way that
bandwidth is switched in and used by flits of a packet to advance even though the
packet may share some links in common with a blocked packet ahead. This, again,
allows network bandwidth to be used more efficiently, which, in turn, reduces the
average packet latency.

Impact on Network Performance

Routing, arbitration, and switching can impact the packet latency of a loaded
network by reducing the contention delay experienced by packets. For an unloaded
network that has no contention, the algorithms used to perform routing and
arbitration have no impact on latency other than to determine the amount of delay
incurred in implementing those functions at switches—typically, the pin-to-pin
latency of a switch chip is several tens of nanoseconds. The only change to the
best-case packet latency expression given in the previous section comes from
the switching technique. Store-and-forward packet switching was assumed before
in which transmission delay for the entire packet is incurred on all d hops plus at the
source node. For cut-through packet switching, transmission delay is pipelined
across the network links comprising the packet’s path at the granularity of the
packet header instead of the entire packet. Thus, this delay component is reduced,

as shown in the following lower-bound expression for packet latency:
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The effective bandwidth is impacted by how efficiently routing, arbitration, and
switching allow network bandwidth to be used. The routing algorithm can distrib-
ute traffic more evenly across a loaded network to increase the utilization of the
aggregate bandwidth provided by the topology—particularly, by the bisection
links. The arbitration algorithm can maximize the number of switch output ports
that accept packets, which also increases the utilization of network bandwidth. The
switching technique can increase the degree of resource sharing by packets, which
further increases bandwidth utilization. These combine to affect network band-
width, BWNetwork, by an efficiency factor, ρ, where 0<ρ�1:

BWNetwork ¼ ρ�BWBisection

γ

The efficiency factor, ρ, is difficult to calculate or to quantify by means other than
simulation. Nevertheless, with this parameter we can estimate the best-case upper-
bound effective bandwidth by using the following expression that takes into
account the effects of routing, arbitration, and switching:

Effective bandwidth¼ min N�BWLinkInjection, ρ�BWBisection

γ
,σ�N�BWLinkReception

� �

We note that ρ also depends on how well the network handles the traffic generated
by applications. For instance, ρ could be higher for circuit switching than for
cut-through switching if large streams of packets are continually transmitted
between a source-destination pair, whereas the converse could be true if packets
are transmitted intermittently.

Compare the performance of deterministic routing versus adaptive routing for a 3D

torus network interconnecting 4096 nodes. Do so by plotting latency versus
applied load and throughput versus applied load. Also compare the efficiency
of the best and worst of these networks. Assume that virtual cut-through switching,
three-phase arbitration, and virtual channels are implemented. Consider separately
the cases for two and four virtual channels, respectively. Assume that one of the
virtual channels uses bubble flow control in dimension order so as to avoid dead-
lock; the other virtual channels are used either in dimension order (for deterministic
routing) or minimally along shortest paths (for adaptive routing), as is done in the

IBM Blue Gene/L torus network.

It is very difficult to compute analytically the performance of routing algorithms
given that their behavior depends on several network design parameters with com-
plex interdependences among them. As a consequence, designers typically resort
to cycle-accurate simulators to evaluate performance. One way to evaluate the
effect of a certain design decision is to run sets of simulations over a range of net-
work loads, each time modifying one of the design parameters of interest while
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keeping the remaining ones fixed. The use of synthetic traffic loads is quite fre-
quent in these evaluations as it allows the network to stabilize at a certain working
point and for behavior to be analyzed in detail. This is the method we use here
(alternatively, trace-driven or execution-driven simulation can be used).

Figure F.19 shows the typical interconnection network performance plots. On
the left, average packet latency (expressed in network cycles) is plotted as a func-
tion of applied load (traffic generation rate) for the two routing algorithms with two
and four virtual channels each; on the right, throughput (traffic delivery rate) is
similarly plotted. Applied load is normalized by dividing it by the number of nodes
in the network (i.e., bytes per cycle per node). Simulations are run under the
assumption of uniformly distributed traffic consisting of 256-byte packets, where
flits are byte sized. Routing, arbitration, and switching delays are assumed to sum
to 1 network cycle per hop while the time-of-flight delay over each link is assumed
to be 10 cycles. Link bandwidth is 1 byte per cycle, thus providing results that are
independent of network clock frequency.

As can be seen, the plots within each graph have similar characteristic shapes,
but they have different values. For the latency graph, all start at the no-load latency
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as predicted by the latency expression given above, then slightly increase with traf-
fic load as contention for network resources increases. At higher applied loads,
latency increases exponentially, and the network approaches its saturation point
as it is unable to absorb the applied load, ¼ causing packets to queue up at their
source nodes awaiting injection. In these simulations, the queues keep growing
over time, making latency tend toward infinity. However, in practice, queues reach
their capacity and trigger the application to stall further packet generation, or the
application throttles itself waiting for acknowledgments/responses to outstanding
packets. Nevertheless, latency grows at a slower rate for adaptive routing as alter-
native paths are provided to packets along congested resources.

For this same reason, adaptive routing allows the network to reach a higher peak
throughput for the same number of virtual channels as compared to deterministic
routing. At nonsaturation loads, throughput increases fairly linearly with applied
load.When the network reaches its saturation point, however, it is unable to deliver
traffic at the same rate at which traffic is generated. The saturation point, therefore,
indicates the maximum achievable or “peak” throughput, which would be no more
than that predicted by the effective bandwidth expression given above. Beyond
saturation, throughput tends to drop as a consequence of massive head-of-line
blocking across the network (as will be explained further in Section F.6), very
much like cars tend to advance more slowly at rush hour. This is an important
region of the throughput graph as it shows how significant of a performance drop
the routing algorithm can cause if congestion management techniques (discussed
briefly in Section F.7) are not used effectively. In this case, adaptive routing has
more of a performance drop after saturation than deterministic routing, as mea-
sured by the postsaturation sustained throughput.

For both routing algorithms, more virtual channels (i.e., four) give packets a
greater ability to pass over blocked packets ahead, allowing for a higher peak
throughput as compared to fewer virtual channels (i.e., two). For adaptive routing
with four virtual channels, the peak throughput of 0.43 bytes/cycle/node is near the
maximum of 0.5 bytes/cycle/node that can be obtained with 100% efficiency (i.e.,
ρ¼100%), assuming there is enough injection and reception bandwidth to make
the network bisection the bottlenecking point. In that case, the network bandwidth
is simply 100% times the network bisection bandwidth (BWBisection) divided by the
fraction of traffic crossing the bisection (γ), as given by the expression above. Tak-
ing into account that the bisection splits the torus into two equally sized halves, γ is
equal to 0.5 for uniform traffic as only half the injected traffic is destined to a node
at the other side of the bisection. The BWBisection for a 4096-node 3D torus network
is 16�16�4 unidirectional links times the link bandwidth (i.e., 1 byte/cycle). If
we normalize the bisection bandwidth by dividing it by the number of nodes (as we
did with network bandwidth), the BWBisection is 0.25 bytes/cycle/node. Dividing
this by γ gives the ideal maximally obtainable network bandwidth of 0.5 bytes/
cycle/node.

We can find the efficiency factor, ρ, of the simulated network simply by divid-
ing the measured peak throughput by the ideal throughput. The efficiency factor for
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the network with fully adaptive routing and four virtual channels is 0.43/(0.25/
0.5)¼86%, whereas for the network with deterministic routing and two virtual
channels it is 0.37/(0.25/0.5)¼74%. Besides the 12% difference in efficiency
between the two, another 14% gain in efficiency might be obtained with even bet-

ter routing, arbitration, switching, and virtual channel designs.
To put this discussion on routing, arbitration, and switching in perspective,
Figure F.20 lists the techniques used in SANs designed for commercial high-
performance computers. In addition to being applied to the SANs as shown in
the figure, the issues discussed in this section also apply to other interconnect

domains: from OCNs to WANs.
Switch Microarchitecture

Network switches implement the routing, arbitration, and switching functions of
switched-media networks. Switches also implement buffer management mecha-
nisms and, in the case of lossless networks, the associated flow control. For some
networks, switches also implement part of the network management functions that
explore, configure, and reconfigure the network topology in response to boot-up
and failures. Here, we reveal the internal structure of network switches by describ-
ing a basic switch microarchitecture and various alternatives suitable for different
routing, arbitration, and switching techniques presented previously.

Basic Switch Microarchitecture

The internal data path of a switch provides connectivity among the input and output
ports. Although a shared bus or a multiported central memory could be used, these
solutions are insufficient or too expensive, respectively, when the required aggre-
gate switch bandwidth is high. Most high-performance switches implement an
internal crossbar to provide nonblocking connectivity within the switch, thus
allowing concurrent connections between multiple input-output port pairs. Buffer-
ing of blocked packets can be done using first in, first out (FIFO) or circular
queues, which can be implemented as dynamically allocatable multi-queues
(DAMQs) in static RAM to provide high capacity and flexibility. These queues
can be placed at input ports (i.e., input buffered switch), output ports (i.e., output
buffered switch), centrally within the switch (i.e., centrally buffered switch), or at
both the input and output ports of the switch (i.e., input-output-buffered switch).
Figure F.21 shows a block diagram of an input-output-buffered switch.

Routing can be implemented using a finite-state machine or forwarding table
within the routing control unit of switches. In the former case, the routing infor-
mation given in the packet header is processed by a finite-state machine that deter-
mines the allowed switch output port (or ports if routing is adaptive), according to

the routing algorithm. Portions of the routing information in the header are usually



Figure F.20 Routing, arbitration, and switching characteristics of interconnections networks in commercial
machines.
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stripped off or modified by the routing control unit after use to simplify processing
at the next switch along the path. When routing is implemented using forwarding
tables, the routing information given in the packet header is used as an address to
access a forwarding table entry that contains the allowed switch output port(s) pro-
vided by the routing algorithm. Forwarding tables must be preloaded into the
switches at the outset of network operation. Hybrid approaches also exist where
the forwarding table is reduced to a small set of routing bits and combined with
a small logic block. Those routing bits are used by the routing control unit to know
what paths are allowed and decide the output ports the packets need to take. The
goal with those approaches is to build flexible yet compact routing control units,
eliminating the area and power wastage of a large forwarding table and thus being
suitable for OCNs. The routing control unit is usually implemented as a centralized
resource, although it could be replicated at every input port so as not to become a
bottleneck. Routing is done only once for every packet, and packets typically are
large enough to take several cycles to flow through the switch, so a centralized
routing control unit rarely becomes a bottleneck. Figure F.21 assumes a centralized
routing control unit within the switch.

Arbitration is required when two or more packets concurrently request the
same output port, as described in the previous section. Switch arbitration can be
implemented in a centralized or distributed way. In the former case, all of the
requests and status information are transmitted to the central switch arbitration
unit; in the latter case, the arbiter is distributed across the switch, usually among
the input and/or output ports. Arbitration may be performed multiple times on

packets, and there may be multiple queues associated with each input port,
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increasing the number of arbitration requests that must be processed. Thus, many
implementations use a hierarchical arbitration approach, where arbitration is first
performed locally at every input port to select just one request among the corre-
sponding packets and queues, and later arbitration is performed globally to process
the requests made by each of the local input port arbiters. Figure F.21 assumes a
centralized arbitration unit within the switch.

The basic switch microarchitecture depicted in Figure F.21 functions in the fol-
lowing way. When a packet starts to arrive at a switch input port, the link controller
decodes the incoming signal and generates a sequence of bits, possibly deserializ-
ing data to adapt them to the width of the internal data path if different from the
external link width. Information is also extracted from the packet header or link
control signals to determine the queue to which the packet should be buffered.
As the packet is being received and buffered (or after the entire packet has been
buffered, depending on the switching technique), the header is sent to the routing
unit. This unit supplies a request for one or more output ports to the arbitration unit.
Arbitration for the requested output port succeeds if the port is free and has enough
space to buffer the entire packet or flit, depending on the switching technique. If
wormhole switching with virtual channels is implemented, additional arbitration
and allocation steps may be required for the transmission of each individual flit.
Once the resources are allocated, the packet is transferred across the internal cross-
bar to the corresponding output buffer and link if no other packets are ahead of it
and the link is free. Link-level flow control implemented by the link controller pre-
vents input queue overflow at the neighboring switch on the other end of the link. If
virtual channel switching is implemented, several packets may be time-
multiplexed across the link on a flit-by-flit basis. As the various input and output
ports operate independently, several incoming packets may be processed concur-
rently in the absence of contention.

Buffer Organizations

As mentioned above, queues can be located at the switch input, output, or both
sides. Output-buffered switches have the advantage of completely eliminating
head-of-line blocking. Head-of-line (HOL) blocking occurs when two or more
packets are buffered in a queue, and a blocked packet at the head of the queue
blocks other packets in the queue that would otherwise be able to advance if they
were at the queue head. This cannot occur in output-buffered switches as all the
packets in a given queue have the same status; they require the same output port.
However, it may be the case that all the switch input ports simultaneously receive a
packet for the same output port. As there are no buffers at the input side, output
buffers must be able to store all those incoming packets at the same time. This
requires implementing output queues with an internal switch speedup of k. That
is, output queues must have a write bandwidth k times the link bandwidth, where
k is the number of switch ports. This oftentimes is too expensive. Hence, this solu-
tion by itself has rarely been implemented in lossless networks. As the probability

of concurrently receiving many packets for the same output port is usually small,
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commercial systems that use output-buffered switches typically implement only
moderate switch speedup, dropping packets on rare buffer overflow.

Switches with buffers on the input side are able to receive packets without hav-
ing any switch speedup; however, HOL blocking can occur within input port
queues, as illustrated in Figure F.22(a). This can reduce switch output port utiliza-
tion to less than 60% even when packet destinations are uniformly distributed. As
shown in Figure F.22(b), the use of virtual channels (two in this case) can mitigate
HOL blocking but does not eliminate it. Amore effective solution is to organize the
input queues as virtual output queues (VOQs), shown in Figure F.22(c). With this,
each input port implements as many queues as there are output ports, thus provid-
ing separate buffers for packets destined to different output ports. This is a popular

technique widely used in ATM switches and IP routers. The main drawbacks of
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VOQs, however, are cost and lack of scalability: The number of VOQs grows qua-
dratically with switch ports. Moreover, although VOQs eliminate HOL blocking
within a switch, HOL blocking occurring at the network level end-to-end is not
solved. Of course, it is possible to design a switch with VOQ support at the network
level also—that is, to implement as many queues per switch input port as there are
output ports across the entire network—but this is extremely expensive. An alter-
native is to dynamically assign only a fraction of the queues to store (cache) sep-
arately only those packets headed for congested destinations.

Combined input-output-buffered switches minimize HOL blocking when there
is sufficient buffer space at the output side to buffer packets, and they minimize the
switch speedup required due to buffers being at the input side. This solution has the
further benefit of decoupling packet transmission through the internal crossbar of
the switch from transmission through the external links. This is especially useful
for cut-through switching implementations that use virtual channels, where flit
transmissions are time-multiplexed over the links. Many designs used in commer-

cial systems implement input-output-buffered switches.
Routing Algorithm Implementation

It is important to distinguish between the routing algorithm and its implementation.
While the routing algorithm describes the rules to forward packets across the net-
work and affects packet latency and network throughput, its implementation affects
the delay sufferedbypacketswhen reaching a node, the required silicon area, and the
power consumption associated with the routing computation. Several techniques
have been proposed to pre-compute the routing algorithm and/or hide the routing
computation delay. However, significantly less effort has been devoted to reduce
silicon area and power consumptionwithout significantly affecting routing flexibil-
ity. Both issues have become very important, particularly for OCNs. Many existing
designs address these issues by implementing relatively simple routing algorithms,
but more sophisticated routing algorithms will likely be needed in the future to deal
with increasingmanufacturing defects, process variability, and other complications
arising from continued technology scaling, as discussed briefly below.

As mentioned in a previous section, depending on where the routing algorithm
is computed, two basic forms of routing exist: source and distributed routing. In
source routing, the complexity of implementation is moved to the end nodes where
paths need to be stored in tables, and the path for a given packet is selected based on
the destination end node identifier. In distributed routing, however, the complexity
is moved to the switches where, at each hop along the path of a packet, a selection
of the output port to take is performed. In distributed routing, two basic implemen-
tations exist. The first one consists of using a logic block that implements a fixed
routing algorithm for a particular topology. The most common example of such an
implementation is dimension-order routing, where dimensions are offset in an
established order. Alternatively, distributed routing can be implemented with for-

warding tables, where each entry encodes the output port to be used for a particular
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destination. Therefore, in the worst case, as many entries as destination nodes are
required.

