
G.1 Introduction G-2

G.2 Vector Performance in More Depth G-2

G.3 Vector Memory Systems in More Depth G-9

G.4 Enhancing Vector Performance G-11

G.5 Effectiveness of Compiler Vectorization G-14

G.6 Putting It All Together: Performance of Vector Processors G-15

G.7 A Modern Vector Supercomputer: The Cray X1 G-21

G.8 Concluding Remarks G-25

G.9 Historical Perspective and References G-26

Exercises G-29

G

Vector Processors in

More Depth
Revised by Krste Asanovic

Massachusetts Institute of Technology
I’m certainly not inventing vector processors. There are three
kinds that I know of existing today. They are represented by the
Illiac-IV, the (CDC) Star processor, and the TI (ASC) processor. Those
three were all pioneering processors.…One of the problems of
being a pioneer is you always make mistakes and I never, never
want to be a pioneer. It’s always best to come second when you
can look at the mistakes the pioneers made.

Seymour Cray
Public lecture at Lawrence Livermore Laboratorieson on the
introduction of the Cray-1 (1976)

G-2 ■ Appendix G Vector Processors in More Depth
G.1

G.2

Example

Answer
Introduction

Chapter 4 introduces vector architectures and places Multimedia SIMD extensions
and GPUs in proper context to vector architectures.

In this appendix, we go into more detail on vector architectures, including more
accurate performance models and descriptions of previous vector architectures.
Figure G.1 shows the characteristics of some typical vector processors, including
the size and count of the registers, the number and types of functional units, the

number of load-store units, and the number of lanes.
Vector Performance in More Depth

The chime approximation is reasonably accurate for long vectors. Another source
of overhead is far more significant than the issue limitation.

The most important source of overhead ignored by the chime model is vector
start-up time. The start-up time comes from the pipelining latency of the vector
operation and is principally determined by how deep the pipeline is for the func-
tional unit used. The start-up time increases the effective time to execute a convoy
to more than one chime. Because of our assumption that convoys do not overlap in
time, the start-up time delays the execution of subsequent convoys. Of course, the
instructions in successive convoys either have structural conflicts for some
functional unit or are data dependent, so the assumption of no overlap is reason-
able. The actual time to complete a convoy is determined by the sum of the vector
length and the start-up time. If vector lengths were infinite, this start-up overhead
would be amortized, but finite vector lengths expose it, as the following example
shows.
Assume that the start-up overhead for functional units is shown in Figure G.2.
Show the time that each convoy can begin and the total number of cycles

needed. How does the time compare to the chime approximation for a vector of

length 64?

Figure G.3 provides the answer in convoys, assuming that the vector length is n.
One tricky question is when we assume the vector sequence is done; this deter-
mines whether the start-up time of the SV is visible or not. We assume that the
instructions following cannot fit in the same convoy, and we have already assumed
that convoys do not overlap. Thus, the total time is given by the time until the last
vector instruction in the last convoy completes. This is an approximation, and the
start-up time of the last vector instructionmay be seen in some sequences and not in
others. For simplicity, we always include it.

The time per result for a vector of length 64 is 4+(42/64)¼4.65 clock cycles,
while the chime approximation would be 4. The execution time with startup

overhead is 1.16 times higher.

Figure G.1 Characteristics of several vector-register architectures. If the machine is a multiprocessor, the entries
correspond to the characteristics of one processor. Several of the machines have different clock rates in the vector
and scalar units; the clock rates shown are for the vector units. The Fujitsu machines’ vector registers are configurable:
The size and count of the 8K 64-bit entries may be varied inversely to one another (e.g., on the VP200, from eight
registers each 1K elements long to 256 registers each 32 elements long). The NEC machines have eight foreground
vector registers connected to the arithmetic units plus 32 to 64 background vector registers connected between the
memory system and the foreground vector registers. Add pipelines perform add and subtract. The multiply/divide-
add unit on the Hitachi S810/820 performs an FPmultiply or divide followed by an add or subtract (while themultiply-
add unit performs a multiply followed by an add or subtract). Note that most processors use the vector FP multiply
and divide units for vector integer multiply and divide, and several of the processors use the same units for FP scalar
and FP vector operations. Each vector load-store unit represents the ability to do an independent, overlapped transfer
to or from the vector registers. The number of lanes is the number of parallel pipelines in each of the functional units
as described in Section G.4. For example, the NEC SX/5 can complete 16 multiplies per cycle in the multiply functional
unit. Several machines can split a 64-bit lane into two 32-bit lanes to increase performance for applications that
require only reduced precision. The Cray SV1 and Cray X1 can group four CPUs with two lanes each to act in unison
as a single larger CPU with eight lanes, which Cray calls a Multi-Streaming Processor (MSP).

Figure G.2 Start-up overhead.

Figure G.3 Starting times and first- and last-result times for convoys 1 through 4.
The vector length is n.

G-4 ■ Appendix G Vector Processors in More Depth
For simplicity, we will use the chime approximation for running time, incorporat-
ing start-up time effects only when we want performance that is more detailed or to
illustrate the benefits of some enhancement. For long vectors, a typical situation,
the overhead effect is not that large. Later in the appendix, we will explore ways to
reduce start-up overhead.

Start-up time for an instruction comes from the pipeline depth for the functional
unit implementing that instruction. If the initiation rate is to be kept at 1 clock cycle
per result, then

Pipeline depth¼ Total functional unit time
Clock cycle time

� �

For example, if an operation takes 10 clock cycles, it must be pipelined 10 deep to
achieve an initiation rate of one per clock cycle. Pipeline depth, then, is deter-
mined by the complexity of the operation and the clock cycle time of the proces-
sor. The pipeline depths of functional units vary widely—2 to 20 stages are
common—although the most heavily used units have pipeline depths of 4 to
8 clock cycles.

For VMIPS, we will use the same pipeline depths as the Cray-1, although laten-
cies in more modern processors have tended to increase, especially for loads. All
functional units are fully pipelined. From Chapter 4, pipeline depths are 6 clock
cycles for floating-point add and 7 clock cycles for floating-point multiply. On
VMIPS, as on most vector processors, independent vector operations using
different functional units can issue in the same convoy.

In addition to the start-up overhead, we need to account for the overhead of

executing the strip-mined loop. This strip-mining overhead, which arises from

Figure G.4 Start-up penalties on VMIPS. These are the start-up penalties in clock
cycles for VMIPS vector operations.

G.2 Vector Performance in More Depth ■ G-5
the need to reinitiate the vector sequence and set the Vector Length Register (VLR)
effectively adds to the vector start-up time, assuming that a convoy does not over-
lap with other instructions. If that overhead for a convoy is 10 cycles, then the
effective overhead per 64 elements increases by 10 cycles, or 0.15 cycles per
element.

Two key factors contribute to the running time of a strip-mined loop consisting
of a sequence of convoys:

1. The number of convoys in the loop, which determines the number of chimes.
We use the notation Tchime for the execution time in chimes.

2. The overhead for each strip-mined sequence of convoys. This overhead consists
of the cost of executing the scalar code for strip-mining each block, Tloop, plus
the vector start-up cost for each convoy, Tstart.

There may also be a fixed overhead associated with setting up the vector sequence
the first time. In recent vector processors, this overhead has become quite small, so
we ignore it.

The components can be used to state the total running time for a vector
sequence operating on a vector of length n, which we will call Tn:

Tn ¼ n

MVL

h i
� Tloop + Tstart
� �

+ n�Tchime

The values of Tstart, Tloop, and Tchime are compiler and processor dependent. The
register allocation and scheduling of the instructions affect both what goes in a con-
voy and the start-up overhead of each convoy.

For simplicity, we will use a constant value for Tloop on VMIPS. Based on a
variety of measurements of Cray-1 vector execution, the value chosen is 15 for
Tloop. At first glance, you might think that this value is too small. The overhead
in each loop requires setting up the vector starting addresses and the strides, incre-
menting counters, and executing a loop branch. In practice, these scalar instruc-
tions can be totally or partially overlapped with the vector instructions,
minimizing the time spent on these overhead functions. The value of Tloop of
course depends on the loop structure, but the dependence is slight compared with

the connection between the vector code and the values of Tchime and Tstart.

Example

Answer

Lo

G-6 ■ Appendix G Vector Processors in More Depth
What is the execution time on VMIPS for the vector operation A¼B� s,where s is

a scalar and the length of the vectors A and B is 200?

