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J.1

J.2
Introduction

Although computer arithmetic is sometimes viewed as a specialized part of CPU
design, it is a very important part. This was brought home for Intel in 1994 when
their Pentium chip was discovered to have a bug in the divide algorithm. This
floating-point flaw resulted in a flurry of bad publicity for Intel and also cost them
a lot of money. Intel took a $300 million write-off to cover the cost of replacing
the buggy chips.

In this appendix, we will study some basic floating-point algorithms, includ-
ing the division algorithm used on the Pentium. Although a tremendous variety
of algorithms have been proposed for use in floating-point accelerators, actual
implementations are usually based on refinements and variations of the few basic
algorithms presented here. In addition to choosing algorithms for addition, sub-
traction, multiplication, and division, the computer architect must make other
choices. What precisions should be implemented? How should exceptions be
handled? This appendix will give you the background for making these and other
decisions.

Our discussion of floating point will focus almost exclusively on the IEEE
floating-point standard (IEEE 754) because of its rapidly increasing acceptance.
Although floating-point arithmetic involves manipulating exponents and shifting
fractions, the bulk of the time in floating-point operations is spent operating on
fractions using integer algorithms (but not necessarily sharing the hardware that
implements integer instructions). Thus, after our discussion of floating point,
we will take a more detailed look at integer algorithms.

Some good references on computer arithmetic, in order from least to most
detailed, are Chapter 3 of Patterson and Hennessy [2009]; Chapter 7 of Hamacher,

Vranesic, and Zaky [1984]; Gosling [1980]; and Scott [1985].
Basic Techniques of Integer Arithmetic

Readers who have studied computer arithmetic before will find most of this section
to be review.

Ripple-Carry Addition

Adders are usually implemented by combining multiple copies of simple com-
ponents. The natural components for addition are half adders and full adders.
The half adder takes two bits a and b as input and produces a sum bit s and a
carry bit cout as output. Mathematically, s¼ (a+b) mod 2, and cout¼b(a+b)/2c,
where b c is the floor function. As logic equations, s¼ ab + ab and cout¼ab,
where ab means a ^ b and a+b means a _ b. The half adder is also called

a (2,2) adder, since it takes two inputs and produces two outputs. The full adder
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is a (3,2) adder and is defined by s¼ (a+b+c) mod 2, cout¼b(a+b+c)/2c, or
the logic equations

s¼ abc+ abc+ abc+ abc

cout ¼ ab+ ac + bc

The principal problem in constructing an adder for n-bit numbers out of smaller
pieces is propagating the carries from one piece to the next. The most obvious
way to solve this is with a ripple-carry adder, consisting of n full adders, as
illustrated in Figure J.1. (In the figures in this appendix, the least-significant
bit is always on the right.) The inputs to the adder are an�1an�2⋯a0
and bn�1bn�2⋯b0, where an�1an�2⋯a0 represents the number
an�12n�1 + an�22n�2 +⋯+ a0. The ci+1 output of the ith adder is fed into the ci + 1

input of the next adder (the (i+1)-th adder) with the lower-order carry-in c0
set to 0. Since the low-order carry-in is wired to 0, the low-order adder could be a half
adder. Later, however, we will see that setting the low-order carry-in bit to 1 is useful
for performing subtraction.

In general, the time a circuit takes to produce an output is proportional to the
maximum number of logic levels through which a signal travels. However, deter-
mining the exact relationship between logic levels and timings is highly technology
dependent. Therefore, when comparing adders we will simply compare the number
of logic levels in each one. How many levels are there for a ripple-carry adder? It
takes two levels to compute c1 from a0 and b0. Then it takes two more levels to com-
pute c2 from c1, a1, b1, and so on, up to cn. So, there are a total of 2n levels. Typical
values of n are 32 for integer arithmetic and 53 for double-precision floating point.
The ripple-carry adder is the slowest adder, but also the cheapest. It can be built with
only n simple cells, connected in a simple, regular way.