Both methods for implementing distributed routing have their benefits and
drawbacks. Logic-based routing features a very short computation delay, usually
requires a small silicon area, and has low power consumption. However, logic-
based routing needs to be designed with a specific topology in mind and, therefore,
is restricted to that topology. Table-based distributed routing is quite flexible and
supports any topology and routing algorithm. Simply, tables need to be filled with
the proper contents based on the applied routing algorithm (e.g., the up*/down*
routing algorithm can be defined for any irregular topology). However, the down
side of table-based distributed routing is its non-negligible area and power cost.
Also, scalability is problematic in table-based solutions as, in the worst case, a sys-
tem with N end nodes (and switches) requires as many as N tables each with N
entries, thus having quadratic cost.

Depending on the network domain, one solution is more suitable than the other.
For instance, in SANs, it is usual to find table-based solutions as is the case with
InfiniBand. In other environments, like OCNs, table-based implementations are
avoided due to the aforementioned costs in power and silicon area. In such envi-
ronments, it is more advisable to rely on logic-based implementations. Herein lies
some of the challenges OCN designers face: ever continuing technology scaling
through device miniaturization leads to increases in the number of manufacturing
defects, higher failure rates (either transient or permanent), significant process var-
iations (transistors behaving differently from design specs), the need for different
clock frequency and voltage domains, and tight power and energy budgets. All of
these challenges translate to the network needing support for heterogeneity. Dif-
ferent—possibly irregular—regions of the network will be created owing to failed
components, powered down switches and links, disabled components (due to
unacceptable variations in performance) and so on. Hence, heterogeneous systems
may emerge from a homogeneous design. In this framework, it is important to effi-
ciently implement routing algorithms designed to provide enough flexibility to
address these new challenges.

A well-known solution for providing a certain degree of flexibility while being
much more compact than traditional table-based approaches is interval routing
[Leeuwen 1987], where a range of destinations is defined for each output port.
Although this approach is not flexible enough, it provides a clue on how to address
emerging challenges. A more recent approach provides a plausible implementation
design point that lies between logic-based implementation (efficiency) and table-
based implementation (flexibility). Logic-Based Distributed Routing (LBDR) is a
hybrid approach that takes as a reference a regular 2D mesh but allows an irregular
network to be derived from it due to changes in topology induced by manufactur-
ing defects, failures, and other anomalies. Due to the faulty, disabled, and powered-
down components, regularity is compromised and the dimension-order routing
algorithm can no longer be used. To support such topologies, LBDR defines a
set of configuration bits at each switch. Four connectivity bits are used at each

switch to indicate the connectivity of the switch to the neighbor switches in the
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topology. Thus, one connectivity bit per port is used. Those connectivity bits are
used, for instance, to disable an output port leading to a faulty component. Addi-
tionally, eight routing bits are used, two per output port, to define the available
routing options. The value of the routing bits is set at power-on and is computed
from the routing algorithm to be implemented in the network. Basically, when a
routing bit is set, it indicates that a packet can leave the switch through the asso-
ciated output port and is allowed to perform a certain turn at the next switch. In this
respect, LBDR is similar to interval routing, but it defines geographical areas
instead of ranges of destinations. Figure F.23 shows an example where a
topology-agnostic routing algorithm is implemented with LBDR on an irregular
topology. The figure shows the computed configuration bits.

The connectivity and routing bits are used to implement the routing algorithm.
For that purpose, a small set of logic gates are used in combination with the con-
figuration bits. Basically, the LBDR approach takes as a reference the initial topol-
ogy (a 2D mesh), and makes a decision based on the current coordinates of the
router, the coordinates of the destination router, and the configuration bits.
Figure F.24 shows the required logic, and Figure F.25 shows an example of where
a packet is forwarded from its source to its destination with the use of the config-
uration bits. As can be noticed, routing restrictions are enforced by preventing the
use of the west port at switch 10.

LBDR represents a method for efficient routing implementation in OCNs.
This mechanism has been recently extended to support non-minimal paths,
collective communication operations, and traffic isolation. All of these improve-
ments have been made while maintaining a compact and efficient implementation
with the use of a small set of configuration bits. A detailed description of
LBDR and its extensions, and the current research on OCNs can be found in

Flich [2010].
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Figure F.25 Example of routing a message from Router 14 to Router 5 using LBDR at each router.
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Pipelining the Switch Microarchitecture

Performance can be enhanced by pipelining the switch microarchitecture. Pipe-
lined processing of packets in a switch has similarities with pipelined execution
of instructions in a vector processor. In a vector pipeline, a single instruction indi-
cates what operation to apply to all the vector elements executed in a pipelined
way. Similarly, in a switch pipeline, a single packet header indicates how to pro-
cess all of the internal data path physical transfer units (or phits) of a packet, which
are processed in a pipelined fashion. Also, as packets at different input ports are
independent of each other, they can be processed in parallel similar to the way mul-
tiple independent instructions or threads of pipelined instructions can be executed

in parallel.
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The switch microarchitecture can be pipelined by analyzing the basic functions
performed within the switch and organizing them into several stages. Figure F.26
shows a block diagram of a five-stage pipelined organization for the basic switch
microarchitecture given in Figure F.21, assuming cut-through switching and the
use of a forwarding table to implement routing. After receiving the header portion
of the packet in the first stage, the routing information (i.e., destination address) is
used in the second stage to look up the allowed routing option(s) in the forwarding
table. Concurrent with this, other portions of the packet are received and buffered
in the input port queue at the first stage. Arbitration is performed in the third stage.
The crossbar is configured to allocate the granted output port for the packet in the
fourth stage, and the packet header is buffered in the switch output port and ready

for transmission over the external link in the fifth stage. Note that the second and
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third stages are used only by the packet header; the payload and trailer portions of
the packet use only three of the stages—those used for data flow-thru once the
internal data path of the switch is set up.

A virtual channel switch usually requires an additional stage for virtual channel
allocation. Moreover, arbitration is required for every flit before transmission
through the crossbar. Finally, depending on the complexity of the routing and arbi-

tration algorithms, several clock cycles may be required for these operations.
Other Switch Microarchitecture Enhancements

As mentioned earlier, internal switch speedup is sometimes implemented to
increase switch output port utilization. This speedup is usually implemented by
increasing the clock frequency and/or the internal data path width (i.e., phit size)
of the switch. An alternative solution consists of implementing several parallel data
paths from each input port’s set of queues to the output ports. One way of doing this
is by increasing the number of crossbar input ports. When implementing several
physical queues per input port, this can be achieved by devoting a separate crossbar
port to each input queue. For example, the IBM Blue Gene/L implements two
crossbar access ports and two read ports per switch input port.

Another way of implementing parallel data paths between input and output
ports is to move the buffers to the crossbar crosspoints. This switch architecture
is usually referred to as a buffered crossbar switch. A buffered crossbar provides
independent data paths from each input port to the different output ports, thus mak-
ing it possible to send up to k packets at a time from a given input port to k different
output ports. By implementing independent crosspoint memories for each input-
output port pair, HOL blocking is eliminated at the switch level. Moreover, arbi-
tration is significantly simpler than in other switch architectures. Effectively, each
output port can receive packets from only a disjoint subset of the crosspoint mem-
ories. Thus, a completely independent arbiter can be implemented at each switch
output port, each of those arbiters being very simple.

A buffered crossbar would be the ideal switch architecture if it were not so
expensive. The number of crosspoint memories increases quadratically with the
number of switch ports, dramatically increasing its cost and reducing its scalability
with respect to the basic switch architecture. In addition, each crosspoint memory
must be large enough to efficiently implement link-level flow control. To reduce
cost, most designers prefer input-buffered or combined input-output-buffered

switches enhanced with some of the mechanisms described previously.
Practical Issues for Commercial Interconnection
Networks

There are practical issues in addition to the technical issues described thus far that
are important considerations for interconnection networks within certain domains.

We mention a few of these below.
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Connectivity

The type andnumber of devices that communicate and their communication require-
ments affect the complexity of the interconnection network and its protocols. The
protocols must target the largest network size and handle the types of anomalous
systemwide events that might occur. Among some of the issues are the following:
How lightweight should the network interface hardware/software be? Should it
attach to the memory network or the I/O network? Should it support cache coher-
ence? If the operating system must get involved for every network transaction,
the sending and receiving overhead becomes quite large. If the network interface
attaches to the I/O network (PCI-Express or HyperTransport interconnect), the
injection and reception bandwidth will be limited to that of the I/O network. This
is the case for the Cray XT3 SeaStar, Intel Thunder Tiger 4 QsNetII, andmany other
supercomputer and cluster networks. To support coherence, the sender may have to
flush the cache before each send, and the receiver may have to flush its cache before
each receive to prevent the stale-data problem. Such flushes further increase sending
and receiving overhead, often causing the network interface to be the network
bottleneck.

Computer systems typically have a multiplicity of interconnects with different
functions and cost-performance objectives. For example, processor-memory inter-
connects usually provide higher bandwidth and lower latency than I/O interconnects
and are more likely to support cache coherence, but they are less likely to follow or
become standards. Personal computers typically have a processormemory intercon-
nect and an I/O interconnect (e.g., PCI-X 2.0, PCIe or Hyper-Transport) designed to
connect both fast and slow devices (e.g., USB 2.0, Gigabit Ethernet LAN, Firewire
800). The Blue Gene/L supercomputer uses five interconnection networks, only
one of which is the 3D torus used for most of the interprocessor application traffic.
The others include a tree-based collective communication network for broadcast
and multicast; a tree-based barrier network for combining results (scatter, gather);
a control network fordiagnostics, debugging, and initialization; and aGigabit Ethernet
networkforI/Obetweenthenodesanddisk.TheUniversityofTexasatAustin’sTRIPS
Edge processor has eight specialized on-chip networks—some with bidirectional
channels aswide as 128 bits and somewith 168 bits in each direction—to interconnect
the 106 heterogeneous tiles composing the twoprocessor coreswith L2on-chip cache.
It also has a chip-to-chip switched network to interconnect multiple chips in a multi-
processor configuration. Two of the on-chip networks are switched networks: One is
used for operand transport and the other is used for on-chip memory communication.
The others are essentially fan-out trees or recombination dedicated link networks
used for status and control. The portion of chip area allocated to the interconnect is

substantial, with five of the seven metal layers used for global network wiring.
Standardization: Cross-Company Interoperability

Standards are useful in many places in computer design, including interconnection

networks. Advantages of successful standards include low cost and stability.



F-68 ■ Appendix F Interconnection Networks
The customer has many vendors to choose from, which keeps price close to cost
due to competition. It makes the viability of the interconnection independent of the
stability of a single company. Components designed for a standard interconnection
may also have a larger market, and this higher volume can reduce the vendors’
costs, further benefiting the customer. Finally, a standard allows many companies
to build products with interfaces to the standard, so the customer does not have to
wait for a single company to develop interfaces to all the products of interest.

One drawback of standards is the time it takes for committees and special-
interest groups to agree on the definition of standards, which is a problem when
technology is changing rapidly. Another problem is when to standardize: On
the one hand, designers would like to have a standard before anything is built;
on the other hand, it would be better if something were built before standardization
to avoid legislating useless features or omitting important ones. When done too
early, it is often done entirely by committee, which is like asking all of the chefs
in France to prepare a single dish of food—masterpieces are rarely served. Stan-
dards can also suppress innovation at that level, since standards fix the interfaces—
at least until the next version of the standards surface, which can be every few years
or longer. More often, we are seeing consortiums of companies getting together to
define and agree on technology that serve as “de facto” industry standards. This
was the case for InfiniBand.

LANs and WANs use standards and interoperate effectively. WANs involve
many types of companies and must connect to many brands of computers, so it
is difficult to imagine a proprietary WAN ever being successful. The ubiquitous
nature of the Ethernet shows the popularity of standards for LANs as well as
WANs, and it seems unlikely that many customers would tie the viability of their
LAN to the stability of a single company. Some SANs are standardized such as
Fibre Channel, but most are proprietary. OCNs for the most part are proprietary
designs, with a few gaining widespread commercial use in system-on-chip

(SoC) applications, such as IBM’s CoreConnect and ARM’s AMBA.
Congestion Management

Congestion arises when too many packets try to use the same link or set of links.
This leads to a situation in which the bandwidth required exceeds the bandwidth
supplied. Congestion by itself does not degrade network performance: simply, the
congested links are running at their maximum capacity. Performance degradation
occurs in the presence of HOL blocking where, as a consequence of packets going
to noncongested destinations getting blocked by packets going to congested des-
tinations, some link bandwidth is wasted and network throughput drops, as illus-
trated in the example given at the end of Section F.4. Congestion control refers to
schemes that reduce traffic when the collective traffic of all nodes is too large for
the network to handle.

One advantage of a circuit-switched network is that, once a circuit is estab-

lished, it ensures that there is sufficient bandwidth to deliver all the information
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sent along that circuit. Interconnection bandwidth is reserved as circuits are estab-
lished, and if the network is full, no more circuits can be established. Other switch-
ing techniques generally do not reserve interconnect bandwidth in advance, so the
interconnection network can become clogged with too many packets. Just as with
poor rush-hour commuters, a traffic jam of packets increases packet latency and, in
extreme cases, fewer packets per second get delivered by the interconnect. In order
to handle congestion in packet-switched networks, some form of congestion man-
agement must be implemented. The two kinds of mechanisms used are those that
control congestion and those that eliminate the performance degradation intro-
duced by congestion.

There are three basic schemes used for congestion control in interconnection
networks, each with its own weaknesses: packet discarding, flow control, and
choke packets. The simplest scheme is packet discarding, which we discussed
briefly in Section F.2. If a packet arrives at a switch and there is no room in the
buffer, the packet is discarded. This scheme relies on higher-level software that
handles errors in transmission to resend lost packets. This leads to significant band-
width wastage due to (re)transmitted packets that are later discarded and, therefore,
is typically used only in lossy networks like the Internet.

The second scheme relies on flow control, also discussed previously. When
buffers become full, link-level flow control provides feedback that prevents the
transmission of additional packets. This backpressure feedback rapidly propagates
backward until it reaches the sender(s) of the packets producing congestion,
forcing a reduction in the injection rate of packets into the network. Themain draw-
backs of this scheme are that sources become aware of congestion too late when the
network is already congested, and nothing is done to alleviate congestion. Back-
pressure flow control is common in lossless networks like SANs used in supercom-
puters and enterprise systems.

A more elaborate way of using flow control is by implementing it directly
between the sender and the receiver end nodes, generically called end-to-end flow
control. Windowing is one version of end-to-end credit-based flow control where
the window size should be large enough to efficiently pipeline packets through the
network. The goal of the window is to limit the number of unacknowledged
packets, thus bounding the contribution of each source to congestion, should it
arise. The TCP protocol uses a sliding window. Note that end-to-end flow control
describes the interaction between just two nodes of the interconnection network,
not the entire interconnection network between all end nodes. Hence, flow control
helps congestion control, but it is not a global solution.

Choke packets are used in the third scheme, which is built upon the premise that
traffic injection should be throttled only when congestion exists across the net-
work. The idea is for each switch to see how busy it is and to enter into a warning
state when it passes a threshold. Each packet received by a switch in the warning
state is sent back to the source via a choke packet that includes the intended des-
tination. The source is expected to reduce traffic to that destination by a fixed per-
centage. Since it likely will have already sent other packets along that path, the

source node waits for all the packets in transit to be returned before acting on
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the choke packets. In this scheme, congestion is controlled by reducing the packet
injection rate until traffic reduces, just as metering lights that guard on-ramps con-
trol the rate of cars entering a freeway. This scheme works efficiently when the
feedback delay is short. When congestion notification takes a long time, usually
due to long time of flight, this congestion control scheme may become unsta-
ble—reacting too slowly or producing oscillations in packet injection rate, both
of which lead to poor network bandwidth utilization.