Assume that the addresses of A and B are initially in Ra and Rb, s is in Fs, and
recall that for MIPS (and VMIPS) R0 always holds 0. Since (200 mod 64)¼8, the
first iteration of the strip-mined loop will execute for a vector length of 8 elements,
and the following iterations will execute for a vector length of 64 elements. The
starting byte addresses of the next segment of each vector is eight times the vector
length. Since the vector length is either 8 or 64, we increment the address registers
by 8�8¼64 after the first segment and 8�64¼512 for later segments. The total
number of bytes in the vector is 8�200¼1600, and we test for completion by
comparing the address of the next vector segment to the initial address plus
1600. Here is the actual code:

DADDUI R2,R0,#1600 ;total # bytes in vector
DADDU R2,R2,Ra ;address of the end of A vector
DADDUI R1,R0,#8 ;loads length of 1st segment
MTC1 VLR,R1 ;load vector length in VLR
DADDUI R1,R0,#64 ;length in bytes of 1st segment
DADDUI R3,R0,#64 ;vector length of other segments

op: LV V1,Rb ;load B
MULVS.D V2,V1,Fs ;vector * scalar
SV Ra,V2 ;store A
DADDU Ra,Ra,R1 ;address of next segment of A
DADDU Rb,Rb,R1 ;address of next segment of B
DADDUI R1,R0,#512 ;load byte offset next segment
MTC1 VLR,R3 ;set length to 64 elements
DSUBU R4,R2,Ra ;at the end of A?
BNEZ R4,Loop ;if not, go back

The three vector instructions in the loop are dependent and must go into three
convoys, hence Tchime¼3. Let’s use our basic formula:

Tn ¼ n

MVL

h i
� Tloop + Tstart
� �

+ n�Tchime

T200 ¼ 4� 15 +Tstartð Þ + 200�3

T200 ¼ 60 + 4�Tstartð Þ + 600¼ 660 + 4�Tstartð Þ
The value of Tstart is the sum of:

■ The vector load start-up of 12 clock cycles

■ A 7-clock-cycle start-up for the multiply

■ A 12-clock-cycle start-up for the store

Thus, the value of Tstart is given by:

Tstart ¼ 12 + 7 + 12¼ 31

Total time
per element

Total
overhead
per element

10

Clock
cycles

30 50 70 90 110 130 150 170 190
0

1

2

3

4

5

6

7

8

Vector size

9

Figure G.5 The total execution time per element and the total overhead time per
element versus the vector length for the example on page F-6. For short vectors,
the total start-up time is more than one-half of the total time, while for long vectors
it reduces to about one-third of the total time. The sudden jumps occur when the vector

G.2 Vector Performance in More Depth ■ G-7
So, the overall value becomes:

T200 ¼ 660 + 4�31¼ 784

The execution time per element with all start-up costs is then 784/200¼3.9,
compared with a chime approximation of three. In Section G.4, we will be more

length crosses a multiple of 64, forcing another iteration of the strip-mining code and
execution of a set of vector instructions. These operations increase Tn by Tloop+Tstart.
ambitious—allowing overlapping of separate convoys.
Figure G.5 shows the overhead and effective rates per element for the previous
example (A¼B� s) with various vector lengths. A chime-counting model would
lead to 3 clock cycles per element, while the two sources of overhead add 0.9 clock
cycles per element in the limit.

Pipelined Instruction Start-Up and Multiple Lanes

Adding multiple lanes increases peak performance but does not change start-up
latency, and so it becomes critical to reduce start-up overhead by allowing the start
of one vector instruction to be overlapped with the completion of preceding vector
instructions. The simplest case to consider is when two vector instructions access a
different set of vector registers. For example, in the code sequence

ADDV.D V1,V2,V3

ADDV.D V4,V5,V6

Example

Answer

G-8 ■ Appendix G Vector Processors in More Depth
An implementation can allow the first element of the second vector instruction to
follow immediately the last element of the first vector instruction down the FP
adder pipeline. To reduce the complexity of control logic, some vector machines
require some recovery time or dead time in between two vector instructions dis-
patched to the same vector unit. Figure G.6 is a pipeline diagram that shows both
start-up latency and dead time for a single vector pipeline.

The following example illustrates the impact of this dead time on achievable
vector performance.
The Cray C90 has two lanes but requires 4 clock cycles of dead time between any
two vector instructions to the same functional unit, even if they have no data depen-
dences. For the maximum vector length of 128 elements, what is the reduction in
achievable peak performance caused by the dead time? What would be the reduc-

tion if the number of lanes were increased to 16?

Amaximum length vector of 128 elements is divided over the two lanes and occupies
a vector functional unit for 64 clock cycles. The dead time adds another 4 cycles of
occupancy, reducing the peak performance to 64/(64+4)¼94.1% of the value with-
out dead time. If the number of lanes is increased to 16, maximum length vector
instructions will occupy a functional unit for only 128/16¼8 cycles, and the dead
time will reduce peak performance to 8/(8+4)¼66.6% of the value without dead

time. In this second case, the vector units can never be more than 2/3 busy!

Figure G.6 Start-up latency and dead time for a single vector pipeline. Each element
has a 5-cycle latency: 1 cycle to read the vector-register file, 3 cycles in execution, then 1
cycle to write the vector-register file. Elements from the same vector instruction can
follow each other down the pipeline, but this machine inserts 4 cycles of dead time
between two different vector instructions. The dead time can be eliminated with more
complex control logic. (Reproduced with permission from Asanovic [1998].)

G.3

Example

Answer

G.3 Vector Memory Systems in More Depth ■ G-9
Pipelining instruction start-up becomes more complicated when multiple instruc-
tions can be reading and writing the same vector register and when some instructions
may stall unpredictably—for example, a vector load encountering memory bank
conflicts. However, as both the number of lanes and pipeline latencies increase, it

becomes increasingly important to allow fully pipelined instruction start-up.
Vector Memory Systems in More Depth

To maintain an initiation rate of one word fetched or stored per clock, the memory
system must be capable of producing or accepting this much data. As we saw in
Chapter 4, this usually done by spreading accesses across multiple independent
memory banks. Having significant numbers of banks is useful for dealing with vec-
tor loads or stores that access rows or columns of data.

The desired access rate and the bank access time determined how many banks
were needed to access memory without stalls. This example shows how these tim-

ings work out in a vector processor.
Suppose wewant to fetch a vector of 64 elements starting at byte address 136, and a
memory access takes 6 clocks. How many memory banks must we have to support
one fetch per clock cycle? With what addresses are the banks accessed? When will

the various elements arrive at the CPU?

Six clocks per access require at least 6 banks, but because we want the number of
banks to be a power of 2, we choose to have 8 banks. Figure G.7 shows the timing
for the first few sets of accesses for an 8-bank system with a 6-clock-cycle access

latency.
The timing of real memory banks is usually split into two different components, the
access latency and the bank cycle time (or bank busy time). The access latency is the
time from when the address arrives at the bank until the bank returns a data value,
while the busy time is the time the bank is occupied with one request. The access
latency adds to the start-up cost of fetching a vector frommemory (the total memory
latency also includes time to traverse the pipelined interconnection networks that
transfer addresses and data between the CPU and memory banks). The bank busy
time governs the effective bandwidth of a memory system because a processor can-
not issue a second request to the same bank until the bank busy time has elapsed.

For simple unpipelined SRAM banks as used in the previous examples, the
access latency and busy time are approximately the same. For a pipelined
SRAM bank, however, the access latency is larger than the busy time because
each element access only occupies one stage in the memory bank pipeline. For a
DRAM bank, the access latency is usually shorter than the busy time because a
DRAM needs extra time to restore the read value after the destructive read oper-

ation. For memory systems that support multiple simultaneous vector accesses

Figure G.7 Memory addresses (in bytes) by bank number and time slot at which
access begins. Each memory bank latches the element address at the start of an access
and is then busy for 6 clock cycles before returning a value to the CPU. Note that the CPU
cannot keep all 8 banks busy all the time because it is limited to supplying one new
address and receiving one data item each cycle.

G-10 ■ Appendix G Vector Processors in More Depth
or allow nonsequential accesses in vector loads or stores, the number of mem-
ory banks should be larger than the minimum; otherwise, memory bank con-
flicts will exist.

Memory bank conflicts will not occur within a single vector memory instruc-
tion if the stride and number of banks are relatively prime with respect to each other
and there are enough banks to avoid conflicts in the unit stride case. When there are
no bank conflicts, multiword and unit strides run at the same rates. Increasing the
number of memory banks to a number greater than the minimum to prevent stalls
with a stride of length 1 will decrease the stall frequency for some other strides. For
example, with 64 banks, a stride of 32 will stall on every other access, rather than
every access. If we originally had a stride of 8 and 16 banks, every other access
would stall; with 64 banks, a stride of 8 will stall on every eighth access. If we have
multiple memory pipelines and/or multiple processors sharing the same memory
system, we will also need more banks to prevent conflicts. Even machines with

a single memory pipeline can experience memory bank conflicts on unit stride

G.4

G.4 Enhancing Vector Performance ■ G-11
accesses between the last few elements of one instruction and the first few elements
of the next instruction, and increasing the number of banks will reduce the prob-
ability of these inter-instruction conflicts. In 2011, most vector supercomputers
spread the accesses from each CPU across hundreds of memory banks. Because
bank conflicts can still occur in non-unit stride cases, programmers favor unit stride
accesses whenever possible.

A modern supercomputer may have dozens of CPUs, each with multiple mem-
ory pipelines connected to thousands of memory banks. It would be impractical to
provide a dedicated path between each memory pipeline and each memory bank,
so, typically, a multistage switching network is used to connect memory pipelines
to memory banks. Congestion can arise in this switching network as different vec-
tor accesses contend for the same circuit paths, causing additional stalls in the

memory system.