Because the ripple-carry adder is relatively slow compared with the designs
discussed in Section J.8, you might wonder why it is used at all. In technologies
like CMOS, even though ripple adders take time O(n), the constant factor is very
small. In such cases short ripple adders are often used as building blocks in larger

adders.
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Figure J.1 Ripple-carry adder, consisting of n full adders. The carry-out of one full
adder is connected to the carry-in of the adder for the next most-significant bit. The
carries ripple from the least-significant bit (on the right) to the most-significant bit
(on the left).
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Radix-2 Multiplication and Division

The simplest multiplier computes the product of two unsigned numbers, one bit at a
time, as illustrated in Figure J.2(a). The numbers to be multiplied are an�1an�2⋯a0
and bn�1bn�2⋯b0, and they are placed in registers A and B, respectively. Register

P is initially 0. Each multiply step has two parts:

(i) If the least-significant bit of A is 1, then register B, containing bn�1bn�2⋯b0, is
added to P; otherwise, 00⋯00 is added to P. The sum is placed back into P.

(ii) Registers P and A are shifted right, with the carry-out of the sum being moved
into the high-order bit of P, the low-order bit of P being moved into register A,
and the rightmost bit of A, which is not used in the rest of the algorithm, being

shifted out.
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Figure J.2 Block diagram of (a) multiplier and (b) divider for n-bit unsigned integers.
Each multiplication step consists of adding the contents of P to either B or 0 (depending
on the low-order bit of A), replacing P with the sum, and then shifting both P and A one
bit right. Each division step involves first shifting P and A one bit left, subtracting B from
P, and, if the difference is nonnegative, putting it into P. If the difference is nonnegative,
the low-order bit of A is set to 1.
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After n steps, the product appears in registers P and A, with A holding the
lower-order bits.

The simplest divider also operates on unsigned numbers and produces the
quotient bits one at a time. A hardware divider is shown in Figure J.2(b). To
compute a/b, put a in the A register, b in the B register, and 0 in the P register

and then perform n divide steps. Each divide step consists of four parts:

(i) Shift the register pair (P,A) one bit left.

(ii) Subtract the content of register B (which is bn�1bn�2⋯b0) from register P,
putting the result back into P.

(iii) If the result of step 2 is negative, set the low-order bit of A to 0, otherwise to 1.

(iv) If the result of step 2 is negative, restore the old value of P by adding the
contents of register B back into P.

After repeating this process n times, the A register will contain the quotient, and
the P register will contain the remainder. This algorithm is the binary version of the
paper-and-pencil method; a numerical example is illustrated in Figure J.3(a).

Notice that the two block diagrams in Figure J.2 are very similar. The main
difference is that the register pair (P,A) shifts right when multiplying and left when
dividing. By allowing these registers to shift bidirectionally, the same hardware
can be shared between multiplication and division.

The division algorithm illustrated in Figure J.3(a) is called restoring, because
if subtraction by b yields a negative result, the P register is restored by adding b
back in. The restoring algorithm has a variant that skips the restoring step and
instead works with the resulting negative numbers. Each step of this nonrestoring

algorithm has three parts:
If P is negative,
(i-a) Shift the register pair (P,A) one bit left.

(ii-a) Add the contents of register B to P.

Else,

(i-b) Shift the register pair (P,A) one bit left.

(ii-b) Subtract the contents of register B from P.

(iii) If P is negative, set the low-order bit of A to 0, otherwise set it to 1.

After repeating this n times, the quotient is in A. If P is nonnegative, it is the
remainder. Otherwise, it needs to be restored (i.e., add b), and then it will be the
remainder. A numerical example is given in Figure J.3(b). Since steps (i-a) and (i-
b) are the same, you might be tempted to perform this common step first, and then

test the sign of P. That doesn’t work, since the sign bit can be lost when shifting.



Figure J.3 Numerical example of (a) restoring division and (b) nonrestoring division.

J-6 ■ Appendix J Computer Arithmetic



Example

Answer

J.2 Basic Techniques of Integer Arithmetic ■ J-7
The explanation for why the nonrestoring algorithm works is this. Let rk be the
contents of the (P,A) register pair at step k, ignoring the quotient bits (which are sim-
ply sharing the unused bits of register A). In Figure J.3(a), initially A contains 14, so
r0¼14. At the end of the first step, r1¼28, and so on. In the restoring algorithm, part
(i) computes 2rk and then part (ii) 2rk�2nb (2nb since b is subtracted from the left
half). If 2rk�2nb�0, both algorithms end the step with identical values in (P,A). If
2rk�2nb<0, then the restoring algorithm restores this to 2rk, and the next step
begins by computing rres¼2(2rk)�2nb. In the non-restoring algorithm, 2rk�2nb
is kept as a negative number, and in the next step rnonres¼2(2rk�2nb)+
2nb¼4rk�2nb¼ rres. Thus (P,A) has the same bits in both algorithms.