An alternative to congestion control consists of eliminating the negative
consequences of congestion. This can be done by eliminating HOL blocking at
every switch in the network as discussed previously. Virtual output queues can
be used for this purpose; however, it would be necessary to implement as many
queues at every switch input port as devices attached to the network. This solution
is very expensive, and not scalable at all. Fortunately, it is possible to achieve
good results by dynamically assigning a few set-aside queues to store only
the congested packets that travel through some hot-spot regions of the network,
very much like caches are intended to store only the more frequently accessed
memory locations. This strategy is referred to as regional explicit congestion
notification (RECN).

Fault Tolerance

The probability of system failures increases as transistor integration density and the
number of devices in the system increases. Consequently, system reliability and
availability have becomemajor concerns and will be even more important in future
systems with the proliferation of interconnected devices. A practical issue arises,
therefore, as to whether or not the interconnection network relies on all the devices
being operational in order for the network to work properly. Since software failures
are generally much more frequent than hardware failures, another question sur-
faces as to whether a software crash on a single device can prevent the rest of
the devices from communicating. Although some hardware designers try to build
fault-free networks, in practice, it is only a question of the rate of failures, not
whether they can be prevented. Thus, the communication subsystem must have
mechanisms for dealing with faults when—not if—they occur.

There are two main kinds of failure in an interconnection network: transient
and permanent. Transient failures are usually produced by electromagnetic inter-
ference and can be detected and corrected using the techniques described in
Section F.2. Oftentimes, these can be dealt with simply by retransmitting the
packet either at the link level or end-to-end. Permanent failures occur when some
component stops working within specifications. Typically, these are produced by
overheating, overbiasing, overuse, aging, and so on and cannot be recovered from
simply by retransmitting packets with the help of some higher-layer software pro-
tocol. Either an alternative physical path must exist in the network and be supplied
by the routing algorithm to circumvent the fault or the network will be crippled,
unable to deliver packets whose only paths are through faulty resources.

Three major categories of techniques are used to deal with permanent failures:

resource sparing, fault-tolerant routing, and network reconfiguration. In the first
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technique, faulty resources are switched off or bypassed, and some spare resources
are switched in to replace the faulty ones. As an example, the ServerNet intercon-
nection network is designed with two identical switch fabrics, only one of which is
usable at any given time. In case of failure in one fabric, the other is used. This
technique can also be implemented without switching in spare resources, leading
to a degraded mode of operation after a failure. The IBM Blue Gene/L supercom-
puter, for instance, has the facility to bypass failed network resources while retain-
ing its base topological structure and routing algorithm. The main drawback of this
technique is the relatively large number of healthy resources (e.g., midplane node
boards) that may need to be switched off after a failure in order to retain the base
topological structure (e.g., a 3D torus).

Fault-tolerant routing, on the other hand, takes advantage of the multiple paths
already existing in the network topology to route messages in the presence of fail-
ures without requiring spare resources. Alternative paths for each supported fault
combination are identified at design time and incorporated into the routing algo-
rithm. When a fault is detected, a suitable alternative path is used. The main dif-
ficulty when using this technique is guaranteeing that the routing algorithm will
remain deadlock-free when using the alternative paths, given that arbitrary fault
patterns may occur. This is especially difficult in direct networks whose regularity
can be compromised by the fault pattern. The Cray T3E is an example system that
successfully applies this technique on its 3D torus direct network. There are many
examples of this technique in systems using indirect networks, such as with the
bidirectional multistage networks in the ASCI White and ASC Purple. Those net-
works provide multiple minimal paths between end nodes and, inherently, have no
routing deadlock problems (see Section F.5). In these networks, alternative paths
are selected at the source node in case of failure.

Network reconfiguration is yet another, more general technique to handle vol-
untary and involuntary changes in the network topology due either to failures or to
some other cause. In order for the network to be reconfigured, the nonfaulty por-
tions of the topology must first be discovered, followed by computation of the new
routing tables and distribution of the routing tables to the corresponding network
locations (i.e., switches and/or end node devices). Network reconfiguration
requires the use of programmable switches and/or network interfaces, depending
on how routing is performed. It may also make use of generic routing algorithms
(e.g., up*/down* routing) that can be configured for all the possible network topol-
ogies that may result after faults. This strategy relieves the designer from having to
supply alternative paths for each possible fault combination at design time. Pro-
grammable network components provide a high degree of flexibility but at the
expense of higher cost and latency. Most standard and proprietary interconnection
networks for clusters and SANs—including Myrinet, Quadrics, InfiniBand,
Advanced Switching, and Fibre Channel—incorporate software for (re)configur-
ing the network routing in accordance with the prevailing topology.

Another practical issue ties to node failure tolerance. If an interconnection net-
work can survive a failure, can it also continue operation while a new node is added
to or removed from the network, usually referred to as hot swapping? If not, each

addition or removal of a new node disables the interconnection network, which is
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impractical for WANs and LANs and is usually intolerable for most SANs. Online
system expansion requires hot swapping, so most networks allow for it. Hot swap-
ping is usually supported by implementing dynamic network reconfiguration, in
which the network is reconfigured without having to stop user traffic. The main
difficulty with this is guaranteeing deadlock-free routing while routing tables
for switches and/or end node devices are dynamically and asynchronously updated
as more than one routing algorithm may be alive (and, perhaps, clashing) in the
network at the same time. Most WANs solve this problem by dropping packets
whenever required, but dynamic network reconfiguration is much more complex
in lossless networks. Several theories and practical techniques have recently been

developed to address this problem efficiently.
Figure F.27 shows the number of failures of 58 desktop computers on a local

area network for a period of just over one year. Suppose that one local area net-
work is based on a network that requires all machines to be operational for the
interconnection network to send data; if a node crashes, it cannot accept mes-
sages, so the interconnection becomes choked with data waiting to be delivered.
An alternative is the traditional local area network, which can operate in the
presence of node failures; the interconnection simply discards messages for a
node that decides not to accept them. Assuming that you need to have both your
workstation and the connecting LAN to get your work done, how much greater
are your chances of being prevented from getting your work done using the
failure-intolerant LAN versus traditional LANs? Assume the downtime for a
crash is less than 30 minutes. Calculate using the one-hour intervals from this

figure.

Assuming the numbers for Figure F.27, the percentage of hours that you can’t get
your work done using the failure-intolerant network is

Intervals with failures
Total intervals

¼ Total intervals� Intervals with no failures
Total intervals

¼ 8974�8605
8974

¼ 369
8974

¼ 4:1%

The percentage of hours that you can’t get your work done using the traditional
network is just the time your workstation has crashed. If these failures are equally
distributed among workstations, the percentage is

Failures=Machines
Total intervals

¼ 654=58
8974

¼ 11:28
8974

¼ 0:13%

Hence, you are more than 30 times more likely to be prevented from getting your
work done with the failure-intolerant LAN than with the traditional LAN, accord-
ing to the failure statistics in Figure F.27. Stated alternatively, the person respon-
sible for maintaining the LANwould receive a 30-fold increase in phone calls from

irate users!



Figure F.27 Measurement of reboots of 58 DECstation 5000 s running Ultrix over a 373-day period. These reboots
are distributed into time intervals of one hour and one day. The first column sorts the intervals according to the num-
ber of machines that failed in that interval. The next two columns concern one-hour intervals, and the last two col-
umns concern one-day intervals. The second and fourth columns show the number of intervals for each number of
failed machines. The third and fifth columns are just the product of the number of failedmachines and the number of
intervals. For example, there were 50 occurrences of one-hour intervals with 2 failedmachines, for a total of 100 failed
machines, and there were 35 days with 2 failedmachines, for a total of 70 failures. As we would expect, the number of
failures per interval changes with the size of the interval. For example, the day with 31 failures might include one hour
with 11 failures and one hour with 20 failures. The last row shows the total number of each column; the number of
failures doesn’t agree because multiple reboots of the same machine in the same interval do not result in separate
entries. (Randy Wang of the University of California–Berkeley collected these data.)
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F.8
 Examples of Interconnection Networks

To further provide mass to the concepts described in the previous sections, we look
at five example networks from the four interconnection network domains consid-
ered in this appendix. In addition to one for each of the OCN, LAN, and WAN

areas, we look at two examples from the SAN area: one for system area networks
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and one for system/storage area networks. The first two examples are proprietary
networks used in high-performance systems; the latter three examples are network

standards widely used in commercial systems.
On-Chip Network: Intel Single-Chip Cloud Computer

With continued increases in transistor integration as predicted by Moore’s law,
processor designers are under the gun to find ways of combating chip-crossing
wire delay and other problems associated with deep submicron technology scaling.
Multicore microarchitectures have gained popularity, given their advantages of
simplicity, modularity, and ability to exploit parallelism beyond that which can
be achieved through aggressive pipelining and multiple instruction/data issuing
on a single core. No matter whether the processor consists of a single core or mul-
tiple cores, higher and higher demands are being placed on intrachip communica-
tion bandwidth to keep pace—not to mention interchip bandwidth. This has
spurred a great amount of interest in OCN designs that efficiently support commu-
nication of instructions, register operands, memory, and I/O data within and
between processor cores both on and off the chip. Here we focus on one such
on-chip network: The Intel Single-chip Cloud Computer prototype.

The Single-chip Cloud Computer (SCC) is a prototype chip multiprocessor
with 48 Intel IA-32 architecture cores. Cores are laid out (see Figure F.28) on a
network with a 2D mesh topology (6�4). The network connects 24 tiles, 4 on-
die memory controllers, a voltage regulator controller (VRC), and an external
system interface controller (SIF). In each tile two cores are connected to a router.
The four memory controllers are connected at the boundaries of the mesh, two on
each side, while the VRC and SIF controllers are connected at the bottom border of
the mesh.

Each memory controller can address two DDR3 DIMMS, each up to 8 GB of
memory, thus resulting in a maximum of 64 GB of memory. The VRC controller
allows any core or the system interface to adjust the voltage in any of the six pre-
defined regions configuring the network (two 2-tile regions). The clock can also
be adjusted at a finer granularity with each tile having its own operating frequency.
These regions can be turned off or scaled down for large power savings. Thismethod
allows full application control of the power state of the cores. Indeed, applications
have anAPI available todefine thevoltage and the frequencyof each region.TheSIF
controller is used to communicate the network from outside the chip.

Each of the tiles includes two processor cores (P54C-based IA) with associated
L1 16 KB data cache and 16 KB instruction cache and a 256 KB L2 cache (with
the associated controller), a 5-port router, traffic generator (for testing purposes
only), a mesh interface unit (MIU) handling all message passing requests, memory
look-up tables (with configuration registers to set the mapping of a core’s physical
addresses to the extended memory map of the system), a message-passing buffer,
and circuitry for the clock generation and synchronization for crossing asynchro-

nous boundaries.
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Figure F.28 SCC Top-level architecture. From Howard, J. et al., IEEE International Solid-State Circuits Conference
Digest of Technical Papers, pp. 58–59.
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Focusing on the OCN, the MIU unit is in charge of interfacing the cores to the
network, including the packetization and de-packetization of large messages; com-
mand translation and address decoding/lookup; link-level flow control and credit
management; and arbiter decisions following a round-robin scheme. A credit-
based flow control mechanism is used together with virtual cut-through switching
(thus making it necessary to split long messages into packets). The routers are con-
nected in a 2D mesh layout, each on its own power supply and clock source. Links
connecting routers have 16B+2B side bands running at 2 GHz. Zero-load latency
is set to 4 cycles, including link traversal. Eight virtual channels are used for per-
formance (6 VCs) and protocol-level deadlock handling (2 VCs). A message-level
arbitration is implemented by a wrapped wave-front arbiter. The dimension-order
XY routing algorithm is used and pre-computation of the output port is performed
at every router.

Besides the tiles having regions defined for voltage and frequency, the network
(made of routers and links) has its own single region. Thus, all the network com-
ponents run at the same speed and use the same power supply. An asynchronous
clock transition is required between the router and the tile.

One of the distinctive features of the SCC architecture is the support for a

messaging-based communication protocol rather than hardware cache-coherent
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memory for inter-core communication. Message passing buffers are located on
every router and APIs are provided to take full control of MPI structures. Cache
coherency can be implemented by software.

The SCC router represents a significant improvement over the Teraflops pro-
cessor chip in the implementation of a 2D on-chip interconnect. Contrasted with
the 2D mesh implemented in the Teraflops processor, this implementation is tuned
for a wider data path in a multiprocessor interconnect and is more latency, area, and
power optimized for such a width. It targets a lower 2-GHz frequency of operation
compared to the 5 GHz of its predecessor Teraflops processor, yet with a higher-

performance interconnect architecture.
System Area Network: IBM Blue Gene/L 3D Torus Network

The IBMBlueGene/L was the largest-scaled, highest-performing computer system
in the world in 2005, according to www.top500.org. With 65,536 dual-processor
compute nodes and 1024 I/O nodes, this 360 TFLOPS (peak) supercomputer has a
system footprint of approximately 2500 square feet. Both processors at each node
can be used for computation and can handle their own communication protocol
processing in virtual mode or, alternatively, one of the processors can be used
for computation and the other for network interface processing. Packets range
in size from 32 bytes to a maximum of 256 bytes, and 8 bytes are used for the
header. The header includes routing, virtual channel, link-level flow control,
packet size, and other such information, along with 1 byte for CRC to protect
the header. Three bytes are used for CRC at the packet level, and 1 byte serves
as a valid indicator.

The main interconnection network is a proprietary 32�32�64 3D torus SAN
that interconnects all 64 K nodes. Each node switch has six 350 MB/sec bidirec-
tional links to neighboring torus nodes, an injection bandwidth of 612.5 MB/sec
from the two node processors, and a reception bandwidth of 1050 MB/sec to
the two node processors. The reception bandwidth from the network equals the
inbound bandwidth across all switch ports, which prevents reception links from
bottlenecking network performance. Multiple packets can be sunk concurrently
at each destination node because of the higher reception link bandwidth.

Two nodes are implemented on a 2�1�1 compute card, 16 compute cards
and 2 I/O cards are implemented on a 4�4�2 node board, 16 node boards are
implemented on an 8�8�8 midplane, and 2 midplanes form a 1024-node rack
with physical dimensions of 0.9�0.9�1.9 cubic meters. Links have a maximum
physical length of 8.6 meters, thus enabling efficient link-level flow control with
reasonably low buffering requirements. Low latency is achieved by implementing
virtual cut-through switching, distributing arbitration at switch input and output
ports, and precomputing the current routing path at the previous switch using a
finite-state machine so that part of the routing delay is removed from the critical

path in switches. High effective bandwidth is achieved using input-buffered
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switches with dual read ports, virtual cut-through switching with four virtual chan-
nels, and fully adaptive deadlock-free routing based on bubble flow control.

A key feature in networks of this size is fault tolerance. Failure rate is reduced
by using a relatively low link clock frequency of 700 MHz (same as processor
clock) on which both edges of the clock are used (i.e., 1.4 Gbps or 175 MB/sec
transfer rate is supported for each bit-serial network link in each direction), but
failuresmay still occur in the network. In case of failure, themidplane node boards
containing the fault(s) are switched off and bypassed to isolate the fault, and com-
putation resumes from the last checkpoint. Bypassing is done using separate
bypass switch boards associated with each midplane that are additional to the
set of torus node boards. Each bypass switch board can be configured to connect
either to the corresponding links in themidplane node boards or to the next bypass
board, effectively removing the corresponding set of midplane node boards.
Although the number of processing nodes is reduced to some degree in some net-
work dimensions, the machine retains its topological structure and routing
algorithm.