Enhancing Vector Performance

In this section, we present techniques for improving the performance of a vector
processor in more depth than we did in Chapter 4.

Chaining in More Depth

Early implementations of chaining worked like forwarding, but this restricted the
timing of the source and destination instructions in the chain. Recent implementa-
tions use flexible chaining, which allows a vector instruction to chain to essentially
any other active vector instruction, assuming that no structural hazard is generated.
Flexible chaining requires simultaneous access to the same vector register by dif-
ferent vector instructions, which can be implemented either by adding more read
and write ports or by organizing the vector-register file storage into interleaved
banks in a similar way to the memory system. We assume this type of chaining
throughout the rest of this appendix.

Even though a pair of operations depends on one another, chaining allows the
operations to proceed in parallel on separate elements of the vector. This permits
the operations to be scheduled in the same convoy and reduces the number of chimes
required. For the previous sequence, a sustained rate (ignoring start-up) of two
floating-point operations per clock cycle, or one chime, can be achieved, even though
the operations are dependent! The total running time for the above sequence becomes:

Vector length + Start-up timeADDV + Start-up timeMULV

Figure G.8 shows the timing of a chained and an unchained version of the above
pair of vector instructions with a vector length of 64. This convoy requires one
chime; however, because it uses chaining, the start-up overhead will be seen in
the actual timing of the convoy. In Figure G.8, the total time for chained operation
is 77 clock cycles, or 1.2 cycles per result. With 128 floating-point operations done
in that time, 1.7 FLOPS per clock cycle are obtained. For the unchained version,

there are 141 clock cycles, or 0.9 FLOPS per clock cycle.

Figure G.8 Timings for a sequence of dependent vector operations ADDV and MULV,
both unchained and chained. The 6- and 7-clock-cycle delays are the latency of the
adder and multiplier.

G-12 ■ Appendix G Vector Processors in More Depth
Although chaining allows us to reduce the chime component of the execution
time by putting two dependent instructions in the same convoy, it does not eliminate
the start-up overhead. If we want an accurate running time estimate, we must count
the start-up time both within and across convoys. With chaining, the number of
chimes for a sequence is determinedby the number of different vector functional units
available in the processor and the number required by the application. In particular,
no convoy can contain a structural hazard. This means, for example, that a sequence
containing two vectormemory instructionsmust take at least two convoys, and hence
two chimes, on a processor like VMIPS with only one vector load-store unit.

Chaining is so important that every modern vector processor supports flexible
chaining.

Sparse Matrices in More Depth

Chapter 4 shows techniques to allow programs with sparse matrices to execute in
vector mode. Let’s start with a quick review. In a sparse matrix, the elements of a
vector are usually stored in some compacted form and then accessed indirectly.
Assuming a simplified sparse structure, we might see code that looks like this:

do 100 i = 1,n
100 A(K(i)) = A(K(i)) + C(M(i))

This code implements a sparse vector sum on the arrays A and C, using index
vectors K and M to designate the nonzero elements of A and C. (A and C must have
the same number of nonzero elements—n of them.) Another common representa-
tion for sparse matrices uses a bit vector to show which elements exist and a dense
vector for the nonzero elements. Often both representations exist in the same pro-
gram. Sparse matrices are found in many codes, and there are many ways to imple-
ment them, depending on the data structure used in the program.

A simple vectorizing compiler could not automatically vectorize the source
code above because the compiler would not know that the elements of K are distinct
values and thus that no dependences exist. Instead, a programmer directive would
tell the compiler that it could run the loop in vector mode.

More sophisticated vectorizing compilers can vectorize the loop automatically

without programmer annotations by inserting run time checks for data

G.4 Enhancing Vector Performance ■ G-13
dependences. These run time checks are implemented with a vectorized software
version of the advanced load address table (ALAT) hardware described in Appen-
dix H for the Itanium processor. The associative ALAT hardware is replaced with a
software hash table that detects if two element accesses within the same stripmine
iteration are to the same address. If no dependences are detected, the stripmine iter-
ation can complete using the maximum vector length. If a dependence is detected,
the vector length is reset to a smaller value that avoids all dependency violations,
leaving the remaining elements to be handled on the next iteration of the strip-
mined loop. Although this scheme adds considerable software overhead to the
loop, the overhead is mostly vectorized for the common case where there are
no dependences; as a result, the loop still runs considerably faster than scalar code
(although much slower than if a programmer directive was provided).

A scatter-gather capability is included on many of the recent supercomputers.
These operations often run more slowly than strided accesses because they are
more complex to implement and are more susceptible to bank conflicts, but they
are still much faster than the alternative, which may be a scalar loop. If the sparsity
properties of a matrix change, a new index vector must be computed. Many pro-
cessors provide support for computing the index vector quickly. The CVI (create
vector index) instruction in VMIPS creates an index vector given a stride (m),
where the values in the index vector are 0, m, 2�m,…, 63�m. Some processors
provide an instruction to create a compressed index vector whose entries corre-
spond to the positions with a one in the mask register. Other vector architectures
provide a method to compress a vector. In VMIPS, we define the CVI instruction
to always create a compressed index vector using the vector mask.When the vector
mask is all ones, a standard index vector will be created.

The indexed loads-stores and the CVI instruction provide an alternative method
to support conditional vector execution. Let us first recall code from Chapter 4:

low = 1
VL = (n mod MVL) /*find the odd-size piece*/
do 1 j = 0,(n/MVL) /*outer loop*/

do 10 i = low, low + VL - 1 /*runs for length VL*/
Y(i) = a * X(i) + Y(i) /*main operation*/

10 continue
low = low + VL /*start of next vector*/
VL = MVL /*reset the length to max*/

1 continue

Here is a vector sequence that implements that loop using CVI:

LV V1,Ra ;load vector A into V1
L.D F0,#0 ;load FP zero into F0
SNEVS.D V1,F0 ;sets the VM to 1 if V1(i)!=F0
CVI V2,#8 ;generates indices in V2
POP R1,VM ;find the number of 1’s in VM
MTC1 VLR,R1 ;load vector-length register

CVM ;clears the mask

G.5

G-14 ■ Appendix G Vector Processors in More Depth
LVI V3,(Ra+V2) ;load the nonzero A elements
LVI V4,(Rb+V2) ;load corresponding B elements
SUBV.D V3,V3,V4 ;do the subtract
SVI (Ra+V2),V3 ;store A back

Whether the implementation using scatter-gather is better than the condition-
ally executed version depends on the frequency with which the condition holds and
the cost of the operations. Ignoring chaining, the running time of the original ver-
sion is 5n+c1. The running time of the second version, using indexed loads and
stores with a running time of one element per clock, is 4n+4fn+c2, where f is
the fraction of elements for which the condition is true (i.e., A(i) ¦ 0). If we assume
that the values of c1 and c2 are comparable, or that they are much smaller than n, we
can find when this second technique is better.

Time1 ¼ 5 nð Þ
Time2 ¼ 4n+ 4fn

We want Time1>Time2, so

5n> 4n+ 4fn
1
4
> f

That is, the second method is faster if less than one-quarter of the elements are non-
zero. In many cases, the frequency of execution is much lower. If the index vector
can be reused, or if the number of vector statements within the if statement grows,

the advantage of the scatter-gather approach will increase sharply.
Effectiveness of Compiler Vectorization

Two factors affect the success with which a program can be run in vector mode.
The first factor is the structure of the program itself: Do the loops have true data
dependences, or can they be restructured so as not to have such dependences? This
factor is influenced by the algorithms chosen and, to some extent, by how they are
coded. The second factor is the capability of the compiler. While no compiler can
vectorize a loop where no parallelism among the loop iterations exists, there is tre-
mendous variation in the ability of compilers to determine whether a loop can be
vectorized. The techniques used to vectorize programs are the same as those
discussed in Chapter 3 for uncovering ILP; here, we simply review how well these
techniques work.

There is tremendous variation in howwell different compilers do in vectorizing
programs. As a summary of the state of vectorizing compilers, consider the data in
Figure G.9, which shows the extent of vectorization for different processors using a
test suite of 100 handwritten FORTRAN kernels. The kernels were designed to test
vectorization capability and can all be vectorized by hand; we will see several

examples of these loops in the exercises.

Figure G.9 Result of applying vectorizing compilers to the 100 FORTRAN test
kernels. For each processor we indicate how many loops were completely vectorized,
partially vectorized, and unvectorized. These loops were collected by Callahan,
Dongarra, and Levine [1988]. Two different compilers for the Cray X-MP show the large
dependence on compiler technology.

G.6 Putting It All Together: Performance of Vector Processors ■ G-15
G.6
 Putting It All Together: Performance of Vector

Processors

In this section, we look at performance measures for vector processors and what they
tell us about the processors. To determine the performance of a processor on a vector
problem we must look at the start-up cost and the sustained rate. The simplest and
best way to report the performance of a vector processor on a loop is to give the
execution time of the vector loop. For vector loops, people often give the MFLOPS
(millions of floating-point operations per second) rating rather than execution time.
We use the notation Rn for the MFLOPS rating on a vector of length n. Using the
measurements Tn (time) or Rn (rate) is equivalent if the number of FLOPS is agreed
upon. In any event, either measurement should include the overhead.