If a and b are unsigned n-bit numbers, hence in the range 0�a,b�2n�1, then
the multiplier in Figure J.2 will work if register P is n bits long. However, for
division, P must be extended to n+1 bits in order to detect the sign of P. Thus
the adder must also have n+1 bits.

Why would anyone implement restoring division, which uses the same hard-
ware as nonrestoring division (the control is slightly different) but involves an extra
addition? In fact, the usual implementation for restoring division doesn’t actually
perform an add in step (iv). Rather, the sign resulting from the subtraction is tested
at the output of the adder, and only if the sum is nonnegative is it loaded back into
the P register.

As a final point, before beginning to divide, the hardware must check to see
whether the divisor is 0.

Signed Numbers

There are four methods commonly used to represent signed n-bit numbers: sign
magnitude, two’s complement, one’s complement, and biased. In the sign magni-
tude system, the high-order bit is the sign bit, and the low-order n�1 bits are the
magnitude of the number. In the two’s complement system, a number and its
negative add up to 2n. In one’s complement, the negative of a number is obtained
by complementing each bit (or, alternatively, the number and its negative add up to
2n�1). In each of these three systems, nonnegative numbers are represented in the
usual way. In a biased system, nonnegative numbers do not have their usual rep-
resentation. Instead, all numbers are represented by first adding them to the bias
and then encoding this sum as an ordinary unsigned number. Thus, a negative num-
ber k can be encoded as long as k+bias�0. A typical value for the bias is 2n�1.
Using 4-bit numbers (n¼4), if k¼3 (or in binary, k¼00112), how is�k expressed

in each of these formats?

In signed magnitude, the leftmost bit in k¼00112 is the sign bit, so flip it to 1:�k is
represented by 10112. In two’s complement, k+11012¼2n¼16. So�k is repre-
sented by 11012. In one’s complement, the bits of k¼00112 are flipped, so�k
is represented by 11002. For a biased system, assuming a bias of 2n�1¼8, k is

represented by k+bias¼10112, and�k by�k+bias¼01012.
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The most widely used system for representing integers, two’s complement, is the
system we will use here. One reason for the popularity of two’s complement is that
it makes signed addition easy: Simply discard the carry-out from the highorder bit.
To add 5+�2, for example, add 01012 and 11102 to obtain 00112, resulting in the
correct value of 3. A useful formula for the value of a two’s complement number
an�1an�2⋯a1a0 is

�an�12
n�1 + an�22

n�2 +⋯ + a12
1 + a0

As an illustration of this formula, the value of 11012 as a 4-bit two’s complement
number is �1 �23+1 �22+0 �21+1 �20¼�8+4+1¼�3, confirming the result of
the example above.

Overflow occurs when the result of the operation does not fit in the represen-
tation being used. For example, if unsigned numbers are being represented using 4
bits, then 6¼01102 and 11¼10112. Their sum (17) overflows because its binary
equivalent (100012) doesn’t fit into 4 bits. For unsigned numbers, detecting over-
flow is easy; it occurs exactly when there is a carry-out of the most-significant bit.
For two’s complement, things are trickier: Overflow occurs exactly when the carry
into the high-order bit is different from the (to be discarded) carry-out of the high-
order bit. In the example of 5+�2 above, a 1 is carried both into and out of the
leftmost bit, avoiding overflow.

Negating a two’s complement number involves complementing each bit and
then adding 1. For instance, to negate 00112, complement it to get 11002 and then
add 1 to get 11012. Thus, to implement a�b using an adder, simply feed a and b
(where b is the number obtained by complementing each bit of b) into the adder and
set the low-order, carry-in bit to 1. This explains why the rightmost adder in
Figure J.1 is a full adder.