Some collective communication operations such as barrier synchronization,
broadcast/multicast, reduction, and so on are not performed well on the 3D
torus as the network would be flooded with traffic. To remedy this, two separate
tree networks with higher per-link bandwidth are used to implement collective
and combining operations more efficiently. In addition to providing support for
efficient synchronization and broadcast/multicast, hardware is used to perform
some arithmetic reduction operations in an efficient way (e.g., to compute the
sum or the maximum value of a set of values, one from each processing node).
In addition to the 3D torus and the two tree networks, the Blue Gene/L imple-
ments an I/O Gigabit Ethernet network and a control system Fast Ethernet net-
work of lower bandwidth to provide for parallel I/O, configuration, debugging,

and maintenance.
System/Storage Area Network: InfiniBand

InfiniBand is an industrywide de facto networking standard developed in October
2000 by a consortium of companies belonging to the InfiniBand Trade Associa-
tion. InfiniBand can be used as a system area network for interprocessor commu-
nication or as a storage area network for server I/O. It is a switch-based
interconnect technology that provides flexibility in the topology, routing algo-
rithm, and arbitration technique implemented by vendors and users. InfiniBand
supports data transmission rates of 2 to 120 Gbp/link per direction across distances
of 300 meters. It uses cut-through switching, 16 virtual channels and service levels,
credit-based link-level flow control, and weighted round-robin fair scheduling and
implements programmable forwarding tables. It also includes features useful for
increasing reliability and system availability, such as communication subnet man-

agement, end-to-end path establishment, and virtual destination naming.



Figure F.29 Characteristics of on-chip networks implemented in recent research and commercial processors.
Some processors implement multiple on-chip networks (not all shown)—for example, two in the MIT Raw and eight
in the TRIP Edge.
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Figure F.30 shows the packet format for InfiniBand juxtaposed with two other net-
work standards from the LAN andWAN areas. Figure F.31 compares various char-
acteristics of the InfiniBand standard with two proprietary system area networks

widely used in research and commercial high-performance computer systems.
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Figure F.30 Packet format for InfiniBand, Ethernet, and ATM. ATM calls their messages “cells” instead of packets, so
the proper name is ATM cell format. The width of each drawing is 32 bits. All three formats have destination addres-
sing fields, encoded differently for each situation. All three also have a checksum field to catch transmission errors,
although the ATM checksum field is calculated only over the header; ATM relies on higher-level protocols to catch
errors in the data. Both InfiniBand and Ethernet have a length field, since the packets hold a variable amount of data,
with the former counted in 32-bit words and the latter in bytes. InfiniBand and ATM headers have a type field (T) that
gives the type of packet. The remaining Ethernet fields are a preamble to allow the receiver to recover the clock from
the self-clocking code used on the Ethernet, the source address, and a pad field tomake sure the smallest packet is 64
bytes (including the header). InfiniBand includes a version field for protocol version, a sequence number to allow in-
order delivery, a field to select the destination queue, and a partition key field. Infiniband has many more small fields
not shown and many other packet formats; above is a simplified view. ATM’s short, fixed packet is a good match to
real-time demand of digital voice.

F.8 Examples of Interconnection Networks ■ F-79



Figure F.31 Characteristics of system area networks implemented in various top 10 supercomputer clusters in
2005.
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InfiniBand offers two basic mechanisms to support user-level communica-
tion: send/receive and remote DMA (RDMA). With send/receive, the receiver
has to explicitly post a receive buffer (i.e., allocate space in its channel adapter
network interface) before the sender can transmit data. With RDMA, the sender
can remotely DMA data directly into the receiver device’s memory. For exam-
ple, for a nominal packet size of 4 bytes measured on a Mellanox MHEA28-XT
channel adapter connected to a 3.4 GHz Intel Xeon host device, sending and
receiving overhead is 0.946 and 1.423 μs, respectively, for the send/receive
mechanism, whereas it is 0.910 and 0.323 μs, respectively, for the RDMA
mechanism.

As discussed in Section F.2, the packet size is important in getting full benefit
of the network bandwidth. One might ask, “What is the natural size of messages?”
Figure F.32(a) shows the size of messages for a commercial fluid dynamics sim-
ulation application, called Fluent, collected on an InfiniBand network at The Ohio
State University’s Network-Based Computer Laboratory. One plot is cumulative in
messages sent and the other is cumulative in data bytes sent. Messages in this graph
are message passing interface (MPI) units of information, which gets divided into
InfiniBand maximum transfer units (packets) transferred over the network. As
shown, the maximum message size is over 512 KB, but approximately 90% of
the messages are less than 512 bytes. Messages of 2 KB represent approximately

50% of the bytes transferred. An Integer Sort application kernel in the NAS Parallel
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Benchmark suite is also measured to have about 75% of its messages below 512
bytes (plots not shown). Many applications send far more small messages than
large ones, particularly since requests and acknowledgments are more frequent
than data responses and block writes.

InfiniBand reduces protocol processing overhead by allowing it to be off-
loaded from the host computer to a controller on the InfiniBand network inter-
face card. The benefits of protocol offloading and bypassing the operating
system are shown in Figure F.32(b) for MVAPICH, a widely used implemen-
tation of MPI over InfiniBand. Effective bandwidth is plotted against message
size for MVAPICH configured in two modes and two network speeds. One
mode runs IPoIB, in which InfiniBand communication is handled by the IP
layer implemented by the host’s operating system (i.e., no OS bypass). The
other mode runs MVAPICH directly over VAPI, which is the native Mellanox
InfiniBand interface that offloads transport protocol processing to the channel
adapter hardware (i.e., OS bypass). Results are shown for 10 Gbps single data
rate (SDR) and 20 Gbps double data rate (DDR) InfiniBand networks. The
results clearly show that offloading the protocol processing and bypassing
the OS significantly reduce sending and receiving overhead to allow near

wire-speed effective bandwidth to be achieved.
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Ethernet: The Local Area Network

Ethernet has been extraordinarily successful as a LAN—from the 10Mbit/sec stan-
dard proposed in 1978 used practically everywhere today to the more recent 10
Gbit/sec standard that will likely be widely used. Many classes of computers
include Ethernet as a standard communication interface. Ethernet, codified as IEEE
standard 802.3, is a packet-switched network that routes packets using the desti-
nation address. It was originally designed for coaxial cable but today uses primarily
Cat5E copper wire, with optical fiber reserved for longer distances and higher
bandwidths. There is even a wireless version (802.11), which is testimony to its
ubiquity.

Over a 20-year span, computers became thousands of times faster than they
were in 1978, but the shared media Ethernet network remained the same. Hence,
engineers had to invent temporary solutions until a faster, higher-bandwidth net-
work became available. One solution was to use multiple Ethernets to interconnect
machines and to connect those Ethernets with internetworking devices that could
transfer traffic from one Ethernet to another, as needed. Such devices allow indi-
vidual Ethernets to operate in parallel, thereby increasing the aggregate intercon-
nection bandwidth of a collection of computers. In effect, these devices provide
similar functionality to the switches described previously for point-to-point
networks.

Figure F.33 shows the potential parallelism that can be gained. Depending on
how they pass traffic and what kinds of interconnections they can join together,

these devices have different names:
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■ Bridges—These devices connect LANs together, passing traffic from one side
to another depending on the addresses in the packet. Bridges operate at the
Ethernet protocol level and are usually simpler and cheaper than routers, dis-
cussed next. Using the notation of the OSI model described in the next section
(see Figure F.36 on page F-85), bridges operate at layer 2, the data link layer.

■ Routers or gateways—These devices connect LANs to WANs, or WANs to
WANs, and resolve incompatible addressing. Generally slower than bridges,
they operate at OSI layer 3, the network layer. WAN routers divide the network
into separate smaller subnets, which simplifies manageability and improves
security.

The final internetworking devices are hubs, but they merely extend multiple seg-
ments into a single LAN. Thus, hubs do not help with performance, as only one

message can transmit at a time. Hubs operate at OSI layer 1, called the physical
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layer. Since these devices were not planned as part of the Ethernet standard, their
ad hoc nature has added to the difficulty and cost of maintaining LANs.

As of 2011, Ethernet link speeds are available at 10, 100, 10,000, and 100,000
Mbits/sec. Although 10 and 100Mbits/sec Ethernets share the media with multiple
devices, 1000 Mbits/sec and above Ethernets rely on point-to-point links and
switches. Ethernet switches normally use some form of store-and-forward.

Ethernet has no real flow control, dating back to its first instantiation. It orig-
inally used carrier sensing with exponential back-off (see page F-23) to arbitrate for
the shared media. Some switches try to use that interface to retrofit their version of
flow control, but flow control is not part of the Ethernet standard.

Wide Area Network: ATM

Asynchronous Transfer Mode (ATM) is a wide area networking standard set by the
telecommunications industry. Although it flirted as competition to Ethernet as a

LAN in the 1990s, ATM has since retreated to its WAN stronghold.
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The telecommunications standard has scalable bandwidth built in. It starts at 155
Mbits/sec and scales by factors of 4 to 620 Mbits/sec, 2480 Mbits/sec, and so on.
Since it is a WAN, ATM’s medium is fiber, both single mode and multimode.
Although it is a switchedmedium, unlike the other examples it relies on virtual con-
nections for communication.ATMuses virtual channels for routing tomultiplex dif-
ferent connections on a single network segment, thereby avoiding the inefficiencies
of conventional connection-based networking. The WAN focus also led to store-
and-forward switching. Unlike the other protocols, Figure F.30 shows ATM has
a small, fixed-sized packet with 48 bytes of payload. It uses a credit-based flow con-
trol scheme as opposed to IP routers that do not implement flow control.

The reason for virtual connections and small packets is quality of service. Since
the telecommunications industry is concerned about voice traffic, predictability
matters as well as bandwidth. Establishing a virtual connection has less variability
than connectionless networking, and it simplifies store-and-forward switching.
The small, fixed packet also makes it simpler to have fast routers and switches.
Toward that goal, ATM even offers its own protocol stack to compete with
TCP/IP. Surprisingly, even though the switches are simple, the ATM suite of pro-
tocols is large and complex. The dream was a seamless infrastructure from LAN to
WAN, avoiding the hodgepodge of routers common today. That dream has faded

from inspiration to nostalgia.
Internetworking

Undoubtedly one of the most important innovations in the communications com-
munity has been internetworking. It allows computers on independent and incom-
patible networks to communicate reliably and efficiently. Figure F.34 illustrates
the need to traverse between networks. It shows the networks and machines
involved in transferring a file from Stanford University to the University of Cal-
ifornia at Berkeley, a distance of about 75 km.

The low cost of internetworking is remarkable. For example, it is vastly less
expensive to send electronic mail than to make a coast-to-coast telephone call
and leave a message on an answering machine. This dramatic cost improvement
is achieved using the same long-haul communication lines as the telephone call,
which makes the improvement even more impressive.

The enabling technologies for internetworking are software standards that
allow reliable communication without demanding reliable networks. The underly-
ing principle of these successful standards is that they were composed as a hierar-
chy of layers, each layer taking responsibility for a portion of the overall
communication task. Each computer, network, and switch implements its layer
of the standards, relying on the other components to faithfully fulfill their respon-
sibilities. These layered software standards are called protocol families or protocol
suites. They enable applications to work with any interconnection without extra
work by the application programmer. Figure F.35 suggests the hierarchical model

of communication.
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The most popular internetworking standard is TCP/IP (Transmission Control
Protocol/Internet Protocol). This protocol family is the basis of the humbly named
Internet, which connects hundreds of millions of computers around the world.
This popularity means TCP/IP is used even when communicating locally across
compatible networks; for example, the network file system (NFS) uses IP even
though it is very likely to be communicating across a homogenous LAN such
as Ethernet. We use TCP/IP as our protocol family example; other protocol
families follow similar lines. Section F.13 gives the history of TCP/IP.

The goal of a family of protocols is to simplify the standard by dividing respon-
sibilities hierarchically among layers, with each layer offering services needed by
the layer above. The application program is at the top, and at the bottom is the phys-
ical communication medium, which sends the bits. Just as abstract data types sim-
plify the programmer’s task by shielding the programmer from details of the
implementation of the data type, this layered strategy makes the standard easier
to understand.

There were many efforts at network protocols, which led to confusion in terms.
Hence, Open Systems Interconnect (OSI) developed a model that popularized
describing networks as a series of layers. Figure F.36 shows the model. Although
all protocols do not exactly follow this layering, the nomenclature for the different
layers is widely used. Thus, you can hear discussions about a simple layer 3 switch
versus a layer 7 smart switch.

The key to protocol families is that communication occurs logically at the same
level of the protocol in both sender and receiver, but services of the lower level
implement it. This style of communication is called peer-to-peer. As an analogy,
imagine that General A needs to send a message to General B on the battlefield.
General A writes the message, puts it in an envelope addressed to General B, and
gives it to a colonel with orders to deliver it. This colonel puts it in an envelope, and
writes the name of the corresponding colonel who reports to General B, and gives it
to a major with instructions for delivery. The major does the same thing and gives it
to a captain, who gives it to a lieutenant, who gives it to a sergeant. The sergeant
takes the envelope from the lieutenant, puts it into an envelope with the name of a
sergeant who is in General B’s division, and finds a private with orders to take the
large envelope. The private borrows a motorcycle and delivers the envelope to the
other sergeant. Once it arrives, it is passed up the chain of command, with each
person removing an outer envelope with his name on it and passing on the inner
envelope to his superior. As far as General B can tell, the note is from another gen-
eral. Neither general knows who was involved in transmitting the envelope, nor
how it was transported from one division to the other.

Protocol families follow this analogy more closely than you might think, as
Figure F.37 shows. The original message includes a header and possibly a trailer
sent by the lower-level protocol. The next-lower protocol in turn adds its own
header to the message, possibly breaking it up into smaller messages if it is too
large for this layer. Reusing our analogy, a long message from the general is
divided and placed in several envelopes if it could not fit in one. This division

of the message and appending of headers and trailers continues until the message
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descends to the physical transmission medium. The message is then sent to the des-
tination. Each level of the protocol family on the receiving end will check the mes-
sage at its level and peel off its headers and trailers, passing it on to the next higher
level and putting the pieces back together. This nesting of protocol layers for a spe-
cific message is called a protocol stack, reflecting the last in, first out nature of the
addition and removal of headers and trailers.

As in our analogy, the danger in this layered approach is the considerable
latency added to message delivery. Clearly, one way to reduce latency is to reduce
the number of layers, but keep in mind that protocol families define a standard but
do not force how to implement the standard. Just as there are many ways to imple-
ment an instruction set architecture, there are many ways to implement a protocol
family.

Our protocol stack example is TCP/IP. Let’s assume that the bottom protocol
layer is Ethernet. The next level up is the Internet Protocol or IP layer; the official
term for an IP packet is a datagram. The IP layer routes the datagram to the des-
tination machine, which may involve many intermediate machines or switches. IP
makes a best effort to deliver the packets but does not guarantee delivery, content,
or order of datagrams. The TCP layer above IP makes the guarantee of reliable, in-
order delivery and prevents corruption of datagrams.

Following the example in Figure F.37, assume an application programwants to
send amessage to a machine via an Ethernet. It starts with TCP. The largest number
of bytes that can be sent at once is 64 KB. Since the data may be much larger than
64 KB, TCP must divide them into smaller segments and reassemble them in
proper order upon arrival. TCP adds a 20-byte header (Figure F.38) to every data-
gram and passes them down to IP. The IP layer above the physical layer adds a

20-byte header, also shown in Figure F.38. The data sent down from the IP level
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Figure F.38 The headers for IP and TCP. This drawing is 32 bits wide. The standard headers for both are 20 bytes,
but both allow the headers to optionally lengthen for rarely transmitted information. Both headers have a length of
header field (L) to accommodate the optional fields, as well as source and destination fields. The length field of the
whole datagram is in a separate length field in IP, while TCP combines the length of the datagram with the sequence
number of the datagram by giving the sequence number in bytes. TCP uses the checksum field to be sure that the
datagram is not corrupted, and the sequence number field to be sure the datagrams are assembled into the proper
order when they arrive. IP provides checksum error detection only for the header, since TCP has protected the rest of
the packet. One optimization is that TCP can send a sequence of datagrams before waiting for permission to send
more. The number of datagrams that can be sent without waiting for approval is called the window, and the window
field tells how many bytes may be sent beyond the byte being acknowledged by this datagram. TCP will adjust the
size of the window depending on the success of the IP layer in sending datagrams; the more reliable and faster it is,
the larger TCP makes the window. Since the window slides forward as the data arrive and are acknowledged, this
technique is called a sliding window protocol. The piggyback acknowledgment field of TCP is another optimization.
Since some applications send data back and forth over the same connection, it seems wasteful to send a datagram
containing only an acknowledgment. This piggyback field allows a datagram carrying data to also carry the acknowl-
edgment for a previous transmission, “piggybacking” on top of a data transmission. The urgent pointer field of TCP
gives the address within the datagram of an important byte, such as a break character. This pointer allows the appli-
cation software to skip over data so that the user doesn’t have to wait for all prior data to be processed before seeing a
character that tells the software to stop. The identifier field and fragment field of IP allow intermediary machines to
break the original datagram intomany smaller datagrams. A unique identifier is associated with the original datagram
and placed in every fragment, with the fragment field saying which piece is which. The time-to-live field allows a
datagram to be killed off after going through a maximum number of intermediate switches no matter where it is
in the network. Knowing the maximum number of hops that it will take for a datagram to arrive—if it ever
arrives—simplifies the protocol software. The protocol field identifies which possible upper layer protocol sent
the IP datagram; in our case, it is TCP. The V (for version) and type fields allow different versions of the IP protocol
software for the network. Explicit version numbering is included so that software can be upgraded gracefully machine
by machine, without shutting down the entire network. Nowadays, version six of the Internet protocol (IPv6) was
widely used.
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to the Ethernet are sent in packets with the format shown in Figure F.30. Note that
the TCP packet appears inside the data portion of the IP datagram, just as

Figure F.37 suggests.