In this section, we examine the performance of VMIPS on a DAXPY loop (see
Chapter 4) by looking at performance from different viewpoints. We will continue
to compute the execution time of a vector loop using the equation developed in
Section G.2. At the same time, we will look at different ways to measure perfor-
mance using the computed time. The constant values for Tloop used in this section
introduce some small amount of error, which will be ignored.

Measures of Vector Performance

Because vector length is so important in establishing the performance of a proces-
sor, length-related measures are often applied in addition to time and MFLOPS.

These length-related measures tend to vary dramatically across different processors

G-16 ■ Appendix G Vector Processors in More Depth
and are interesting to compare. (Remember, though, that time is always the mea-
sure of interest when comparing the relative speed of two processors.) Three of the
most important length-related measures are

■ R∞—The MFLOPS rate on an infinite-length vector. Although this measure
may be of interest when estimating peak performance, real problems have lim-
ited vector lengths, and the overhead penalties encountered in real problems
will be larger.

■ N1/2—The vector length needed to reach one-half of R∞. This is a good mea-
sure of the impact of overhead.

■ Nv—The vector length needed to make vector mode faster than scalar mode.
This measures both overhead and the speed of scalars relative to vectors.

Let’s look at these measures for our DAXPY problem running on VMIPS. When
chained, the inner loop of the DAXPY code in convoys looks like Figure G.10
(assuming that Rx and Ry hold starting addresses).

Recall our performance equation for the execution time of a vector loop with n
elements, Tn:

Tn ¼ n

MVL

h i
� Tloop + Tstart
� �

+ n�Tchime

Chaining allows the loop to run in three chimes (and no less, since there is one
memory pipeline); thus, Tchime¼3. If Tchime were a complete indication of per-
formance, the loop would run at an MFLOPS rate of 2/3�clock rate (since there
are 2 FLOPS per iteration). Thus, based only on the chime count, a 500 MHz
VMIPS would run this loop at 333 MFLOPS assuming no strip-mining or
start-up overhead. There are several ways to improve the performance: Add addi-
tional vector load-store units, allow convoys to overlap to reduce the impact of
start-up overheads, and decrease the number of loads required by vector-register
allocation. We will examine the first two extensions in this section. The last
optimization is actually used for the Cray-1, VMIPS’s cousin, to boost the per-
formance by 50%. Reducing the number of loads requires an interprocedural
optimization; we examine this transformation in Exercise G.6. Before we exam-
ine the first two extensions, let’s see what the real performance, including

overhead, is.

Figure G.10 The inner loop of the DAXPY code in chained convoys.

G.6 Putting It All Together: Performance of Vector Processors ■ G-17
The Peak Performance of VMIPS on DAXPY

First, we should determine what the peak performance, R∞, really is, since we
know it must differ from the ideal 333 MFLOPS rate. For now, we continue to
use the simplifying assumption that a convoy cannot start until all the instructions
in an earlier convoy have completed; later we will remove this restriction. Using
this simplification, the start-up overhead for the vector sequence is simply the sum
of the start-up times of the instructions:

Tstart ¼ 12 + 7 + 12 + 6 + 12¼ 49

Using MVL¼64, Tloop¼15, Tstart¼49, and Tchime¼3 in the performance
equation, and assuming that n is not an exact multiple of 64, the time for an n-
element operation is

Tn ¼ n

64

h i
� 15 + 49ð Þ+ 3n

� n+ 64ð Þ+ 3n
¼ 4n+ 64

The sustained rate is actually over 4 clock cycles per iteration, rather than the the-
oretical rate of 3 chimes, which ignores overhead. The major part of the difference
is the cost of the start-up overhead for each block of 64 elements (49 cycles versus
15 for the loop overhead).

We can now compute R∞ for a 500 MHz clock as:

R∞ ¼ lim
n!∞

Operations per iteration�C1ock rate
C1ock cyc1es per iteration

� �

The numerator is independent of n, hence

R∞ ¼Operations per iteration�C1ock rate
lim
n!∞

C1ock cyc1es per iterationð Þ

lim
n!∞

Clock cycles per iterationð Þ¼ lim
n!∞

Tn

n

� �
¼ lim

n!∞

4n+ 64
n

� �
¼ 4

R∞ ¼ 2�500 MHz
4

¼ 250 MFLOPS

The performance without the start-up overhead, which is the peak performance
given the vector functional unit structure, is now 1.33 times higher. In actuality,
the gap between peak and sustained performance for this benchmark is even
larger!

Sustained Performance of VMIPS on the Linpack Benchmark

The Linpack benchmark is a Gaussian elimination on a 100�100matrix. Thus, the
vector element lengths range from 99 down to 1. A vector of length k is used k

times. Thus, the average vector length is given by:

Answer

G-18 ■ Appendix G Vector Processors in More Depth
X99
i¼1

i2

X99
i¼1

i

¼ 66:3

Now we can obtain an accurate estimate of the performance of DAXPY using a
vector length of 66:

T66 ¼ 2� 15 + 49ð Þ+ 66�3¼ 128 + 198¼ 326

R66 ¼ 2�66�500
326

MFLOPS¼ 202 MFLOPS

The peak number, ignoring start-up overhead, is 1.64 times higher than this
estimate of sustained performance on the real vector lengths. In actual practice,
the Linpack benchmark contains a nontrivial fraction of code that cannot be
vectorized. Although this code accounts for less than 20% of the time before
vectorization, it runs at less than one-tenth of the performance when counted
as FLOPS. Thus, Amdahl’s law tells us that the overall performance will be
significantly lower than the performance estimated from analyzing the
inner loop.

Since vector length has a significant impact on performance, the N1/2 and Nv
measures are often used in comparing vector machines.
Example
 What is N1/2 for just the inner loop of DAXPY for VMIPS with a 500 MHz clock?

Using R∞ as the peak rate, we want to know the vector length that will achieve
about 125 MFLOPS. We start with the formula for MFLOPS assuming that the
measurement is made for N1/2 elements:

MFLOPS¼ FLOPS executed in N1=2 iterations

C1ock cyc1es to execute N1=2 iterations
�C1ock cycles

Second
�10�6

125¼ 2�N1=2

TN1=2

�500

Simplifying this and then assuming N1/2<64, so that TN1=2<64 ¼ 64 + 3�n, yields:

TN1=2
¼ 8�N1=2

64 + 3�N1=2 ¼ 8�N1=2

5�N1=2 ¼ 64

N1=2 ¼ 12:8

So N1/2¼13; that is, a vector of length 13 gives approximately one-half the peak

performance for the DAXPY loop on VMIPS.

Answer

Example

Answer

G.6 Putting It All Together: Performance of Vector Processors ■ G-19
Example
 What is the vector length,Nv, such that the vector operation runs faster than the scalar?

Again, we know that Nv<64. The time to do one iteration in scalar mode can be
estimated as 10+12+12+7+6+12¼59 clocks, where 10 is the estimate of the
loop overhead, known to be somewhat less than the strip-mining loop overhead.
In the last problem, we showed that this vector loop runs in vector mode in time
Tn�64¼64+3�n clock cycles. Therefore,

64 + 3Nv ¼ 59Nv

Nv ¼ 64
56

� �

Nv ¼ 2

For the DAXPY loop, vector mode is faster than scalar as long as the vector has at

least two elements. This number is surprisingly small.
DAXPY Performance on an Enhanced VMIPS

DAXPY, like many vector problems, is memory limited. Consequently, perfor-
mance could be improved by adding more memory access pipelines. This is the
major architectural difference between the Cray X-MP (and later processors)
and the Cray-1. The Cray X-MP has three memory pipelines, compared with
the Cray-1’s single memory pipeline, and the X-MP has more flexible chaining.

How does this affect performance?
What would be the value of T66 for DAXPY on VMIPS if we added two more

memory pipelines?

With three memory pipelines, all the instructions fit in one convoy and take one
chime. The start-up overheads are the same, so

T66 ¼ 66
64

� �
� Tloop + Tstart
� �

+ 66�Tchime

T66 ¼ 2� 15 + 49ð Þ+ 66�1¼ 194

With three memory pipelines, we have reduced the clock cycle count for sustained
performance from 326 to 194, a factor of 1.7. Note the effect of Amdahl’s law: We
improved the theoretical peak rate as measured by the number of chimes by a factor
of 3, but only achieved an overall improvement of a factor of 1.7 in sustained

performance.

Example

Answer

G-20 ■ Appendix G Vector Processors in More Depth
Another improvement could come from allowing different convoys to overlap
and also allowing the scalar loop overhead to overlap with the vector instructions.
This requires that one vector operation be allowed to begin using a functional unit
before another operation has completed, which complicates the instruction issue
logic. Allowing this overlap eliminates the separate start-up overhead for every
convoy except the first and hides the loop overhead as well.