Multiplying two’s complement numbers is not quite as simple as adding them.
The obvious approach is to convert both operands to be nonnegative, do an
unsigned multiplication, and then (if the original operands were of opposite signs)
negate the result. Although this is conceptually simple, it requires extra time and
hardware. Here is a better approach: Suppose that we are multiplying a times b
using the hardware shown in Figure J.2(a). Register A is loaded with the number
a; B is loaded with b. Since the content of register B is always b, we will use B and
b interchangeably. If B is potentially negative but A is nonnegative, the only
change needed to convert the unsigned multiplication algorithm into a two’s com-
plement one is to ensure that when P is shifted, it is shifted arithmetically; that is,
the bit shifted into the high-order bit of P should be the sign bit of P (rather than the
carry-out from the addition). Note that our n-bit-wide adder will now be adding
n-bit two’s complement numbers between �2n�1 and 2n�1�1.

Next, suppose a is negative. The method for handling this case is called Booth
recoding. Booth recoding is a very basic technique in computer arithmetic and
will play a key role in Section J.9. The algorithm on page J-4 computes a�b by
examining the bits of a from least significant to most significant. For example, if
a¼7¼01112, then step (i) will successively add B, add B, add B, and add 0. Booth

recoding “recodes” the number 7 as 8�1¼ 10002�00012 ¼ 1001, where 1
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represents�1. This gives an alternative way to compute a�b, namely, successively
subtract B, add 0, add 0, and add B. This is more complicated than the unsigned algo-
rithm on page J-4, since it uses both addition and subtraction. The advantage shows
up for negative values of a.With the proper recoding, we can treat a as though it were
unsigned. For example, take a¼�4¼11002. Think of 11002 as the unsigned num-
ber 12, and recode it as 12¼ 16�4¼ 100002�01002 ¼ 10100. If themultiplication
algorithm is only iterated n times (n¼4 in this case), the high-order digit is ignored,
and we end up subtracting 01002¼4 times the multiplier—exactly the right answer.
This suggests that multiplying using a recoded form of a will work equally well for
both positive and negative numbers. And, indeed, to deal with negative values of a,
all that is required is to sometimes subtract b from P, instead of adding either b or 0 to
P. Here are the precise rules: If the initial content of A is an�1⋯a0, then at the ith
multiply step the low-order bit of register A is ai, and step (i) in the multiplication
algorithm becomes:

I. If ai¼0 and ai�1¼0, then add 0 to P.

II. If ai¼0 and ai�1¼1, then add B to P.

III. If ai¼1 and ai�1¼0, then subtract B from P.

IV. If ai¼1 and ai�1¼1, then add 0 to P.

For the first step, when i¼0, take ai�1 to be 0.
When multiplying �6 times �5, what is the sequence of values in the (P,A)

register pair?
See Figure J.4.

Figure J.4 Numerical example of Booth recoding. Multiplication of a¼�6 by b¼�5
to get 30.
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The four prior cases can be restated as saying that in the ith step you should add
(ai�1�ai)B to P. With this observation, it is easy to verify that these rules work,
because the result of all the additions is

Xn�1

i¼0

b ai�1�aið Þ2i ¼ b �an�12
n�1 + an�22

n�2 +… + a12 + a0
� �

+ ba�1

Using Equation J.2.3 (page J-8) together with a�1¼0, the right-hand side is seen to
be the value of b�a as a two’s complement number.

The simplest way to implement the rules for Booth recoding is to extend the A
register one bit to the right so that this new bit will contain ai�1. Unlike the naive
method of inverting any negative operands, this technique doesn’t require extra
steps or any special casing for negative operands. It has only slightly more control
logic. If the multiplier is being shared with a divider, there will already be the capa-
bility for subtracting b, rather than adding it. To summarize, a simple method for
handling two’s complement multiplication is to pay attention to the sign of P when
shifting it right, and to save the most recently shifted-out bit of A to use in deciding
whether to add or subtract b from P.

Booth recoding is usually the best method for designing multiplication hardware
that operates on signed numbers. For hardware that doesn’t directly implement it,
however, performing Booth recoding in software or microcode is usually too slow
because of the conditional tests and branches. If the hardware supports arithmetic
shifts (so that negative b is handled correctly), then the following method can be
used. Treat the multiplier a as if it were an unsigned number, and perform the first
n�1multiply steps using the algorithm on page J-4. If a<0 (in which case there will
be a 1 in the low-order bit of the A register at this point), then subtract b from P;
otherwise (a�0), neither add nor subtract. In either case, do a final shift (for a total
of n shifts). This works because it amounts to multiplying b by
�an�12n�1 +⋯+ a12 + a0, which is the value of an�1⋯a0 as a two’s complement
number by Equation J.2.3. If the hardware doesn’t support arithmetic shift, then
converting the operands to be nonnegative is probably the best approach.