Crosscutting Issues for Interconnection Networks

This section describes five topics discussed in other chapters that are fundamen-
tally impacted by interconnection networks, and vice versa.

Density-Optimized Processors versus SPEC-Optimized
Processors

Given that people all over the world are accessing Web sites, it doesn’t really mat-
ter where servers are located. Hence, many servers are kept at collocation sites,
which charge by network bandwidth reserved and used and by space occupied
and power consumed. Desktop microprocessors in the past have been designed
to be as fast as possible at whatever heat could be dissipated, with little regard
for the size of the package and surrounding chips. In fact, some desktop micropro-
cessors from Intel and AMD as recently as 2006 burned as much as 130 watts!
Floor space efficiency was also largely ignored. As a result of these priorities,
power is a major cost for collocation sites, and processor density is limited by
the power consumed and dissipated, including within the interconnect!

With the proliferation of portable computers (notebook sales exceeded desktop
sales for the first time in 2005) and their reduced power consumption and cooling
demands, the opportunity exists for using this technology to create considerably
denser computation. For instance, the power consumption for the Intel Pentium
M in 2006 was 25 watts, yet it delivered performance close to that of a desktop
microprocessor for a wide set of applications. It is therefore conceivable that per-
formance per watt or performance per cubic foot could replace performance per
microprocessor as the important figure of merit. The key is that many applications
already make use of large clusters, so it is possible that replacing 64 power-hungry
processors with, say, 256 power-efficient processors could be cheaper yet be soft-
ware compatible. This places greater importance on power- and performance-
efficient interconnection network design.

The Google cluster is a prime example of this migration to many “cooler”
processors versus fewer “hotter” processors. It uses racks of up to 80 Intel Pen-
tium III 1 GHz processors instead of more power-hungry high-end processors.
Other examples include blade servers consisting of 1-inch-wide by 7-inch-high
rack unit blades designed based on mobile processors. The HP ProLiant BL10e
G2 blade server supports up to 20 1-GHz ultra-low-voltage Intel Pentium M
processors with a 400-MHz front-side bus, 1-MB L2 cache, and up to 1 GB
memory. The Fujitsu Primergy BX300 blade server supports up to 20 1.4- or
1.6-GHz Intel Pentium M processors, each with 512 MB of memory expandable

to 4 GB.



F-90 ■ Appendix F Interconnection Networks
Smart Switches versus Smart Interface Cards

Figure F.39 shows a trade-off as to where intelligence can be located within a net-
work. Generally, the question is whether to have either smarter network interfaces
or smarter switches. Making one smarter generally makes the other simpler and
less expensive. By having an inexpensive interface, it was possible for Ethernet
to become standard as part of most desktop and server computers. Lower-cost
switches were made available for people with small configurations, not needing
sophisticated forwarding tables and spanning-tree protocols of larger Ethernet
switches.

Myrinet followed the opposite approach. Its switches are dumb components
that, other than implementing flow control and arbitration, simply extract the first
byte from the packet header and use it to directly select the output port. No routing
tables are implemented, so the intelligence is in the network interface cards (NICs).
The NICs are responsible for providing support for efficient communication and
for implementing a distributed protocol for network (re)configuration. InfiniBand
takes a hybrid approach by offering lower-cost, less sophisticated interface cards
called target channel adapters (or TCAs) for less demanding devices such as
disks—in the hope that it can be included within some I/O devices—and by offer-
ing more expensive, powerful interface cards for hosts called host channel adapters

(or HCAs). The switches implement routing tables.

Switch

Interface
card

Small-scale
Ethernet switch

Large-scale
Ethernet switch

teniryMtenrehtE

Myrinet

InfiniBand

InfiniBand target 
channel adapter

InfiniBand host
channel adapter

More 
intelligence

Figure F.39 Intelligence in a network: switch versus network interface card. Note
that Ethernet switches come in two styles, depending on the size of the network,
and that InfiniBand network interfaces come in two styles, depending on whether they
are attached to a computer or to a storage device. Myrinet is a proprietary system area
network.
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Protection and User Access to the Network

A challenge is to ensure safe communication across a network without invoking
the operating system in the common case. The Cray Research T3D supercomputer
offers an interesting case study. Like the more recent Cray X1E, the T3D supports a
global address space, so loads and stores can access memory across the network.
Protection is ensured because each access is checked by the TLB. To support trans-
fer of larger objects, a block transfer engine (BLT) was added to the hardware. Pro-
tection of access requires invoking the operating system before using the BLT to
check the range of accesses to be sure there will be no protection violations.

Figure F.40 compares the bandwidth delivered as the size of the object varies
for reads and writes. For very large reads (e.g., 512 KB), the BLT achieves the
highest performance: 140 MB/sec. But simple loads get higher performance for
8 KB or less. For the write case, both achieve a peak of 90 MB/sec, presumably
because of the limitations of the memory bus. But, for writes, the BLT can only
match the performance of simple stores for transfers of 2 MB; anything smaller
and it’s faster to send stores. Clearly, a BLT that can avoid invoking the operating
system in the common case would be more useful.

Efficient Interface to the Memory Hierarchy versus the Network

Traditional evaluations of processor performance, such as SPECint and SPECfp,
encourage integration of the memory hierarchy with the processor as the efficiency

of the memory hierarchy translates directly into processor performance. Hence,
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Figure F.40 Bandwidth versus transfer size for simple memory access instructions
versus a block transfer device on the Cray Research T3D. (From Arpaci et al. [1995].)
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microprocessors have multiple levels of caches on chip along with buffers for
writes. Because benchmarks such as SPECint and SPECfp do not reward good
interfaces to interconnection networks, many machines make the access time to
the network delayed by the full memory hierarchy. Writes must lumber their
way through full write buffers, and reads must go through the cycles of first-,
second-, and often third-level cache misses before reaching the interconnection
network. This hierarchy results in newer systems having higher latencies to the
interconnect than older machines.

Let’s compare three machines from the past: a 40-MHz SPARCstation-2, a 50-
MHz SPARCstation-20 without an external cache, and a 50-MHz SPARCstation-
20 with an external cache. According to SPECint95, this list is in order of increas-
ing performance. The time to access the I/O bus (S-bus), however, increases in this
sequence: 200 ns, 500 ns, and 1000 ns. The SPARCstation-2 is fastest because it
has a single bus for memory and I/O, and there is only one level to the cache. The
SPARCstation-20 memory access must first go over the memory bus (M-bus) and
then to the I/O bus, adding 300 ns. Machines with a second-level cache pay an

extra penalty of 500 ns before accessing the I/O bus.
Compute-Optimized Processors versus Receiver Overhead

The overhead to receive a message likely involves an interrupt, which bears the
cost of flushing and then restarting the processor pipeline, if not offloaded. As
mentioned earlier, reading network status and receiving data from the network
interface likely operate at cache miss speeds. If microprocessors become more
superscalar and go to even faster clock rates, the number of missed instruction
issue opportunities per message reception will likely rise to unacceptable

levels.
Fallacies and Pitfalls

Myths and hazards are widespread with interconnection networks. This section

mentions several warnings, so proceed carefully.

The interconnection network is very fast and does not need to be improved

The interconnection network provides certain functionality to the system, very
much like the memory and I/O subsystems. It should be designed to allow proces-
sors to execute instructions at the maximum rate. The interconnection network sub-
system should provide high enough bandwidth to keep from continuously entering
saturation and becoming an overall system bottleneck.

In the 1980s, when wormhole switching was introduced, it became feasible
to design large-diameter topologies with single-chip switches so that the band-
width capacity of the network was not the limiting factor. This led to the

flawed belief that interconnection networks need no further improvement.
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Since the 1980s, much attention has been placed on improving processor per-
formance, but comparatively less has been focused on interconnection net-
works. As technology advances, the interconnection network tends to
represent an increasing fraction of system resources, cost, power consumption,
and various other attributes that impact functionality and performance. Scaling
the bandwidth simply by overdimensioning certain network parameters is no
longer a cost-viable option. Designers must carefully consider the end-to-
end interconnection network design in concert with the processor, memory,
and I/O subsystems in order to achieve the required cost, power, functionality,
and performance objectives of the entire system. An obvious case in point is

multicore processors with on-chip networks.

Bisection bandwidth is an accurate cost constraint of a network

Despite being very popular, bisection bandwidth has never been a practical con-
straint on the implementation of an interconnection network, although it may be
one in future designs. It is more useful as a performance measure than as a cost

measure. Chip pin-outs are the more realistic bandwidth constraint.

Using bandwidth (in particular, bisection bandwidth) as the only measure of
network performance

It seldom is the case that aggregate network bandwidth (likewise, network bisec-
tion bandwidth) is the end-to-end bottlenecking point across the network. Even if it
were the case, networks are almost never 100% efficient in transporting packets
across the bisection (i.e., ρ<100%) nor at receiving them at network endpoints
(i.e., σ<100%). The former is highly dependent upon routing, switching, arbitra-
tion, and other such factors while both the former and the latter are highly depen-
dent upon traffic characteristics. Ignoring these important factors and
concentrating only on raw bandwidth can give very misleading performance pre-
dictions. For example, it is perfectly conceivable that a network could have higher
aggregate bandwidth and/or bisection bandwidth relative to another network but
also have lower measured performance!

Apparently, given sophisticated protocols like TCP/IP that maximize delivered
bandwidth, many network companies believe that there is only one figure of merit
for networks. This may be true for some applications, such as video streaming,
where there is little interaction between the sender and the receiver. Many appli-
cations, however, are of a request-response nature, and so for every large message
there must be one or more small messages. One example is NFS.

Figure F.41 compares a shared 10-Mbit/sec Ethernet LAN to a switched 155-
Mbit/sec ATM LAN for NFS traffic. Ethernet drivers were better tuned than the
ATM drivers, such that 10-Mbit/sec Ethernet was faster than 155-Mbit/sec
ATM for payloads of 512 bytes or less. Figure F.41 shows the overhead time, trans-
mission time, and total time to send all the NFS messages over Ethernet and ATM.
The peak link speed of ATM is 15 times faster, and the measured link speed for 8-
KB messages is almost 9 times faster. Yet, the higher overheads offset the benefits

so that ATM would transmit NFS traffic only 1.2 times faster.



Figure F.41 Total time on a 10-Mbit Ethernet and a 155-Mbit ATM, calculating the total overhead and transmis-
sion time separately. Note that the size of the headers needs to be added to the data bytes to calculate transmission
time. The higher overhead of the software driver for ATM offsets the higher bandwidth of the network. These mea-
surements were performed in 1994 using SPARCstation 10s, the ForeSystems SBA-200 ATM interface card, and the
Fore Systems ASX-200 switch. (NFS measurements taken by Mike Dahlin of the University of California–Berkeley.)
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Pitfall
 Not providing sufficient reception link bandwidth, which causes the network end
nodes to become even more of a bottleneck to performance

Unless the traffic pattern is a permutation, several packets will concurrently
arrive at some destinations when most source devices inject traffic, thus pro-
ducing contention. If this problem is not addressed, contention may turn into
congestion that will spread across the network. This can be dealt with by ana-
lyzing traffic patterns and providing extra reception bandwidth. For example, it
is possible to implement more reception bandwidth than injection bandwidth.

The IBM Blue Gene/L, for example, implements an on-chip switch with 7-bit



Pitfall

Fallacy

F.11 Fallacies and Pitfalls ■ F-95
injection and 12-bit reception links, where the reception BW equals the aggre-

gate switch input link BW.

Using high-performance network interface cards but forgetting about the I/O sub-
system that sits between the network interface and the host processor

This issue is related to the previous one. Messages are usually composed in user
space buffers and later sent by calling a send function from the communications
library. Alternatively, a cache controller implementing a cache coherence protocol
may compose a message in some SANs and in OCNs. In both cases, messages have
to be copied to the network interface memory before transmission. If the I/O band-
width is lower than the link bandwidth or introduces significant overhead, this is
going to affect communication performance significantly. As an example, the first
10-Gigabit Ethernet cards in the market had a PCI-X bus interface for the system

with a significantly lower bandwidth than 10 Gbps.

Zero-copy protocols do not require copying messages or fragments from one
buffer to another

Traditional communication protocols for computer networks allow access to com-
munication devices only through system calls in supervisor mode. As a conse-
quence of this, communication routines need to copy the corresponding
message from the user buffer to a kernel buffer when sending a message. Note that
the communication protocol may need to keep a copy of the message for retrans-
mission in case of error, and the application may modify the contents of the user
buffer once the system call returns control to the application. This buffer-to-buffer
copy is eliminated in zero-copy protocols because the communication routines are
executed in user space and protocols are much simpler.

However, messages still need to be copied from the application buffer to
the memory in the network interface card (NIC) so that the card hardware
can transmit it from there through to the network. Although it is feasible to
eliminate this copy by allocating application message buffers directly in the
NIC memory (and, indeed, this is done in some protocols), this may not be
convenient in current systems because access to the NIC memory is usually
performed through the I/O subsystem, which usually is much slower than
accessing main memory. Thus, it is generally more efficient to compose the
message in main memory and let DMA devices take care of the transfer to
the NIC memory.

Moreover, what few people count is the copy from where the message frag-
ments are computed (usually the ALU, with results stored in some processor reg-
ister) to main memory. Some systolic-like architectures in the 1980s, like the
iWarp, were able to directly transmit message fragments from the processor to
the network, effectively eliminating all the message copies. This is the approach
taken in the Cray X1E shared-memory multiprocessor supercomputer.

Similar comments can be made regarding the reception side; however, this
does not mean that zero-copy protocols are inefficient. These protocols represent

the most efficient kind of implementation used in current systems.
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Pitfall

Fallacy

Fallacy
Ignoring software overhead when determining performance

Low software overhead requires cooperation with the operating system as well
as with the communication libraries, but even with protocol offloading it con-
tinues to dominate the hardware overhead and must not be ignored.
Figures F.32 and F.41 give two examples, one for a SAN standard and the
other for a WAN standard. Other examples come from proprietary SANs for
supercomputers. The Connection Machine CM-5 supercomputer in the early
1990s had a software overhead of 20 μs to send a message and a hardware
overhead of only 0.5 μs. The first Intel Paragon supercomputer built in the
early 1990s had a hardware overhead of just 0.2 μs, but the initial release of
the software had an overhead of 250 μs. Later releases reduced this overhead
down to 25 μs and, more recently, down to only a few microseconds, but this
still dominates the hardware overhead. The IBM Blue Gene/L has an MPI
sending/receiving overhead of approximately 3 μs, only a third of which (at
most) is attributed to the hardware.

This pitfall is simply Amdahl’s law applied to networks: Faster network
hardware is superfluous if there is not a corresponding decrease in software
overhead. The software overhead is much reduced these days with OS
bypass, lightweight protocols, and protocol offloading down to a few micro-
seconds or less, typically, but it remains a significant factor in determining

performance.

MINs are more cost-effective than direct networks

AMIN is usually implemented using significantly fewer switches than the number
of devices that need to be connected. On the other hand, direct networks usually
include a switch as an integral part of each node, thus requiring as many switches as
nodes to interconnect. However, nothing prevents the implementation of nodes
with multiple computing devices on it (e.g., a multicore processor with an on-chip
switch) or with several devices attached to each switch (i.e., bristling). In these
cases, a direct network may be as (or even more) cost-effective as a MIN. Note
that, for a MIN, several network interfaces may be required at each node to match
the bandwidth delivered by the multiple links per node provided by the direct

network.