To achieve the maximum hiding of strip-mining overhead, we need to be able
to overlap strip-mined instances of the loop, allowing two instances of a convoy as
well as possibly two instances of the scalar code to be in execution simulta-
neously. This requires the same techniques we looked at in Chapter 3 to avoid
WAR hazards, although because no overlapped read and write of a single vector
element is possible, copying can be avoided. This technique, called tailgating,
was used in the Cray-2. Alternatively, we could unroll the outer loop to create
several instances of the vector sequence using different register sets (assuming
sufficient registers), just as we did in Chapter 3. By allowing maximum overlap
of the convoys and the scalar loop overhead, the start-up and loop overheads will
only be seen once per vector sequence, independent of the number of convoys and
the instructions in each convoy. In this way, a processor with vector registers can
have both low start-up overhead for short vectors and high peak performance for

very long vectors.
What would be the values of R∞ and T66 for DAXPY on VMIPS if we added two
more memory pipelines and allowed the strip-mining and start-up overheads to be

fully overlapped?

R∞ ¼ lim
n!∞

Operations per iteration�C1ock rate
C1ock cyc1es per iteration

� �

lim
n!∞

Clock cycles per iterationð Þ¼ lim
n!∞

Tn

n

� �

Since the overhead is only seen once, Tn¼n+49+15¼n+64. Thus,

lim
n!∞

Tn

n

� �
¼ lim

n!∞

n + 64
n

� �
¼ 1

R∞ ¼ 2�500 MHz
1

¼ 1000 MFLOPS

Adding the extra memory pipelines and more flexible issue logic yields an
improvement in peak performance of a factor of 4. However, T66¼130, so for
shorter vectors the sustained performance improvement is about 326/

130¼2.5 times.

G.7

G.7 A Modern Vector Supercomputer: The Cray X1 ■ G-21
In summary, we have examined several measures of vector performance.
Theoretical peak performance can be calculated based purely on the value of
Tchime as:

Number of FLOPS per iteration�Clock rate
Tchime

By including the loop overhead, we can calculate values for peak performance for
an infinite-length vector (R∞) and also for sustained performance, Rn for a vector
of length n, which is computed as:

Rn ¼Number of FLOPS per iteration�n�Clock rate
Tn

Using these measures we also can find N1/2 and Nv, which give us another way of
looking at the start-up overhead for vectors and the ratio of vector to scalar speed. A
wide variety of measures of performance of vector processors is useful in under-

standing the range of performance that applications may see on a vector processor.
A Modern Vector Supercomputer: The Cray X1

The Cray X1 was introduced in 2002, and, together with the NEC SX/8, represents
the state of the art in modern vector supercomputers. The X1 system architecture
supports thousands of powerful vector processors sharing a single global memory.

The Cray X1 has an unusual processor architecture, shown in Figure G.11. A
largeMulti-Streaming Processor (MSP) is formed by ganging together four Single-
Streaming Processors (SSPs). Each SSP is a complete single-chip vector micropro-
cessor, containing a scalar unit, scalar caches, and a two-lane vector unit. The SSP
scalar unit is a dual-issue out-of-order superscalar processor with a 16 KB instruc-
tion cache and a 16 KB scalar write-through data cache, both two-way set associa-
tive with 32-byte cache lines. The SSP vector unit contains a vector register file,
three vector arithmetic units, and one vector load-store unit. It is much easier to
pipeline deeply a vector functional unit than a superscalar issue mechanism, so
the X1 vector unit runs at twice the clock rate (800 MHz) of the scalar unit
(400 MHz). Each lane can perform a 64-bit floating-point add and a 64-bit
floating-point multiply each cycle, leading to a peak performance of 12.8 GFLOPS
per MSP.

All previous Cray machines could trace their instruction set architecture (ISA)
lineage back to the original Cray-1 design from 1976, with 8 primary registers each
for addresses, scalar data, and vector data. For the X1, the ISAwas redesigned from
scratch to incorporate lessons learned over the last 30 years of compiler and micro-
architecture research. The X1 ISA includes 64 64-bit scalar address registers and
64 64-bit scalar data registers, with 32 vector data registers (64 bits per element)
and 8 vector mask registers (1 bit per element). The large increase in the number of
registers allows the compiler to map more program variables into registers to

reduce memory traffic and also allows better static scheduling of code to improve

MSP

SSP

S

S Superscalar unit V Vector unit

V V

SSP

S

V V

SSP

S

V V

SSP

S

V V

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

Figure G.11 Cray MSP module. (From Dunnigan et al. [2005].)

G-22 ■ Appendix G Vector Processors in More Depth
run time overlap of instruction execution. Earlier Crays had a compact variable-
length instruction set, but the X1 ISA has fixedlength instructions to simplify
superscalar fetch and decode.

Four SSP chips are packaged on a multichip module together with four cache
chips implementing an external 2 MB cache (Ecache) shared by all the SSPs. The
Ecache is two-way set associative with 32-byte lines and a write-back policy. The
Ecache can be used to cache vectors, reducing memory traffic for codes that exhibit
temporal locality. The ISA also provides vector load and store instruction variants
that do not allocate in cache to avoid polluting the Ecache with data that is known
to have low locality. The Ecache has sufficient bandwidth to supply one 64-bit
word per lane per 800 MHz clock cycle, or over 50 GB/sec per MSP.

At the next level of the X1 packaging hierarchy, shown in Figure G.12, four
MSPs are placed on a single printed circuit board together with 16 memory con-
troller chips and DRAM to form an X1 node. Each memory controller chip has
eight separate Rambus DRAM channels, where each channel provides 1.6 GB/
sec of memory bandwidth. Across all 128 memory channels, the node has over
200 GB/sec of main memory bandwidth.

An X1 system can contain up to 1024 nodes (4096 MSPs or 16,384 SSPs),
connected via a very high-bandwidth global network. The network connections
are made via the memory controller chips, and all memory in the system is directly
accessible from any processor using load and store instructions. This provides
much faster global communication than the message-passing protocols used in
cluster-based systems. Maintaining cache coherence across such a large number
of high-bandwidth shared-memory nodes would be challenging. The approach
taken in the X1 is to restrict each Ecache to cache data only from the local node

DRAM. The memory controllers implement a directory scheme to maintain

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

M

mem

51 GFLOPS, 200 GB/secIOIO IO

P P P P

S S S S

P P P P

S S S S

P P P P

S S S S

P P P P

S S S S

Figure G.12 Cray X1 node. (From Tanqueray [2002].)

G.7 A Modern Vector Supercomputer: The Cray X1 ■ G-23
coherency between the four Ecaches on a node. Accesses from remote nodes will
obtain the most recent version of a location, and remote stores will invalidate local
Ecaches before updating memory, but the remote node cannot cache these local
locations.

Vector loads and stores are particularly useful in the presence of long-latency
cache misses and global communications, as relatively simple vector hardware can
generate and track a large number of in-flight memory requests. Contemporary
superscalar microprocessors support only 8 to 16 outstanding cache misses,
whereas each MSP processor can have up to 2048 outstanding memory requests
(512 per SSP). To compensate, superscalar microprocessors have been moving
to larger cache line sizes (128 bytes and above) to bring in more data with each
cache miss, but this leads to significant wasted bandwidth on non-unit stride
accesses over large datasets. The X1 design uses short 32-byte lines throughout
to reduce bandwidth waste and instead relies on supporting many independent
cache misses to sustain memory bandwidth. This latency tolerance together with
the huge memory bandwidth for non-unit strides explains why vector machines can
provide large speedups over superscalar microprocessors for certain codes.

Multi-Streaming Processors

TheMulti-Streaming concept was first introduced by Cray in the SV1, but has been
considerably enhanced in the X1. The four SSPs within an MSP share Ecache, and
there is hardware support for barrier synchronization across the four SSPs within
an MSP. Each X1 SSP has a two-lane vector unit with 32 vector registers each
holding 64 elements. The compiler has several choices as to how to use the SSPs

within an MSP.

G-24 ■ Appendix G Vector Processors in More Depth
The simplest use is to gang together four two-lane SSPs to emulate a single
eight-lane vector processor. The X1 provides efficient barrier synchronization
primitives between SSPs on a node, and the compiler is responsible for generating
the MSP code. For example, for a vectorizable inner loop over 1000 elements, the
compiler will allocate iterations 0–249 to SSP0, iterations 250–499 to SSP1, iter-
ations 500–749 to SSP2, and iterations 750–999 to SSP3. Each SSP can process its
loop iterations independently but must synchronize back with the other SSPs
before moving to the next loop nest.

If inner loops do not have many iterations, the eight-lane MSP will have low
efficiency, as each SSP will have only a few elements to process and execution
time will be dominated by start-up time and synchronization overheads. Another
way to use an MSP is for the compiler to parallelize across an outer loop, giving
each SSP a different inner loop to process. For example, the following nested loops
scale the upper triangle of a matrix by a constant:

/* Scale upper triangle by constant K. */
for (row = 0; row < MAX_ROWS; row++)

for (col = row; col < MAX_COLS; col++)
A[row][col] = A[row][col] * K;

Consider the case where MAX_ROWS and MAX_COLS are both 100 elements.
The vector length of the inner loop steps down from 100 to 1 over the iterations of
the outer loop. Even for the first inner loop, the loop length would be much less
than the maximum vector length (256) of an eight-lane MSP, and the code would
therefore be inefficient. Alternatively, the compiler can assign entire inner loops to
a single SSP. For example, SSP0 might process rows 0, 4, 8, and so on, while SSP1
processes rows 1, 5, 9, and so on. Each SSP now sees a longer vector. In effect, this
approach parallelizes the scalar overhead and makes use of the individual scalar
units within each SSP.