Two final remarks: A good way to test a signed-multiply routine is to
try �2n�1��2n�1, since this is the only case that produces a 2n�1 bit result.
Unlike multiplication, division is usually performed in hardware by converting
the operands to be nonnegative and then doing an unsigned divide. Because divi-
sion is substantially slower (and less frequent) than multiplication, the extra time

used to manipulate the signs has less impact than it does on multiplication.
Systems Issues

When designing an instruction set, a number of issues related to integer arithmetic
need to be resolved. Several of them are discussed here.

First, what should be done about integer overflow? This situation is compli-
cated by the fact that detecting overflow differs depending on whether the operands

are signed or unsigned integers. Consider signed arithmetic first. There are three
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approaches: Set a bit on overflow, trap on overflow, or do nothing on overflow. In
the last case, software has to check whether or not an overflow occurred. The most
convenient solution for the programmer is to have an enable bit. If this bit is turned
on, then overflow causes a trap. If it is turned off, then overflow sets a bit (or, alter-
natively, have two different add instructions). The advantage of this approach is
that both trapping and nontrapping operations require only one instruction. Fur-
thermore, as we will see in Section J.7, this is analogous to how the IEEE
floating-point standard handles floating-point overflow. Figure J.5 shows how
some common machines treat overflow.

What about unsigned addition? Notice that none of the architectures in
Figure J.5 traps on unsigned overflow. The reason for this is that the primary
use of unsigned arithmetic is in manipulating addresses. It is convenient to be able
to subtract from an unsigned address by adding. For example, when n¼4, we can
subtract 2 from the unsigned address 10¼10102 by adding 14¼11102. This
generates an overflow, but we would not want a trap to be generated.

A second issue concerns multiplication. Should the result of multiplying two
n-bit numbers be a 2n-bit result, or should multiplication just return the low-order n
bits, signaling overflow if the result doesn’t fit in n bits? An argument in favor of an
n-bit result is that in virtually all high-level languages, multiplication is an oper-
ation in which arguments are integer variables and the result is an integer variable
of the same type. Therefore, compilers won’t generate code that utilizes a double-
precision result. An argument in favor of a 2n-bit result is that it can be used by an
assembly language routine to substantially speed up multiplication of multiple-
precision integers (by about a factor of 3).

A third issue concerns machines that want to execute one instruction every cycle.
It is rarely practical to perform amultiplication or division in the same amount of time
that an addition or register-registermove takes. There are three possible approaches to
this problem. The first is to have a single-cyclemultiply-step instruction. This might
do one step of the Booth algorithm. The second approach is to do integer multipli-

cation in the floating-point unit and have it be part of the floating-point instruction set.

various machines handle integer overflow. Both the 8086 and SPARC have an instruc-
set, so the cost of trapping on overflow is one extra instruction.
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(This is what DLX does.) The third approach is to have an autonomous unit in the
CPUdo themultiplication. In this case, the result either can be guaranteed to be deliv-
ered in a fixed number of cycles—and the compiler charged with waiting the proper
amount of time—or there can be an interlock. The same comments apply to division
as well. As examples, the original SPARC had a multiply-step instruction but no
divide-step instruction,while theMIPSR3000has an autonomous unit that doesmul-
tiplication and division (newer versions of the SPARC architecture added an integer
multiply instruction). The designers of the HP Precision Architecture did an espe-
cially thorough job of analyzing the frequency of the operands for multiplication
and division, and they based their multiply and divide steps accordingly. (See
Magenheimer et al. [1988] for details.)

The final issue involves the computation of integer division and remainder for
negative numbers. For example, what is�5 DIV 3 and�5 MOD 3?When computing
x DIV y and x MOD y, negative values of x occur frequently enough to be worth some
careful consideration. (On the other hand, negative values of y are quite rare.) If
there are built-in hardware instructions for these operations, they should corre-
spond to what high-level languages specify. Unfortunately, there is no agreement
among existing programming languages. See Figure J.6.