Low-dimensional direct networks achieve higher performance than
high-dimensional networks such as hypercubes

This conclusion was drawn by several studies that analyzed the optimal number of
dimensions under the main physical constraint of bisection bandwidth. However,
most of those studies did not consider link pipelining, considered only very short
links, and/or did not consider switch architecture design constraints. The misplaced
assumption that bisection bandwidth serves as the main limit did not help matters.
Nowadays, most researchers and designers believe that high-radix switches are
more cost-effective than low-radix switches, including some who concluded the

opposite before.
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Fallacy

Fallacy

Fallacy
Wormhole switching achieves better performance than other switching
techniques

Wormhole switching delivers the same no-load latency as other pipelined switch-
ing techniques, like virtual cut-through switching. The introduction of wormhole
switches in the late 1980s coinciding with a dramatic increase in network band-
width led many to believe that wormhole switching was the main reason for the
performance boost. Instead, most of the performance increase came from a drastic
increase in link bandwidth, which, in turn, was enabled by the ability of wormhole
switching to buffer packet fragments using on-chip buffers, instead of using the
node’s main memory or some other off-chip source for that task. More recently,
much larger on-chip buffers have become feasible, and virtual cutthrough achieved
the same no-load latency as wormhole while delivering much higher throughput.
This did not mean that wormhole switching was dead. It continues to be the switch-
ing technique of choice for applications in which only small buffers should be used

(e.g., perhaps for on-chip networks).

Implementing a few virtual channels always increases throughput by allowing
packets to pass through blocked packets ahead

In general, implementing a few virtual channels in a wormhole switch is a
good idea because packets are likely to pass blocked packets ahead of them,
thus reducing latency and significantly increasing throughput. However, the
improvements are not as dramatic for virtual cut-through switches. In virtual
cut-through, buffers should be large enough to store several packets. As a con-
sequence, each virtual channel may introduce HOL blocking, possibly degrad-
ing performance at high loads. Adding virtual channels increases cost, but it
may deliver little additional performance unless there are as many virtual chan-
nels as switch ports and packets are mapped to virtual channels according to
their destination (i.e., virtual output queueing). It is certainly the case that vir-
tual channels can be useful in virtual cut-through networks to segregate differ-
ent traffic classes, which can be very beneficial. However, multiplexing the
packets over a physical link on a flit-by-flit basis causes all the packets from
different virtual channels to get delayed. The average packet delay is signifi-
cantly shorter if multiplexing takes place on a packet-by-packet basis, but in
this case packet size should be bounded to prevent any one packet from

monopolizing the majority of link bandwidth.

Adaptive routing causes out-of-order packet delivery, thus introducing too much
overhead needed to reorder packets at the destination device

Adaptive routing allows packets to follow alternative paths through the network
depending on network traffic; therefore, adaptive routing usually introduces
outof-order packet delivery. However, this does not necessarily imply that reorder-
ing packets at the destination device is going to introduce a large overhead, making
adaptive routing not useful. For example, the most efficient adaptive routing algo-

rithms to date support fully adaptive routing in some virtual channels but required
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deterministic routing to be implemented in some other virtual channels in order to
prevent deadlocks (à la the IBM Blue Gene/L). In this case, it is very easy to select
between adaptive and deterministic routing for each individual packet. A single bit
in the packet header can indicate to the switches whether all the virtual channels
can be used or only those implementing deterministic routing. This hardware sup-
port can be used as indicated below to eliminate packet reordering overhead at the
destination.

Most communication protocols for parallel computers and clusters implement
two different protocols depending on message size. For short messages, an eager
protocol is used in which messages are directly transmitted, and the receiving
nodes use some preallocated buffer to temporarily store the incoming message.
On the other hand, for long messages, a rendezvous protocol is used. In this case,
a control message is sent first, requesting the destination node to allocate a buffer
large enough to store the entire message. The destination node confirms buffer
allocation by returning an acknowledgment, and the sender can proceed with frag-
menting the message into bounded-size packets, transmitting them to the
destination.

If eager messages use only deterministic routing, it is obvious that they do
not introduce any reordering overhead at the destination. On the other hand,
packets belonging to a long message can be transmitted using adaptive routing.
As every packet contains the sequence number within the message (or the off-
set from the beginning of the message), the destination node can store every
incoming packet directly in its correct location within the message buffer, thus
incurring no overhead with respect to using deterministic routing. The only
thing that differs is the completion condition. Instead of checking that the last
packet in the message has arrived, it is now necessary to count the arrived
packets, notifying the end of reception when the count equals the message size.
Taking into account that long messages, even if not frequent, usually consume
most of the network bandwidth, it is clear that most packets can benefit from
adaptive routing without introducing reordering overhead when using the pro-

tocol described above.

Adaptive routing by itself always improves network fault tolerance because it
allows packets to follow alternative paths

Adaptive routing by itself is not enough to tolerate link and/or switch failures.
Some mechanism is required to detect failures and notify them, so that the routing
logic could exclude faulty paths and use the remaining ones. Moreover, while a
given link or switch failure affects a certain number of paths when using determin-
istic routing, many more source/destination pairs could be affected by the same
failure when using adaptive routing. As a consequence of this, some switches
implementing adaptive routing transition to deterministic routing in the presence
of failures. In this case, failures are usually tolerated by sending messages through
alternative paths from the source node. As an example, the Cray T3E implements
direction-order routing to tolerate a few failures. This fault-tolerant routing

technique avoids cycles in the use of resources by crossing directions in order
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(e.g., X+, Y+, Z+, Z�, Y�, then X�). At the same time, it provides an easy way to
send packets through nonminimal paths, if necessary, to avoid crossing faulty com-
ponents. For instance, a packet can be initially forwarded a few hops in the X+

direction even if it has to go in the X� direction at some point later.

Trying to provide features only within the network versus end-to-end

The concern is that of providing at a lower level the features that can only be
accomplished at the highest level, thus only partially satisfying the communication
demand. Saltzer, Reed, and Clark [1984] gave the end-to-end argument as follows:

The function in question can completely and correctly be specified only with
the knowledge and help of the application standing at the endpoints of the
communication system. Therefore, providing that questioned function as a fea-
ture of the communication system itself is not possible. [page 278]

Their example of the pitfall was a network at MIT that used several gateways, each
of which added a checksum from one gateway to the next. The programmers of the
application assumed that the checksum guaranteed accuracy, incorrectly believing
that the message was protected while stored in the memory of each gateway. One
gateway developed a transient failure that swapped one pair of bytes per million
bytes transferred. Over time, the source code of one operating system was repeat-
edly passed through the gateway, thereby corrupting the code. The only solution
was to correct infected source files by comparing them to paper listings and repair-
ing code by hand! Had the checksums been calculated and checked by the appli-
cation running on the end systems, safety would have been ensured.

There is a useful role for intermediate checks at the link level, however, pro-
vided that end-to-end checking is available. End-to-end checking may show that
something is broken between two nodes, but it doesn’t point to where the problem
is. Intermediate checks can discover the broken component.

A second issue regards performance using intermediate checks. Although it is
sufficient to retransmit the whole in case of failures from the end point, it can be
much faster to retransmit a portion of the message at an intermediate point rather

than wait for a time-out and a full message retransmit at the end point.

Relying on TCP/IP for all networks, regardless of latency, bandwidth, or software
requirements

The network designers on the first workstations decided it would be elegant to use a
single protocol stack no matter where the destination of the message: Across a
room or across an ocean, the TCP/IP overhead must be paid. This might have been
a wise decision back then, especially given the unreliability of early Ethernet hard-
ware, but it sets a high software overhead barrier for commercial systems of today.
Such an obstacle lowers the enthusiasm for low-latency network interface hard-
ware and low-latency interconnection networks if the software is just going to
waste hundreds of microseconds when the message must travel only dozens of

meters or less. It also can use significant processor resources. One rough rule of
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thumb is that each Mbit/sec of TCP/IP bandwidth needs about 1 MHz of processor
speed, so a 1000-Mbit/sec link could saturate a processor with an 800- to 1000-
MHz clock.

The flip side is that, from a software perspective, TCP/IP is the most desirable
target since it is the most connected and, hence, provides the largest number of
opportunities. The downside of using software optimized to a particular LAN or
SAN is that it is limited. For example, communication from a Java program
depends on TCP/IP, so optimization for another protocol would require creation
of glue software to interface Java to it.

TCP/IP advocates point out that the protocol itself is theoretically not as bur-
densome as current implementations, but progress has been modest in commercial
systems. There are also TCP/IP offloading engines in the market, with the hope of
preserving the universal software model while reducing processor utilization and
message latency. If processors continue to improve much faster than network
speeds, or if multiple processors become ubiquitous, software TCP/IP may become

less significant for processor utilization and message latency.
Concluding Remarks

Interconnection network design is one of the most exciting areas of computer archi-
tecture development today. With the advent of new multicore processor paradigms
and advances in traditional multiprocessor/cluster systems and the Internet, many
challenges and opportunities exist for interconnect architecture innovation. These
apply to all levels of computer systems: communication between cores on a chip,
between chips on a board, between boards in a system, and between computers in a
machine room, over a local area and across the globe. Irrespective of their domain
of application, interconnection networks should transfer the maximum amount of
information within the least amount of time for given cost and power constraints so
as not to bottleneck the system. Topology, routing, arbitration, switching, and flow
control are among some of the key concepts in realizing such high-performance
designs.

The design of interconnection networks is end-to-end: It includes injection
links, reception links, and the interfaces at network end points as much as it
does the topology, switches, and links within the network fabric. It is often
the case that the bandwidth and overhead at the end node interfaces are the
bottleneck, yet many mistakenly think of the interconnection network to mean
only the network fabric. This is as bad as processor designers thinking of com-
puter architecture to mean only the instruction set architecture or only the
microarchitecture! End-to-end issues and understanding of the traffic charac-
teristics make the design of interconnection networks challenging and very
much relevant even today. For instance, the need for low end-to-end latency
is driving the development of efficient network interfaces located closer to
the processor/memory controller. We may soon see most multicore processors

used in multiprocessor systems implementing network interfaces on-chip,
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devoting some core(s) to execute communication tasks. This is already the case
for the IBM Blue Gene/L supercomputer, which uses one of its two cores on
each processor chip for this purpose.

Networking has a long way to go from its humble shared-media beginnings. It
is in “catch-up” mode, with switched-media point-to-point networks only recently
displacing traditional bus-based networks in many networking domains, including
on chip, I/O, and the local area. We are not near any performance plateaus, so we
expect rapid advancement of WANs, LANs, SANs, and especially OCNs in the
near future. Greater interconnection network performance is key to the
information- and communication-centric vision of the future of our field, which,
so far, has benefited many millions of people around the world in various ways.
As the quotes at the beginning of this appendix suggest, this revolution in two-
way communication is at the heart of changes in the form of our human associa-
tions and actions.
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Historical Perspective and References

This appendix has taken the perspective that interconnection networks for very
different domains—from on-chip networks within a processor chip to wide
area networks connecting computers across the globe—share many of the same
concerns. With this, interconnection network concepts are presented in a uni-
fied way, irrespective of their application; however, their histories are vastly
different, as evidenced by the different solutions adopted to address similar
problems. The lack of significant interaction between research communities
from the different domains certainly contributed to the diversity of implemen-
ted solutions. Highlighted below are relevant readings on each topic. In addi-
tion, good general texts featuring WAN and LAN networking have been
written by Davie, Peterson, and Clark [1999] and by Kurose and Ross
[2001]. Good texts focused on SANs for multiprocessors and clusters have
been written by Duato, Yalamanchili, and Ni [2003] and by Dally and
Towles [2004]. An informative chapter devoted to dead-lock resolution in
interconnection networks was written by Pinkston [2004]. Finally, an edited
work by Jantsch and Tenhunen [2003] on OCNs for multicore processors

and system-on-chips is also interesting reading.
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Wide Area Networks

Wide area networks are the earliest of the data interconnection networks. The fore-
runner of the Internet is the ARPANET, which in 1969 connected computer sci-
ence departments across the United States that had research grants funded by the
Advanced Research Project Agency (ARPA), a U.S. government agency. It was
originally envisioned as using reliable communications at lower levels. Practical
experience with failures of the underlying technology led to the failure-tolerant
TCP/IP, which is the basis for the Internet today. Vint Cerf and Robert Kahn
are credited with developing the TCP/IP protocols in the mid-1970s, winning
the ACM Software Award in recognition of that achievement. Kahn [1972] is
an early reference on the ideas of ARPANET. For those interested in learning more
about TPC/IP, Stevens [1994–1996] has written classic books on the topic.

In 1975, there were roughly 100 networks in the ARPANET; in 1983, only
200. In 1995, the Internet encompassed 50,000 networks worldwide, about half
of which were in the United States. That number is hard to calculate now, but
the number of IP hosts grew by a factor of 15 from 1995 to 2000, reaching 100
million Internet hosts by the end of 2000. It has grownmuch faster since then.With
most service providers assigning dynamic IP addresses, many local area networks
using private IP addresses, and with most networks allowing wireless connections,
the total number of hosts in the Internet is nearly impossible to compute. In July
2005, the Internet Systems Consortium (www.isc.org) estimated more than 350
million Internet hosts, with an annual increase of about 25% projected. Although
key government networks made the Internet possible (i.e., ARPANET and
NSFNET), these networks have been taken over by the commercial sector, allow-
ing the Internet to thrive. But major innovations to the Internet are still likely to
come from government-sponsored research projects rather than from the commer-
cial sector. The National Science Foundation’s Global Environment for Network
Innovation (GENI) initiative is an example of this.

The most exciting application of the Internet is the World Wide Web, devel-
oped in 1989 by Tim Berners-Lee, a programmer at the European Center for Par-
ticle Research (CERN), for information access. In 1992, a young programmer at
the University of Illinois, Marc Andreessen, developed a graphical interface for the
Web called Mosaic. It became immensely popular. He later became a founder of
Netscape, which popularized commercial browsers. InMay 1995, at the time of the
second edition of this book, there were over 30,000 Web pages, and the number
was doubling every two months. During the writing of the third edition of this text,
there were more than 1.3 billion Web pages. In December 2005, the number of
Web servers approached 75 million, having increased by 30% during that
same year.

Asynchronous Transfer Mode (ATM) was an attempt to design the definitive
communication standard. It provided good support for data transmission as well as
digital voice transmission (i.e., phone calls). From a technical point of view, it
combined the best from packet switching and circuit switching, also providing

excellent support for providing quality of service (QoS). Alles [1995] offers a good
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survey on ATM. In 1995, no one doubted that ATM was going to be the future for
this community. Ten years later, the high equipment and personnel training costs
basically killed ATM, and we returned back to the simplicity of TCP/IP. Another
important blow to ATM was its defeat by the Ethernet family in the LAN domain,
where packet switching achieved significantly lower latencies than ATM, which
required establishing a connection before data transmission. ATM connectionless
servers were later introduced in an attempt to fix this problem, but they were expen-
sive and represented a central bottleneck in the LAN.

Finally, WANs today rely on optical fiber. Fiber technology has made so
many advances that today WAN fiber bandwidth is often underutilized. The
main reason for this is the commercial introduction of wavelength division
multiplexing (WDM), which allows each fiber to transmit many data streams
simultaneously over different wavelengths, thus allowing three orders of mag-
nitude bandwidth increase in just one generation, that is, 3 to 5 years (a good
text by Senior [1993] discusses optical fiber communications). However, IP
routers may still become a bottleneck. At 10- to 40-Gbps link rates, and with
thousands of ports in large core IP routers, packets must be processed very
quickly—that is, within a few tens of nanoseconds. The most time-consuming
operation is routing. The way IP addresses have been defined and assigned to
Internet hosts makes routing very complicated, usually requiring a complex
search in a tree structure for every packet. Network processors have become
popular as a cost-effective solution for implementing routing and other
packet-filtering operations. They usually are RISC-like and highly multi-

threaded and implement local stores instead of caches.
Local Area Networks

ARPA’s success with wide area networks led directly to the most popular local area
networks. Many researchers at Xerox Palo Alto Research Center had been funded
by ARPA while working at universities, so they all knew the value of networking.
In 1974, this group invented the Alto, the forerunner of today’s desktop computers
[Thacker et al. 1982], and the Ethernet [Metcalfe and Boggs 1976], today’s LAN.
This group—David Boggs, Butler Lampson, Ed McCreight, Bob Sprowl, and
Chuck Thacker—became luminaries in computer science and engineering, collect-
ing a treasure chest of awards among them.