Most application code uses MSPs, but it is also possible to compile code to use
all the SSPs as individual processors where there is limited vector parallelism but

significant thread-level parallelism.
Cray X1E

In 2004, Cray announced an upgrade to the original Cray X1 design. The X1E
uses newer fabrication technology that allows two SSPs to be placed on a single
chip, making the X1E the first multicore vector microprocessor. Each physical
node now contains eight MSPs, but these are organized as two logical nodes
of four MSPs each to retain the same programming model as the X1. In addition,
the clock rates were raised from 400 MHz scalar and 800 MHz vector to
565 MHz scalar and 1130 MHz vector, giving an improved peak performance

of 18 GFLOPS.

G.8 Concluding Remarks ■ G-25
G.8
 Concluding Remarks

During the 1980s and 1990s, rapid performance increases in pipelined scalar pro-
cessors led to a dramatic closing of the gap between traditional vector supercom-
puters and fast, pipelined, superscalar VLSI microprocessors. In 2011, it is possible
to buy a laptop computer for under $1000 that has a higher CPU clock rate than any
available vector supercomputer, even those costing tens of millions of dollars.
Although the vector supercomputers have lower clock rates, they support greater
parallelism using multiple lanes (up to 16 in the Japanese designs) versus the lim-
ited multiple issue of the superscalar microprocessors. Nevertheless, the peak
floating-point performance of the low-cost microprocessors is within a factor of
two of the leading vector supercomputer CPUs. Of course, high clock rates and
high peak performance do not necessarily translate into sustained application
performance. Main memory bandwidth is the key distinguishing feature between
vector supercomputers and superscalar microprocessor systems.

Providing this large non-unit stride memory bandwidth is one of the major
expenses in a vector supercomputer, and traditionally SRAM was used as main
memory to reduce the number of memory banks needed and to reduce vector
start-up penalties. While SRAM has an access time several times lower than that
of DRAM, it costs roughly 10 times as much per bit! To reduce main memory costs
and to allow larger capacities, all modern vector supercomputers now use DRAM
for main memory, taking advantage of new higher-bandwidth DRAM interfaces
such as synchronous DRAM.

This adoption of DRAM for main memory (pioneered by Seymour Cray in the
Cray-2) is one example of how vector supercomputers have adapted commodity
technology to improve their price-performance. Another example is that vector
supercomputers are now including vector data caches. Caches are not effective
for all vector codes, however, so these vector caches are designed to allow high
main memory bandwidth even in the presence of many cache misses. For example,
the Cray X1 MSP can have 2048 outstanding memory loads; for microprocessors,
8 to 16 outstanding cache misses per CPU are more typical maximum numbers.

Another example is the demise of bipolar ECL or gallium arsenide as technol-
ogies of choice for supercomputer CPU logic. Because of the huge investment in
CMOS technology made possible by the success of the desktop computer, CMOS
now offers competitive transistor performance with much greater transistor density
and much reduced power dissipation compared with these more exotic technolo-
gies. As a result, all leading vector supercomputers are now built with the same
CMOS technology as superscalar microprocessors. The primary reason why vector
supercomputers have lower clock rates than commodity microprocessors is that
they are developed using standard cell ASIC techniques rather than full custom
circuit design to reduce the engineering design cost. While a microprocessor
design may sell tens of millions of copies and can amortize the design cost over
this large number of units, a vector supercomputer is considered a success if over

a hundred units are sold!

G.9

G-26 ■ Appendix G Vector Processors in More Depth
Conversely, via superscalar microprocessor designs have begun to absorb
some of the techniques made popular in earlier vector computer systems, such
as with the Multimedia SIMD extensions. As we showed in Chapter 4, the invest-
ment in hardware for SIMD performance is increasing rapidly, perhaps even more
than for multiprocessors. If the even wider SIMD units of GPUs become well inte-
grated with the scalar cores, including scatter-gather support, we may well con-

clude that vector architectures have won the architecture wars!
Historical Perspective and References

This historical perspective adds some details and references that were left out of the
version in Chapter 4.

The CDC STAR processor and its descendant, the CYBER 205, were memory-
memory vector processors. To keep the hardware simple and support the high
bandwidth requirements (up to three memory references per floating-point opera-
tion), these processors did not efficiently handle non-unit stride. While most loops
have unit stride, a non-unit stride loop had poor performance on these processors
because memory-to-memory data movements were required to gather together
(and scatter back) the nonadjacent vector elements; these operations used special
scatter-gather instructions. In addition, there was special support for sparse vectors
that used a bit vector to represent the zeros and nonzeros and a dense vector of
nonzero values. These more complex vector operations were slow because of
the long memory latency, and it was often faster to use scalar mode for sparse
or non-unit stride operations. Schneck [1987] described several of the early pipe-
lined processors (e.g., Stretch) through the first vector processors, including the
205 and Cray-1. Dongarra [1986] did another good survey, focusing on more
recent processors.

The 1980s also saw the arrival of smaller-scale vector processors, called
mini-supercomputers. Priced at roughly one-tenth the cost of a supercomputer
($0.5 to $1 million versus $5 to $10 million), these processors caught on quickly.
Although many companies joined the market, the two companies that were most
successful were Convex and Alliant. Convex started with the uniprocessor C-1
vector processor and then offered a series of small multiprocessors, ending with
the C-4 announced in 1994. The keys to the success of Convex over this period
were their emphasis on Cray software capability, the effectiveness of their com-
piler (see Figure G.9), and the quality of their UNIX OS implementation. The
C-4 was the last vector machine Convex sold; they switched to making large-scale
multiprocessors using Hewlett-Packard RISCmicroprocessors and were bought by
HP in 1995. Alliant [1987] concentrated more on the multiprocessor aspects; they
built an eight-processor computer, with each processor offering vector capability.
Alliant ceased operation in the early 1990s.

In the early 1980s, CDC spun out a group, called ETA, to build a new super-
computer, the ETA-10, capable of 10 GFLOPS. The ETA processor was delivered

in the late 1980s (see Fazio [1987]) and used low-temperature CMOS in a

G.9 Historical Perspective and References ■ G-27
configuration with up to 10 processors. Each processor retained the memory-
memory architecture based on the CYBER 205. Although the ETA-10 achieved
enormous peak performance, its scalar speed was not comparable. In 1989,
CDC, the first supercomputer vendor, closed ETA and left the supercomputer
design business.

In 1986, IBM introduced the System/370 vector architecture (see Moore et al.
[1987]) and its first implementation in the 3090 Vector Facility. The architecture
extended the System/370 architecture with 171 vector instructions. The 3090/VF
was integrated into the 3090 CPU. Unlike most other vector processors of the time,
the 3090/VF routed its vectors through the cache. The IBM 370 machines contin-
ued to evolve over time and are now called the IBM zSeries. The vector extensions
have been removed from the architecture and some of the opcode space was reused
to implement 64-bit address extensions.

In late 1989, Cray Research was split into two companies, both aimed at build-
ing high-end processors available in the early 1990s. Seymour Cray headed the
spin-off, Cray Computer Corporation, until its demise in 1995. Their initial pro-
cessor, the Cray-3, was to be implemented in gallium arsenide, but they were
unable to develop a reliable and cost-effective implementation technology. A sin-
gle Cray-3 prototype was delivered to the National Center for Atmospheric
Research (NCAR) for evaluation purposes in 1993, but no paying customers were
found for the design. The Cray-4 prototype, which was to have been the first pro-
cessor to run at 1 GHz, was close to completion when the company filed for bank-
ruptcy. Shortly before his tragic death in a car accident in 1996, Seymour Cray
started yet another company, SRC Computers, to develop high-performance sys-
tems but this time using commodity components. In 2000, SRC announced the
SRC-6 system, which combined 512 Intel microprocessors, 5 billion gates of
reconfigurable logic, and a high-performance vector-style memory system.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
The J90 was a CMOS-based vector machine using DRAM memory starting at
$250,000, but with typical configurations running about $1 million. In mid-
1995, Cray Research was acquired by Silicon Graphics, and in 1998 released
the SV1 system, which grafted considerably faster CMOS processors onto the
J90 memory system, and which also added a data cache for vectors to each
CPU to help meet the increased memory bandwidth demands. The SV1 also intro-
duced the MSP concept, which was developed to provide competitive single-CPU
performance by ganging together multiple slower CPUs. Silicon Graphics sold
Cray Research to Tera Computer in 2000, and the joint company was renamed
Cray Inc.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University of
Illinois. Banerjee [1979] developed the test named after him. Padua and Wolfe
[1986] gave a good overview of vectorizing compiler technology.