One definition for these expressions stands out as clearly superior, namely,
x DIV y¼bx/yc, so that 5 DIV 3¼1 and �5 DIV 3¼�2. And MOD should satisfy
x¼ (x DIV y)�y+x MOD y, so that x MOD y�0. Thus, 5 MOD 3¼2, and �5 MOD

3¼1. Some of the many advantages of this definition are as follows:

1. A calculation to compute an index into a hash table of size N can use MOD N and
be guaranteed to produce a valid index in the range from 0 to N�1.

2. In graphics, when converting from one coordinate system to another, there is no
“glitch” near 0. For example, to convert from a value x expressed in a system
that uses 100 dots per inch to a value y on a bitmapped display with 70 dots per
inch, the formula y¼ (70�x) DIV 100 maps one or two x coordinates into each
y coordinate. But if DIV were defined as in Pascal to be x/y rounded to 0, then
0 would have three different points (�1, 0, 1) mapped into it.

3. x MOD 2k is the same as performing a bitwise AND with a mask of k bits, and x DIV
2k is the same as doing a k-bit arithmetic right shift.

Figure J.6 Examples of integer division and integer remainder in various program-
ming languages.
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Finally, a potential pitfall worth mentioning concerns multiple-precision addi-
tion. Many instruction sets offer a variant of the add instruction that adds three
operands: two n-bit numbers together with a third single-bit number. This third
number is the carry from the previous addition. Since the multiple-precision num-
ber will typically be stored in an array, it is important to be able to increment the

array pointer without destroying the carry bit.
Floating Point

Many applications require numbers that aren’t integers. There are a number of
ways that nonintegers can be represented. One is to use fixed point; that is, use inte-
ger arithmetic and simply imagine the binary point somewhere other than just to
the right of the least-significant digit. Adding two such numbers can be done with
an integer add, whereas multiplication requires some extra shifting. Other repre-
sentations that have been proposed involve storing the logarithm of a number and
doing multiplication by adding the logarithms, or using a pair of integers (a,b) to
represent the fraction a/b.However, only one noninteger representation has gained
widespread use, and that is floating point. In this system, a computer word is
divided into two parts, an exponent and a significand. As an example, an exponent
of�3 and a significand of 1.5 might represent the number 1.5�2�3¼0.1875. The
advantages of standardizing a particular representation are obvious. Numerical
analysts can build up high-quality software libraries, computer designers can
develop techniques for implementing high-performance hardware, and hardware
vendors can build standard accelerators. Given the predominance of the
floating-point representation, it appears unlikely that any other representation will
come into widespread use.

The semantics of floating-point instructions are not as clear-cut as the seman-
tics of the rest of the instruction set, and in the past the behavior of floating-point
operations varied considerably from one computer family to the next. The varia-
tions involved such things as the number of bits allocated to the exponent and
significand, the range of exponents, how rounding was carried out, and the actions
taken on exceptional conditions like underflow and overflow. Computer architec-
ture books used to dispense advice on how to deal with all these details, but
fortunately this is no longer necessary. That’s because the computer industry is rap-
idly converging on the format specified by IEEE standard 754-1985 (also an inter-
national standard, IEC 559). The advantages of using a standard variant of
floating point are similar to those for using floating point over other noninteger
representations.

IEEE arithmetic differs from many previous arithmetics in the following major
ways:

1. When rounding a “halfway” result to the nearest floating-point number, it picks
the one that is even.
2. It includes the special values NaN, ∞, and�∞.
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3. It uses denormal numbers to represent the result of computations whose value is
less than 1:0�2Emin .

4. It rounds to nearest by default, but it also has three other rounding modes.

5. It has sophisticated facilities for handling exceptions.

To elaborate on (1), note that when operating on two floating-point numbers,
the result is usually a number that cannot be exactly represented as another
floating-point number. For example, in a floating-point system using base 10
and two significant digits, 6.1�0.5¼3.05. This needs to be rounded to two digits.
Should it be rounded to 3.0 or 3.1? In the IEEE standard, such halfway cases are
rounded to the number whose low-order digit is even. That is, 3.05 rounds to 3.0,
not 3.1. The standard actually has four rounding modes. The default is round to
nearest, which rounds ties to an even number as just explained. The other modes
are round toward 0, round toward+∞, and round toward�∞.