This first Ethernet provided a 3-Mbit/sec interconnection, which seemed like
an unlimited amount of communication bandwidth with computers of that era. It
relied on the interconnect technology developed for the cable television industry.
Special microcode support gave a round-trip time of 50 μs for the Alto over Ether-
net, which is still a respectable latency. It was Boggs’ experience as a ham radio
operator that led to a design that did not need a central arbiter, but instead listened
before use and then varied back-off times in case of conflicts.

The announcement by Digital Equipment Corporation, Intel, and Xerox of a

standard for 10-Mbit/sec Ethernet was critical to the commercial success of
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Ethernet. This announcement short-circuited a lengthy IEEE standards effort,
which eventually did publish IEEE 802.3 as a standard for Ethernet.

There have been several unsuccessful candidates that have tried to replace the
Ethernet. The Fiber Data Distribution Interconnect (FDDI) committee, unfortu-
nately, took a very long time to agree on the standard, and the resulting interfaces
were expensive. It was also a shared medium when switches were becoming
affordable. ATM also missed the opportunity in part because of the long time
to standardize the LAN version of ATM, and in part because of the high latency
and poor behavior of ATM connectionless servers, as mentioned above. Infini-
Band for the reasons discussed below has also faltered. As a result, Ethernet con-
tinues to be the absolute leader in the LAN environment, and it remains a strong
opponent in the high-performance computing market as well, competing against
the SANs by delivering high bandwidth at low cost. The main drawback of Ether-
net for high-end systems is its relatively high latency and lack of support in most
interface cards to implement the necessary protocols.

Because of failures of the past, LAN modernization efforts have been centered
on extending Ethernet to lower-cost media such as unshielded twisted pair (UTP),
switched interconnects, and higher link speeds as well as to new domains such as
wireless communication. Practically all new PC motherboards and laptops imple-
ment a Fast/Gigabit Ethernet port (100/1000 Mbps), and most laptops implement a
54 Mbps Wireless Ethernet connection. Also, home wired or wireless LANs con-
necting all the home appliances, set-top boxes, desktops, and laptops to a shared
Internet connection are very common. Spurgeon [2006] has provided a nice online

summary of Ethernet technology, including some of its history.
System Area Networks

One of the first nonblocking multistage interconnection networks was proposed by
Clos [1953] for use in telephone exchange offices. Building on this, many early
inventions for system area networks came from their use in massively parallel pro-
cessors (MPPs). One of the first MPPs was the Illiac IV, a SIMD array built in the
early 1970s with 64 processing elements (“massive” at that time) interconnected
using a topology based on a 2D torus that provided neighbor-to-neighbor commu-
nication. Another representative of early MPP was the Cosmic Cube, which used
Ethernet interface chips to connect 64 processors in a 6-cube. Communication
between nonneighboring nodes was made possible by store-and-forwarding of
packets at intermediate nodes toward their final destination. A much larger and
truly “massive”MPP built in the mid-1980s was the Connection Machine, a SIMD
multiprocessor consisting of 64 K 1-bit processing elements, which also used a
hypercube with store-and-forwarding. Since these early MPP machines, intercon-
nection networks have improved considerably.

In the 1970s through the 1990s, considerable research went into trying to opti-
mize the topology and, later, the routing algorithm, switching, arbitration, and flow

control techniques. Initially, research focused on maximizing performance with
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little attention paid to implementation constraints or crosscutting issues. Many
exotic topologies were proposed having very interesting properties, but most of
them complicated the routing. Rising from the fray was the hypercube, a very pop-
ular network in the 1980s that has all but disappeared from MPPs since the 1990s.
What contributed to this shift was a performance model by Dally [1990] that
showed that if the implementation is wire limited, lower-dimensional topologies
achieve better performance than higher-dimensional ones because of their wider
links for a given wire budget. Many designers followed that trend assuming their
designs to be wire limited, even though most implementations were (and still are)
pin limited. Several supercomputers since the 1990s have implemented low-
dimensional topologies, including the Intel Paragon, Cray T3D, Cray T3E, HP
AlphaServer, Intel ASCI Red, and IBM Blue Gene/L.

Meanwhile, other designers followed a very different approach, implementing
bidirectional MINs in order to reduce the number of required switches below the
number of network nodes. The most popular bidirectional MIN was the fat tree
topology, originally proposed by Leiserson [1985] and first used in the Connection
Machine CM-5 supercomputer and, later, the IBM ASCI White and ASC Purple
supercomputers. This indirect topology was also used in several European parallel
computers based on the Transputer. The Quadrics network has inherited character-
istics from some of those Transputer-based networks. Myrinet has also evolved
significantly from its first version, with Myrinet 2000 incorporating the fat tree
as its principal topology. Indeed, most current implementations of SANs, including
Myrinet, InfiniBand, and Quadrics as well as future implementations such as PCI-
Express Advanced Switching, are based on fat trees.

Although the topology is the most visible aspect of a network, other features
also have a significant impact on performance. A seminal work that raised aware-
ness of deadlock properties in computer systems was published by Holt [1972].
Early techniques for avoiding deadlock in store-and-forward networks were pro-
posed by Merlin and Schweitzer [1980] and by Gunther [1981]. Pipelined switch-
ing techniques were first introduced by Kermani and Kleinrock [1979] (virtual cut-
through) and improved upon by Dally and Seitz [1986] (wormhole), which signif-
icantly reduced low-load latency and the topology’s impact on message latency
over previously proposed techniques. Wormhole switching was initially better
than virtual cut-through largely because flow control could be implemented at a
granularity smaller than a packet, allowing high-bandwidth links that were not
as constrained by available switch memory bandwidth. Today, virtual cut-through
is usually preferred over wormhole because it achieves higher throughput due to
less HOL blocking effects and is enabled by current integration technology that
allows the implementation of many packet buffers per link.

Tamir and Frazier [1992] laid the groundwork for virtual output queuing with
the notion of dynamically allocated multiqueues. Around this same time, Dally
[1992] contributed the concept of virtual channels, which was key to the develop-
ment of more efficient deadlock-free routing algorithms and congestion-reducing
flow control techniques for improved network throughput. Another highly relevant

contribution to routing was a new theory proposed by Duato [1993] that allowed
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the implementation of fully adaptive routing with just one “escape” virtual channel
to avoid deadlock. Previous to this, the required number of virtual channels to
avoid deadlock increased exponentially with the number of network dimensions.
Pinkston and Warnakulasuriya [1997] went on to show that deadlock actually can
occur very infrequently, giving credence to deadlock recovery routing approaches.
Scott and Goodman [1994] were among the first to analyze the usefulness of pipe-
lined channels for making link bandwidth independent of the time of flight. These
and many other innovations have become quite popular, finding use in most high-
performance interconnection networks, both past and present. The IBM Blue
Gene/L, for example, implements virtual cut-through switching, four virtual chan-
nels per link, fully adaptive routing with one escape channel, and pipelined links.

MPPs represent a very small (and currently shrinking) fraction of the informa-
tion technology market, giving way to bladed servers and clusters. In the United
States, government programs such as the Advanced Simulation and Computing
(ASC) program (formerly known as the Accelerated Strategic Computing Initia-
tive, or ASCI) have promoted the design of those machines, resulting in a series
of increasingly powerful one-of-a-kind MPPs costing $50 million to $100 million.
These days, many are basically lower-cost clusters of symmetric multiprocessors
(SMPs) (see Pfister [1998] and Sterling [2001] for two perspectives on clustering).
In fact, in 2005, nearly 75% of the TOP500 supercomputers were clusters. Nev-
ertheless, the design of each generation of MPPs and even clusters pushes inter-
connection network research forward to confront new problems arising due to
shear size and other scaling factors. For instance, source-based routing—the sim-
plest form of routing—does not scale well to large systems. Likewise, fat trees
require increasingly longer links as the network size increases, which led IBMBlue
Gene/L designers to adopt a 3D torus network with distributed routing that can be

implemented with bounded-length links.
Storage Area Networks

System area networks were originally designed for a single room or single floor
(thus their distances are tens to hundreds of meters) and were for use in MPPs
and clusters. In the intervening years, the acronym SAN has been co-opted to also
mean storage area networks, whereby networking technology is used to connect
storage devices to compute servers. Today, many refer to “storage” when they
say SAN. The most widely used SAN example in 2006 was Fibre Channel
(FC), which comes in many varieties, including various versions of Fibre Channel
Arbitrated Loop (FC-AL) and Fibre Channel Switched (FC-SW). Not only are disk
arrays attached to servers via FC links, but there are even some disks with FC links
attached to switches so that storage area networks can enjoy the benefits of greater
bandwidth and interconnectivity of switching.

In October 2000, the InfiniBand Trade Association announced the version 1.0
specification of InfiniBand [InfiniBand Trade Association 2001]. Led by Intel, HP,

IBM, Sun, and other companies, it was targeted to the high-performance
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computing market as a successor to the PCI bus by having point-to-point links and
switches with its own set of protocols. Its characteristics are desirable potentially
both for system area networks to connect clusters and for storage area networks to
connect disk arrays to servers. Consequently, it has had strong competition from
both fronts. On the storage area networking side, the chief competition for Infini-
Band has been the rapidly improving Ethernet technology widely used in LANs.
The Internet Engineering Task Force proposed a standard called iSCSI to send
SCSI commands over IP networks [Satran et al. 2001]. Given the cost advantages
of the higher-volume Ethernet switches and interface cards, Gigabit Ethernet dom-
inates the low-end and medium range for this market. What’s more, the slow intro-
duction of InfiniBand and its small market share delayed the development of chip
sets incorporating native support for InfiniBand. Therefore, network interface
cards had to be plugged into the PCI or PCI-X bus, thus never delivering on the
promise of replacing the PCI bus.

It was another I/O standard, PCI-Express, that finally replaced the PCI bus.
Like InfiniBand, PCI-Express implements a switched network but with point-
to-point serial links. To its credit, it maintains software compatibility with the
PCI bus, drastically simplifying migration to the new I/O interface. Moreover,
PCI-Express benefited significantly from mass market production and has found
application in the desktop market for connecting one or more high-end graphics
cards, making gamers very happy. Every PC motherboard now implements one
or more 16x PCI-Express interfaces. PCI-Express absolutely dominates the I/O
interface, but the current standard does not provide support for interprocessor
communication.

Yet another standard, Advanced Switching Interconnect (ASI), may emerge as
a complementary technology to PCI-Express. ASI is compatible with PCI-Express,
thus linking directly to current motherboards, but it also implements support for
interprocessor communication as well as I/O. Its defenders believe that it will even-
tually replace both SANs and LANs with a unified network in the data center mar-
ket, but ironically this was also said of InfiniBand. The interested reader is referred
to Pinkston et al. [2003] for a detailed discussion on this. There is also a new disk
interface standard called Serial Advanced Technology Attachment (SATA) that is
replacing parallel Integrated Device Electronics (IDE) with serial signaling tech-
nology to allow for increased bandwidth. Most disks in the market use this new
interface, but keep in mind that Fibre Channel is still alive and well. Indeed, most
of the promises made by InfiniBand in the SAN market were satisfied by Fibre
Channel first, thus increasing their share of the market.

Some believe that Ethernet, PCI-Express, and SATA have the edge in the
LAN, I/O interface, and disk interface areas, respectively. But the fate of the
remaining storage area networking contenders depends on many factors. A won-
derful characteristic of computer architecture is that such issues will not remain
endless academic debates, unresolved as people rehash the same arguments repeat-
edly. Instead, the battle is fought in the marketplace, with well-funded and talented
groups giving their best efforts at shaping the future. Moreover, constant changes

to technology reward those who are either astute or lucky. The best combination of
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technology and follow-through has often determined commercial success. Time

will tell us who will win and who will lose, at least for the next round!
On-Chip Networks

Relative to the other network domains, on-chip networks are in their infancy. As
recently as the late 1990s, the traditional way of interconnecting devices such as
caches, register files, ALUs, and other functional units within a chip was to use
dedicated links aimed at minimizing latency or shared buses aimed at simplicity.
But with subsequent increases in the volume of interconnected devices on a single
chip, the length and delay of wires to cross a chip, and chip power consumption, it
has become important to share on-chip interconnect bandwidth in a more struc-
tured way, giving rise to the notion of a network on-chip. Among the first to rec-
ognize this were Agarwal [Waingold et al. 1997] and Dally [Dally 1999; Dally and
Towles 2001]. They and others argued that on-chip networks that route packets
allow efficient sharing of burgeoning wire resources between many communica-
tion flows and also facilitate modularity to mitigate chip-crossing wire delay prob-
lems identified by Ho,Mai, and Horowitz [2001]. Switched on-chip networks were
also viewed as providing better fault isolation and tolerance. Challenges in
designing these networks were later described by Taylor et al. [2005], who also
proposed a 5-tuple model for characterizing the delay of OCNs. A design process
for OCNs that provides a complete synthesis flow was proposed by Bertozzi et al.
[2005]. Following these early works, much research and development has gone
into on-chip network design, making this a very hot area of microarchitecture
activity.

Multicore and tiled designs featuring on-chip networks have become very pop-
ular since the turn of the millennium. Pinkston and Shin [2005] provide a survey of
on-chip networks used in early multicore/tiled systems. Most designs exploit the
reduced wiring complexity of switched OCNs as the paths between cores/tiles can
be precisely defined and optimized early in the design process, thus enabling
improved power and performance characteristics. With typically tens of thousands
of wires attached to the four edges of a core or tile as “pinouts,” wire resources can
be traded off for improved network performance by having very wide channels
over which data can be sent broadside (and possibly scaled up or down according
to the power management technique), as opposed to serializing the data over fixed
narrow channels.

Rings, meshes, and crossbars are straightforward to implement in planar chip
technology and routing is easily defined on them, so these were popular topolog-
ical choices in early switched OCNs. It will be interesting to see if this trend con-
tinues in the future when several tens to hundreds of heterogeneous cores and tiles
will likely be interconnected within a single chip, possibly using 3D integration
technology. Considering that processor microarchitecture has evolved signifi-
cantly from its early beginnings in response to application demands and technolog-
ical advancements, we would expect to see vast architectural improvements to on-

chip networks as well.
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Exercises

Solutions to “starred” exercises are available for instructors who register at text-

books.elsevier.com.

✪ F.1 [15]<F.2, F.3> Is electronic communication always faster than nonelectronic
means for longer distances? Calculate the time to send 1000 GB using 25 8-mm
tapes and an overnight delivery service versus sending 1000 GB by FTP over

the Internet. Make the following four assumptions:

■ The tapes are picked up at 4 P.M. Pacific time and delivered 4200 km away at
10 A.M. Eastern time (7 A.M. Pacific time).

■ On one route the slowest link is a T3 line, which transfers at 45 Mbits/sec.

■ On another route the slowest link is a 100-Mbit/sec Ethernet.

■ You can use 50% of the slowest link between the two sites.
Will all the bytes sent by either Internet route arrive before the overnight delivery

person arrives?

✪ F.2 [10]<F.2, F.3>For the same assumptions as Exercise F.1, what is the bandwidth
of overnight delivery for a 1000-GB package?

✪ F.3 [10]<F.2, F.3>For the same assumptions as Exercise F.1, what is the minimum
bandwidth of the slowest link to beat overnight delivery? What standard network

options match that speed?
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✪ F.4 [15]<F.2, F.3>The original Ethernet standard was for 10 Mbits/sec and a max-
imum distance of 2.5 km. How many bytes could be in flight in the original Ether-
net? Assume you can use 90% of the peak bandwidth.

✪ F.5 [15]<F.2, F.3>Flow control is a problem for WANs due to the long time of
flight, as the example on page F-14 illustrates. Ethernet did not include flow
control when it was first standardized at 10 Mbits/sec. Calculate the number of
bytes in flight for a 10-Gbit/sec Ethernet over a 100 meter link, assuming you
can use 90% of peak bandwidth. What does your answer mean for network
designers?