Benchmark studies of various supercomputers, including attempts to under-

stand the performance differences, have been undertaken by Lubeck, Moore,

G-28 ■ Appendix G Vector Processors in More Depth
and Mendez [1985], Bucher [1983], and Jordan [1987]. There are several bench-
mark suites aimed at scientific usage and often employed for supercomputer
benchmarking, including Linpack and the Lawrence Livermore Laboratories FOR-
TRAN kernels. The University of Illinois coordinated the collection of a set of
benchmarks for supercomputers, called the Perfect Club. In 1993, the Perfect Club
was integrated into SPEC, which released a set of benchmarks, SPEChpc96, aimed
at high-end scientific processing in 1996. The NAS parallel benchmarks developed
at the NASAAmes Research Center [Bailey et al. 1991] have become a popular set
of kernels and applications used for supercomputer evaluation. A new benchmark
suite, HPC Challenge, was introduced consisting of a few kernels that stress
machine memory and interconnect bandwidths in addition to floating-point perfor-
mance [Luszczek et al. 2005]. Although standard supercomputer benchmarks are
useful as a rough measure of machine capabilities, large supercomputer purchases
are generally preceded by a careful performance evaluation on the actual mix of

applications required at the customer site.
References

Alliant Computer Systems Corp, 1987. Alliant FX/Series: Product Summary. Mass, Acton (June).
Asanovic, K., 1998. Vector microprocessors,” Ph.D. thesis, Computer Science Division. University of

California at Berkeley (May).
Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.A.,

Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Simon, H.D., Venkatakrishnan, V.,
Weeratunga, S.K., 1991. The NAS parallel benchmarks. Int’l. J. Supercomputing Applications
5, 63–73.

Banerjee, U., 1979. Speedup of ordinary programs,” Ph.D. thesis, Department of Computer Science.
University of Illinois at Urbana-Champaign (October).

Baskett, F., Keller, T.W., 1977. An Evaluation of the Cray-1 Processor. In: Kuck, D.J., Lawrie, D.H.,
Sameh, A.H. (Eds.), High Speed Computer and Algorithm Organization. Academic Press, San
Diego, pp. 71–84.

Brandt,M., Brooks, J., Cahir,M., Hewitt, T., Lopez-Pineda, E., Sandness, D., 2000. The Benchmarker’s
Guide for Cray SV1 Systems. Cray Inc., Seattle, Wash.

Bucher, I.Y., 1983. The computational speed of supercomputers. In: Proc. ACM SIGMETRICS Conf.
on Measurement and Modeling of Computer Systems, August 29–31, 1983. Minneapolis, Minn,
pp. 151–165.

Callahan, D., Dongarra, J., Levine, D., 1988. Vectorizing compilers: A test suite and results.
In: Supercomputing ’88: Proceedings of the 1988 ACM/IEEE Conference on Supercomputing,
November 12–17, pp. 98–105. Orlando, FL.

Chen, S., 1983. Large-scale and high-speed multiprocessor system for scientific applications.
In: Hwang, K. (Ed.), Superprocessors: Design and applications. Proc. NATO Advanced Research
Workshop on High-Speed Computing, June 20–22, 1983, Julich, Kernforschungsanlage, Federal
Republic of Germany. IEEE, (August), 1984.

Dongarra, J.J., 1986. A survey of high performance processors. COMPCON, IEEE, 8–11 (March).
Dunnigan, T.H., Vetter, J.S., White III, J.B., Worley, P.H., 2005. Performance evaluation of the Cray

X1 distributed shared-memory architecture. IEEE Micro 25 (1 (January–February)), 30–40.
Fazio, D., 1987. It’s really much more fun building a supercomputer than it is simply inventing one.

COMPCON, IEEE, 102–105 (February).
Flynn, M.J., 1966. Very high-speed computing systems. In: Proc. IEEE 54:12 (December),

pp. 1901–1909.
Hintz, R.G., Tate, D.P., 1972. Control data STAR-100 processor design. COMPCON, IEEE 1–4

(September).
Jordan, K.E., 1987. Performance comparison of large-scale scientific processors: Scalar mainframes,
mainframes with vector facilities, and supercomputers. Computer 20 (3 (March)), 10–23.

Exercises ■ G-29
Kitagawa, K., Tagaya, S., Hagihara, Y., Kanoh, Y., 2003. A hardware overview of SX-6 and SX-7
supercomputer. NEC Research & Development J 44 (1 (January)), 2–7.

Kuck, D., Budnik, P.P., Chen, S.-C., Lawrie, D.H., Towle, R.A., Strebendt, R.E., Davis Jr., E.W.,
Han, J., Kraska, P.W., Muraoka, Y., 1974. Measurements of parallelism in ordinary FORTRAN
programs. Computer 7 (1 (January)), 37–46.

Lincoln, N.R., 1982. Technology and design trade offs in the creation of a modern supercomputer. IEEE
Trans. on Computers, 363–376. C-31:5 (May).

Lubeck, O., Moore, J., Mendez, R., 1985. A benchmark comparison of three supercomputers: Fujitsu
VP-200, Hitachi S810/20, and Cray X-MP/2. Computer 18 (1 (January)), 10–29.

Luszczek, P., Dongarra, J.J., Koester, D., Rabenseifner, R., Lucas, B., Kepner, J., McCalpin, J., Bailey, D.,
Takahashi, D., 2005. In: Introduction to the HPC challenge benchmark suite,” Lawrence Berkeley
National Laboratory, Paper LBNL-57493 (April 25). http://repositories.cdlib.org/lbnl/LBNL-57493.

Miranker, G.S., Rubenstein, J., Sanguinetti, J., 1988. Squeezing a Cray-class supercomputer into a
single-user package. COMPCON, IEEE, 452–456 (March).

Miura, K., Uchida, K., 1983. FACOM vector processing system: VP100/200. In: Proc. NATO
Advanced Research Workshop on High-Speed Computing. June 20–22, 1983, Julich, Ker-
nforschungsanlage, Federal Republic of Germany; also in K. Hwang, ed., “Superprocessors: Design
and applications,” IEEE (August), 1984, 59–73.

Moore, B., Padegs, A., Smith, R., Bucholz, W., 1987. Concepts of the System/370 vector architecture.
In: Proc. 14th Int’l. Symposium on Computer Architecture, June 3–6, 1987. Pittsburgh, Penn,
pp. 282–292.

Padua, D., Wolfe, M., 1986. Advanced compiler optimizations for supercomputers. Comm. ACM
29 (12 (December)), 1184–1201.

Russell, R.M., 1978. The Cray-1 processor system. Comm. of the ACM 21 (1 (January)), 63–72.
Schneck, P.B., 1987. Superprocessor Architecture. Kluwer Academic Publishers, Norwell, Mass.
Smith, B.J., 1981. Architecture and applications of the HEP multiprocessor system. Real-Time Signal

Processing IV 298, 241–248. August.
Sporer, M., Moss, F.H., Mathais, C.J., 1988. An introduction to the architecture of the Stellar Graphics

supercomputer. COMPCON, IEEE 464 (March).
Tanqueray, D., 2002. The Cray X1 and supercomputer road map. In: Proc. 13th Daresbury Machine

Evaluation Workshop, December 11–12. Cheshire, England.
Vajapeyam, S., 1991. Instruction-level characterization of the Cray Y-MP processor. Ph.D. thesis, Com-

puter Sciences Department. University of Wisconsin-Madison.
Watanabe, T., 1987. Architecture and performance of the NEC supercomputer SX system. Parallel

Computing 5, 247–255.
Watson, W.J., 1972. The TI ASC—a highly modular and flexible super processor architecture. In: Proc.
AFIPS Fall Joint Computer Conf, pp. 221–228.

Exercises

In these exercises assume VMIPS has a clock rate of 500 MHz and that Tloop¼15.
Use the start-up times from Figure G.2, and assume that the store latency is always

included in the running time.

G.1 [10]<G.1, G.2>Write a VMIPS vector sequence that achieves the peakMFLOPS
performance of the processor (use the functional unit and instruction description in
Section G.2). Assuming a 500-MHz clock rate, what is the peak MFLOPS?

G.2 [20/15/15]<G.1–G.6>Consider the following vector code run on a 500 MHz

version of VMIPS for a fixed vector length of 64:

LV V1,Ra
MULV.D V2,V1,V3
ADDV.D V4,V1,V3
SV Rb,V2

SV Rc,V4

G.3

G-30 ■ Appendix G Vector Processors in More Depth
Ignore all strip-mining overhead, but assume that the store latency must be
included in the time to perform the loop. The entire sequence produces 64 results.

a. [20]<G.1–G.4>Assuming no chaining and a single memory pipeline, how
many chimes are required? How many clock cycles per result (including both
stores as one result) does this vector sequence require, including start-up
overhead?

b. [15]<G.1–G.4> If the vector sequence is chained, how many clock cycles per
result does this sequence require, including overhead?

c. [15]<G.1–G.6>Suppose VMIPS had three memory pipelines and chaining.
If there were no bank conflicts in the accesses for the above loop, how many
clock cycles are required per result for this sequence?
[20/20/15/15/20/20/20]<G.2–G.6>Consider the following FORTRAN code:

do 10 i=1,n
A(i)=A(i)+B(i)
B(i)=x * B(i)

10 continue

Use the techniques of Section G.6 to estimate performance throughout this
exercise, assuming a 500 MHz version of VMIPS.

a. [20]<G.2–G.6>Write the best VMIPS vector code for the inner portion of the
loop. Assume x is in F0 and the addresses of A and B are in Ra and Rb,
respectively.

b. [20]<G.2–G.6>Find the total time for this loop on VMIPS (T100). What is the
MFLOPS rating for the loop (R100)?

c. [15]<G.2–G.6>Find R∞ for this loop.

d. [15]<G.2–G.6>Find N1/2 for this loop.

e. [20]<G.2–G.6>Find Nv for this loop. Assume the scalar code has been pipe-
line scheduled so that each memory reference takes six cycles and each FP oper-
ation takes three cycles. Assume the scalar overhead is also Tloop.

f. [20]<G.2–G.6>AssumeVMIPS has twomemory pipelines.Write vector code
that takes advantage of the second memory pipeline. Show the layout in
convoys.

g. [20]<G.2–G.6>Compute T100 and R100 for VMIPS with two memory

pipelines.