✪ F.6 [15]<F.2, F.3>Assume the total overhead to send a zero-length data packet on an
Ethernet is 100 μs and that an unloaded network can transmit at 90% of the peak
1000-Mbit/sec rating. For the purposes of this question, assume that the size of the
Ethernet header and trailer is 56 bytes. Assume a continuous stream of packets of
the same size. Plot the delivered bandwidth of user data in Mbits/sec as the payload
data size varies from 32 bytes to the maximum size of 1500 bytes in 32-byte
increments.

✪ F.7 [10]<F.2, F.3>Exercise F.6 suggests that the delivered Ethernet bandwidth to a
single user may be disappointing. Making the same assumptions as in that exercise,
by howmuch would the maximum payload size have to be increased to deliver half
of the peak bandwidth?

✪ F.8 [10]<F.2, F.3>One reason that ATM has a fixed transfer size is that when a
short message is behind a long message, a node may need to wait for an entire
transfer to complete. For applications that are time sensitive, such as when
transmitting voice or video, the large transfer size may result in transmission
delays that are too long for the application. On an unloaded interconnection,
what is the worstcase delay in microseconds if a node must wait for one
full-size Ethernet packet versus an ATM transfer? See Figure F.30 (page F-
78) to find the packet sizes. For this question assume that you can transmit
at 100% of the 622-Mbits/sec ATM network and 100% of the 1000-Mbit/
sec Ethernet.

✪ F.9 [10]<F.2, F.3>Exercise F.7 suggests the need for expanding the maximum
pay-load to increase the delivered bandwidth, but Exercise F.8 suggests the
impact on worst-case latency of making it longer. What would be the impact
on latency of increasing the maximum payload size by the answer to Exercise
F.7?

✪ F.10 [12/12/20]<F.4>The Omega network shown in Figure F.11 on page F-31 con-
sists of three columns of four switches, each with two inputs and two outputs. Each
switch can be set to straight, which connects the upper switch input to the upper
switch output and the lower input to the lower output, and to exchange,which con-
nects the upper input to the lower output and vice versa for the lower input. For
each column of switches, label the inputs and outputs 0, 1,…, 7 from top to bottom,

to correspond with the numbering of the processors.
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a. [12]<F.4>When a switch is set to exchange and a message passes through,
what is the relationship between the label values for the switch input and output
used by the message? (Hint: Think in terms of operations on the digits of the
binary representation of the label number.)

b. [12]<F.4>Between any two switches in adjacent columns that are connected
by a link, what is the relationship between the label of the output connected to
the input?

c. [20]<F.4>Based on your results in parts (a) and (b), design and describe a
simple routing scheme for distributed control of the Omega network. Amessage
will carry a routing tag computed by the sending processor. Describe how the
processor computes the tag and how each switch can set itself by examining a bit

of the routing tag.

✪ F.11 [12/12/12/12/12/12]<F.4>Prove whether or not it is possible to realize the fol-
lowing permutations (i.e., communication patterns) on the eight-node Omega net-

work shown in Figure F.11 on page F-31:

a. [12]<F.4>Bit-reversal permutation—the node with binary coordinates an�1,
an�2, …, a1, a0 communicates with the node a0, a1, …, an�2, an�1.

b. [12]<F.4>Perfect shuffle permutation—the node with binary coordinates
an�1, an�2, …, a1, a0 communicates with the node an�2, an�3, …, a0, an�1

(i.e., rotate left 1 bit).

c. [12]<F.4>Bit-complement permutation—the node with binary coordinates
an�1, an�2, …, a1, a0 communicates with the node an�1, an�2,…, a1, a0
(i.e., complement each bit).

d. [12]<F.4>Butterfly permutation—the node with binary coordinates an�1,
an�2, …, a1, a0 communicates with the node a0, an�2, …, a1, an�1 (i.e., swap
the most and least significant bits).

e. [12]<F.4>Matrix transpose permutation—the node with binary coordinates
an�1, an�2, …, a1, a0 communicates with the node an/2�1, …, a0, an�1, …,
an/2 (i.e., transpose the bits in positions approximately halfway around).

f. [12]<F.4>Barrel-shift permutation—node i communicates with node i+1

modulo N�1, where N is the total number of nodes and 0� i.

✪ F.12 [12]<F.4>Design a network topology using 18-port crossbar switches that has
the minimum number of switches to connect 64 nodes. Each switch port supports
communication to and from one device.

✪ F.13 [15]<F.4>Design a network topology that has the minimum latency through the
switches for 64 nodes using 18-port crossbar switches. Assume unit delay in the
switches and zero delay for wires.

✪ F.14 [15]<F.4>Design a switch topology that balances the bandwidth required for all
links for 64 nodes using 18-port crossbar switches. Assume a uniform traffic

pattern.
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✪ F.15 [15]<F.4>Compare the interconnection latency of a crossbar, Omega network,
and fat tree with eight nodes. Use Figure F.11 on page F-31, Figure F.12 on page F-
33, and Figure F.14 on page F-37. Assume that the fat tree is built entirely from
two-input, two-output switches so that its hardware resources are more comparable
to that of the Omega network. Assume that each switch costs a unit time delay.
Assume that the fat tree randomly picks a path, so give the best case and worst
case for each example. How long will it take to send a message from node 0 to
node 6? How long will it take node 1 and node 7 to communicate?

✪ F.16 [15]<F.4>Draw the topology of a 6-cube after the same manner of the 4-cube in
Figure F.14 on page F-37. What is the maximum and average number of hops
needed by packets assuming a uniform distribution of packet destinations?

✪ F.17 [15]<F.4>Complete a table similar to Figure F.15 on page F-40 that captures the
performance and cost of various network topologies, but do it for the general case
of N nodes using k�k switches instead of the specific case of 64 nodes.

✪ F.18 [20]<F.4>Repeat the example given on page F-41, but use the bit-complement
communication pattern given in Exercise F.11 instead of NEWS communication.

✪ F.19 [15]<F.5>Give the four specific conditions necessary for deadlock to exist in an
interconnection network. Which of these are removed by dimension-order routing?
Which of these are removed in adaptive routing with the use of “escape” routing
paths? Which of these are removed in adaptive routing with the technique of dead-
lock recovery (regressive or progressive)? Explain your answer.

✪ F.20 [12/12/12/12]<F.5>Prove whether or not the following routing algorithms based
on prohibiting dimensional turns are suitable to be used as escape paths for 2D
meshes by analyzing whether they are both connected and deadlock-free. Explain
your answer. (Hint: You may wish to refer to the Turn Model algorithm and/or to
prove your answer by drawing a directed graph for a 4�4 mesh that depicts depen-
dencies between channels and verifying the channel dependency graph is free of
cycles.) The routing algorithms are expressed with the following abbreviations:

W¼west, E¼east, N¼north, and S¼ south.

a. [12]<F.5>Allowed turns are from W to N, E to N, S to W, and S to E.

b. [12]<F.5>Allowed turns are from W to S, E to S, N to E, and S to E.

c. [12]<F.5>Allowed turns are fromW to S, E to S, N to W, S to E, W to N, and
S to W.

d. [12]<F.5>Allowed turns are from S to E, E to S, S toW, N toW, N to E, and E

to N.

✪ F.21 [15]<F.5>Compute and compare the upper bound for the efficiency factor, ρ, for
dimension-order routing and up*/down* routing assuming uniformly distributed
traffic on a 64-node 2D mesh network. For up*/down* routing, assume optimal
placement of the root node (i.e., a node near the middle of the mesh). (Hint:
You will have to find the loading of links across the network bisection that carries

the global load as determined by the routing algorithm.)
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✪ F.22 [15]<F.5>For the same assumptions as Exercise F.21, find the efficiency factor
for up*/down* routing on a 64-node fat tree network using 4�4 switches. Com-
pare this result with the ρ found for up*/down* routing on a 2D mesh. Explain.

✪ F.23 [15]<F.5>Calculate the probability of matching two-phased arbitration requests
from all k input ports of a switch simultaneously to the k output ports assuming a
uniform distribution of requests and grants to/from output ports. How does this
compare to the matching probability for three-phased arbitration in which each
of the k input ports can make two simultaneous requests (again, assuming a uni-
form random distribution of requests and grants)?

✪ F.24 [15]<F.5>The equation on page F-52 shows the value of cut-through switching.
Ethernet switches used to build clusters often do not support cut-through switching.
Compare the time to transfer 1500 bytes over a 1000-Mbit/sec Ethernet with and
without cut-through switching for a 64-node cluster. Assume that each Ethernet
switch takes 1.0 μs and that a message goes through seven intermediate switches.

✪ F.25 [15]<F.5>Making the same assumptions as in Exercise F.24, what is the differ-
ence between cut-through and store-and-forward switching for 32 bytes?

✪ F.26 [15]<F.5>One way to reduce latency is to use larger switches. Unlike Exercise
F.24, let’s assume we need only three intermediate switches to connect any two
nodes in the cluster. Make the same assumptions as in Exercise F.24 for the remain-
ing parameters. What is the difference between cut-through and store-and-forward
for 1500 bytes? For 32 bytes?

✪ F.27 [20]<F.5>Using FlexSim 1.2 (http://ceng.usc.edu/smart/FlexSim/flexsim.html)
or some other cycle-accurate network simulator, simulate a 256-node 2D torus net-
work assuming wormhole routing, 32-flit packets, uniform (random) communica-
tion pattern, and four virtual channels. Compare the performance of deterministic
routing using DOR, adaptive routing using escape paths (i.e., Duato’s Protocol),
and true fully adaptive routing using progressive deadlock recovery (i.e., Disha
routing). Do so by plotting latency versus applied load and through-put versus
applied load for each, as is done in Figure F.19 for the example on page F-53. Also
run simulations and plot results for two and eight virtual channels for each. Com-
pare and explain your results by addressing how/why the number and use of virtual
channels by the various routing algorithms affect network performance. (Hint: Be
sure to let the simulation reach steady state by allowing a warm-up period of a sev-
eral thousand network cycles before gathering results.)

✪ F.28 [20]<F.5>Repeat Exercise F.27 using bit-reversal communication instead of the
uniform random communication pattern. Compare and explain your results by
addressing how/why the communication pattern affects network performance.

✪ F.29 [40]<F.5>Repeat Exercises F.27 and F.28 using 16-flit packets and 128-flit
packets. Compare and explain your results by addressing how/why the packet size
along with the other design parameters affect network performance.

F.30 [20]<F.2, F.4, F.5, F.8>Figures F.7, F.16, and F.20 show interconnection

network characteristics of several of the top 500 supercomputers by machine type
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as of the publication of the fourth edition. Update that figure to the most recent top
500. How have the systems and their networks changed since the data in the orig-
inal figure? Do similar comparisons for OCNs used in microprocessors and SANs
targeted for clusters using Figures F.29 and F.31.

✪ F.31 [12/12/12/15/15/18]<F.8>Use the M/M/1 queuing model to answer this exer-
cise. Measurements of a network bridge show that packets arrive at 200 packets

per second and that the gateway forwards them in about 2 ms.

a. [12]<F.8>What is the utilization of the gateway?

b. [12]<F.8>What is the mean number of packets in the gateway?

c. [12]<F.8>What is the mean time spent in the gateway?

d. [15]<F.8>Plot response time versus utilization as you vary the arrival rate.

e. [15]<F.8>For an M/M/1 queue, the probability of finding n or more tasks in
the system is Utilizationn. What is the chance of an overflow of the FIFO if it can
hold 10 messages?

f. [18]<F.8>How big must the gateway be to have packet loss due to FIFO over-

flow less than one packet per million?

✪ F.32 [20]<F.8>The imbalance between the time of sending and receiving can cause
problems in network performance. Sending too fast can cause the network to back
up and increase the latency of messages, since the receivers will not be able to pull
out the message fast enough. A technique called bandwidth matching proposes a
simple solution: Slow down the sender so that it matches the performance of the
receiver [Brewer and Kuszmaul 1994]. If two machines exchange an equal number
of messages using a protocol like UDP, one will get ahead of the other, causing it to
send all its messages first. After the receiver puts all these messages away, it will
then send its messages. Estimate the performance for this case versus a bandwidth-
matched case. Assume that the send overhead is 200 μs, the receive overhead is
300 μs, time of flight is 5 μs, latency is 10 μs, and that the two machines want
to exchange 100 messages.

F.33 [40]<F.8>Compare the performance of UDP with and without bandwidth
matching by slowing down the UDP send code to match the receive code as
advised by bandwidth matching [Brewer and Kuszmaul 1994]. Devise an exper-
iment to see how much performance changes as a result. How should you change
the send rate when two nodes send to the same destination? What if one sender
sends to two destinations?

✪ F.34 [40]<F.6, F.8> If you have access to an SMP and a cluster, write a program to
measure latency of communication and bandwidth of communication between pro-
cessors, as was plotted in Figure F.32 on page F-80.

F.35 [20/20/20]<F.9> If you have access to a UNIX system, use ping to explore the
Internet. First read the manual page. Then use pingwithout option flags to be sure
you can reach the following sites. It should say that X is alive. Depending on

your system, you may be able to see the path by setting the flags to verbose mode
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(-v) and trace route mode (-R) to see the path between your machine and the
example machine. Alternatively, you may need to use the program trace route
to see the path. If so, try its manual page. You may want to use the UNIX command

script to make a record of your session.

a. [20]<F.9>Trace the route to another machine on the same local area network.
What is the latency?

b. [20]<F.9>Trace the route to another machine on your campus that is not on
the same local area network.What is the latency?

c. [20]<F.9>Trace the route to another machine off campus. For example, if you
have a friend you send email to, try tracing that route. See if you can discover

what types of networks are used along that route.What is the latency?

F.36 [15]<F.9>Use FTP to transfer a file from a remote site and then between local
sites on the same LAN. What is the difference in bandwidth for each transfer? Try
the transfer at different times of day or days of the week. Is the WAN or LAN the
bottleneck?

✪ F.37 [10/10]<F.9, F.11>Figure F.41 on page F-93 compares latencies for a high-
bandwidth network with high overhead and a low-bandwidth network with low

overhead for different TCP/IP message sizes.

a. [10]<F.9, F.11>For what message sizes is the delivered bandwidth higher for
the high-bandwidth network?

b. [10]<F.9, F.11>For your answer to part (a), what is the delivered bandwidth

for each network?

✪ F.38 [15]<F.9, F.11>Using the statistics in Figure F.41 on page F-93, estimate the
per-message overhead for each network.

✪ F.39 [15]<F.9, F.11>Exercise F.37 calculates which message sizes are faster for two
networks with different overhead and peak bandwidth. Using the statistics in
Figure F.41 on page F-93, what is the percentage of messages that are transmitted
more quickly on the network with low overhead and bandwidth? What is the per-
centage of data transmitted more quickly on the network with high overhead and
bandwidth?

✪ F.40 [15]<F.9, F.11>One interesting measure of the latency and bandwidth of an
inter-connection is to calculate the size of a message needed to achieve one-half
of the peak bandwidth. This halfway point is sometimes referred to as n1/2, taken
from the terminology of vector processing. Using Figure F.41 on page F-93, esti-
mate n1/2 for TCP/IP message using 155-Mbit/sec ATM and 10-Mbit/sec Ethernet.

F.41 [Discussion]<F.10>The Google cluster used to be constructed from 1 rack unit
(RU) PCs, each with one processor and two disks. Today there are considerably
denser options. How much less floor space would it take if we were to replace
the 1 RU PCs with modern alternatives? Go to the Compaq or Dell Web sites
to find the densest alternative. What would be the estimated impact on cost of

the equipment? What would be the estimated impact on rental cost of floor space?
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What would be the impact on interconnection network design for achieving power/
performance efficiency?

F.42 [Discussion]<F.13>At the time of the writing of the fourth edition, it was unclear
what would happen with Ethernet versus InfiniBand versus Advanced Switching
in the machine room.What are the technical advantages of each?What are the eco-
nomic advantages of each? Why would people maintaining the system prefer one
to the other? How popular is each network today? How do they compare to

proprietary commercial networks such as Myrinet and Quadrics?