G.4 [20/10]<G.2>Suppose we have a version of VMIPS with eight memory banks

(each a double word wide) and a memory access time of eight cycles.

a. [20]<G.2> If a load vector of length 64 is executed with a stride of 20 double
words, how many cycles will the load take to complete?

b. [10]<G.2>What percentage of the memory bandwidth do you achieve on a

64-element load at stride 20 versus stride 1?

Exercises ■ G-31
G.5

G.7
[12/12]<G.5–G.6>Consider the following loop:

C=0.0
do 10 i=1,64

A(i)=A(i)+B(i)
C=C+A(i)

10 continue

a. [12]<G.5–G.6>Split the loop into two loops: one with no dependence and one
with a dependence. Write these loops in FORTRAN—as a source-to-source
transformation. This optimization is called loop fission.

b. [12]<G.5–G.6>Write the VMIPS vector code for the loop without a

dependence.

G.6 [20/15/20/20]<G.5–G.6>The compiled Linpack performance of the Cray-1
(designed in 1976) was almost doubled by a better compiler in 1989.
Let’s look at a simple example of how this might occur. Consider
the DAXPY-like loop (where k is a parameter to the procedure containing

the loop):

do 10 i=1,64
do 10 j=1,64
Y(k,j)=a*X(i,j)+Y(k,j)

10 continue

a. [20]<G.5–G.6>Write the straightforward code sequence for just the inner
loop in VMIPS vector instructions.

b. [15]<G.5–G.6>Using the techniques of Section G.6, estimate the perfor-
mance of this code on VMIPS by finding T64 in clock cycles. You may assume
that Tloop of overhead is incurred for each iteration of the outer loop.What limits
the performance?

c. [20]<G.5–G.6>Rewrite the VMIPS code to reduce the performance limita-
tion; show the resulting inner loop in VMIPS vector instructions. (Hint: Think
about what establishes Tchime; can you affect it?) Find the total time for the
resulting sequence.

d. [20]<G.5–G.6>Estimate the performance of your new version, using the

techniques of Section G.6 and finding T64.
[15/15/25]<G.4>Consider the following code:

do 10 i=1,64
if (B(i) .ne. 0) then

A(i)=A(i)/B(i)
10 continue

Assume that the addresses of A and B are in Ra and Rb, respectively, and that F0

contains 0.

G-32 ■ Appendix G Vector Processors in More Depth
a. [15]<G.4>Write the VMIPS code for this loop using the vector-mask capability.

b. [15]<G.4>Write the VMIPS code for this loop using scatter-gather.

c. [25]<G.4>Estimate the performance (T100 in clock cycles) of these two vector
loops, assuming a divide latency of 20 cycles. Assume that all vector instruc-
tions run at one result per clock, independent of the setting of the vector-mask
register. Assume that 50% of the entries of B are 0. Considering hardware costs,

which would you build if the above loop were typical?

G.8 [15/20/15/15]<G.1–G.6>The difference between peak and sustained perfor-
mance can be large. For one problem, a Hitachi S810 had a peak speed twice as
high as that of the Cray X-MP, while for another more realistic problem, the Cray
X-MP was twice as fast as the Hitachi processor. Let’s examine why this might

occur using two versions of VMIPS and the following code sequences:

C Code sequence 1
do 10 i=1,10000

A(i)=x * A(i)+y * A(i)
10 continue
C Code sequence 2

do 10 i=1,100
A(i)=x * A(i)

10 continue

Assume there is a version of VMIPS (call it VMIPS-II) that has two copies of every
floating-point functional unit with full chaining among them. Assume that both
VMIPS and VMIPS-II have two load-store units. Because of the extra functional
units and the increased complexity of assigning operations to units, all the over-
heads (Tloop and Tstart) are doubled for VMIPS-II.

a. [15]<G.1–G.6>Find the number of clock cycles on code sequence 1
on VMIPS.

b. [20]<G.1–G.6>Find the number of clock cycles on code sequence 1 for
VMIPS-II. How does this compare to VMIPS?

c. [15]<G.1–G.6>Find the number of clock cycles on code sequence 2 for VMIPS.

d. [15]<G.1–G.6>Find the number of clock cycles on code sequence 2 for

VMIPS-II. How does this compare to VMIPS?

G.9 [20]<G.5>Here is a tricky piece of code with two-dimensional arrays. Does this
loop have dependences? Can these loops be written so they are parallel? If so, how?
Rewrite the source code so that it is clear that the loop can be vectorized, if

possible.

do 290 j=2,n
do 290 i=2,j

aa(i,j)=aa(i-1,j)*aa(i-1,j)+bb(i,j)

290 continue

Exercises ■ G-33
G.10
 [12/15]<G.5>Consider the following loop:

do 10 i=2,n
A(i)=B

10 C(i)=A(i - 1)

a. [12]<G.5>Show there is a loop-carried dependence in this code fragment.

b. [15]<G.5>Rewrite the code in FORTRAN so that it can be vectorized as two

separate vector sequences.

G.11 [15/25/25]<G.5>As we saw in Section G.5, some loop structures are not easily
vectorized. One common structure is a reduction—a loop that reduces an array to a
single value by repeated application of an operation. This is a special case of a

recurrence. A common example occurs in dot product:

dot=0.0
do 10 i=1,64

10 dot=dot+A(i) * B(i)

This loop has an obvious loop-carried dependence (on dot) and cannot be vec-
torized in a straightforward fashion. The first thing a good vectorizing compiler
would do is split the loop to separate out the vectorizable portion and the recurrence
and perhaps rewrite the loop as:

do 10 i=1,64
10 dot(i)=A(i) * B(i)

do 20 i=2,64
20 dot(1)=dot(1)+dot(i)

The variable dot has been expanded into a vector; this transformation is called
scalar expansion. We can try to vectorize the second loop either relying strictly on
the compiler (part (a)) or with hardware support as well (part (b)). There is an
important caveat in the use of vector techniques for reduction. To make reduction
work, we are relying on the associativity of the operator being used for the reduc-
tion. Because of rounding and finite range, however, floating-point arithmetic is
not strictly associative. For this reason, most compilers require the programmer
to indicate whether associativity can be used to more efficiently compile
reductions.

a. [15]<G.5>One simple scheme for compiling the loop with the recurrence is to
add sequences of progressively shorter vectors—two 32-element vectors, then
two 16-element vectors, and so on. This technique has been called recursive
doubling. It is faster than doing all the operations in scalar mode. Show how
the FORTRAN code would look for execution of the second loop in the preced-
ing code fragment using recursive doubling.

b. [25]<G.5> In some vector processors, the vector registers are addressable, and
the operands to a vector operation may be two different parts of the same vector

register. This allows another solution for the reduction, called partial sums.

G-34 ■ Appendix G Vector Processors in More Depth
The key idea in partial sums is to reduce the vector to m sums where m is the
total latency through the vector functional unit, including the operand read and
write times. Assume that the VMIPS vector registers are addressable (e.g., you
can initiate a vector operation with the operand V1(16), indicating that the input
operand began with element 16). Also, assume that the total latency for adds,
including operand read and write, is eight cycles. Write a VMIPS code
sequence that reduces the contents of V1 to eight partial sums. It can be done
with one vector operation.

c. [25]<G.5>Discuss how adding the extension in part (b) would affect a

machine that had multiple lanes.

G.12 [40]<G.3–G.4>Extend the MIPS simulator to be a VMIPS simulator, including
the ability to count clock cycles. Write some short benchmark programs in MIPS
and VMIPS assembly language. Measure the speedup on VMIPS, the percentage
of vectorization, and usage of the functional units.

G.13 [50]<G.5>Modify the MIPS compiler to include a dependence checker. Run
some scientific code and loops through it and measure what percentage of the state-
ments could be vectorized.

G.14 [Discussion] Some proponents of vector processors might argue that the vector
processors have provided the best path to ever-increasing amounts of processor
power by focusing their attention on boosting peak vector performance. Others
would argue that the emphasis on peak performance is misplaced because an
increasing percentage of the programs are dominated by nonvector performance.
(Remember Amdahl’s law?) The proponents would respond that programmers
should work to make their programs vectorizable. What do you think about this

argument?