We will elaborate on the other differences in following sections. For further

reading, see IEEE [1985], Cody et al. [1984], and Goldberg [1991].
Special Values and Denormals

Probably the most notable feature of the standard is that by default a computation
continues in the face of exceptional conditions, such as dividing by 0 or taking the
square root of a negative number. For example, the result of taking the square root
of a negative number is a NaN (Not a Number), a bit pattern that does not represent
an ordinary number. As an example of how NaNs might be useful, consider the
code for a zero finder that takes a function F as an argument and evaluates F at
various points to determine a zero for it. If the zero finder accidentally probes out-
side the valid values for F, then F may well cause an exception. Writing a zero
finder that deals with this case is highly language and operating-system dependent,
because it relies on how the operating system reacts to exceptions and how this
reaction is mapped back into the programming language. In IEEE arithmetic it
is easy to write a zero finder that handles this situation and runs on many different
systems. After each evaluation of F, it simply checks to see whether F has returned
a NaN; if so, it knows it has probed outside the domain of F.

In IEEE arithmetic, if the input to an operation is a NaN, the output is NaN
(e.g., 3+NaN¼NaN). Because of this rule, writing floating-point subroutines that
can accept NaN as an argument rarely requires any special case checks. For exam-
ple, suppose that arccos is computed in terms of arctan, using the formula

arccosx¼ 2arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ= 1 + xð Þp� �

. If arctan handles an argument of NaN
properly, arccos will automatically do so, too. That’s because if x is a NaN,

1 +x, 1�x, (1+x)/(1�x), and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ= 1 + xð Þp

will also be NaNs. No checking
for NaNs is required.

While the result of
ffiffiffiffiffiffiffi�1

p
is a NaN, the result of 1/0 is not a NaN, but +∞, which
is another special value. The standard defines arithmetic on infinities (there are
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both +∞ and �∞) using rules such as 1/∞¼0. The formula
arccosx¼ 2arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ= 1 + xð Þp� �

illustrates how infinity arithmetic can be
used. Since arctan x asymptotically approaches π/2 as x approaches∞, it is natural
to define arctan(∞)¼π/2, in which case arccos(�1) will automatically be com-
puted correctly as 2 arctan(∞)¼π.

The final kind of special values in the standard are denormal numbers. In many
floating-point systems, if Emin is the smallest exponent, a number less than 1:0�
2Emin cannot be represented, and a floating-point operation that results in a number
less than this is simply flushed to 0. In the IEEE standard, on the other hand, num-
bers less than 1:0�2Emin are represented using significands less than 1. This is
called gradual underflow. Thus, as numbers decrease in magnitude below 2Emin ,
they gradually lose their significance and are only represented by 0 when all their
significance has been shifted out. For example, in base 10 with four significant
figures, let x¼ 1:234�10Emin . Then, x/10 will be rounded to 0:123�10Emin , having
lost a digit of precision. Similarly x/100 rounds to 0:012�10Emin , and x/1000 to
0:001�10Emin , while x/10000 is finally small enough to be rounded to 0. Denor-
mals make dealing with small numbers more predictable by maintaining familiar
properties such as x¼y, x�y¼0. For example, in a flush-to-zero system (again
in base 10 with four significant digits), if x¼ 1:256�10Emin and y¼ 1:234�10Emin ,
then x� y¼ 0:022�10Emin , which flushes to zero. So even though x 6¼y, the
computed value of x�y¼0. This never happens with gradual underflow. In this
example, x� y¼ 0:022�10Emin is a denormal number, and so the computation of

x�y is exact.
Representation of Floating-Point Numbers

Let us consider how to represent single-precision numbers in IEEE arithmetic.
Single-precision numbers are stored in 32 bits: 1 for the sign, 8 for the exponent,
and 23 for the fraction. The exponent is a signed number represented using the bias
method (see the subsection “Signed Numbers,” page J-7) with a bias of 127. The
term biased exponent refers to the unsigned number contained in bits 1 through 8,
and unbiased exponent (or just exponent) means the actual power to which 2 is to
be raised. The fraction represents a number less than 1, but the significand of the
floating-point number is 1 plus the fraction part. In other words, if e is the biased
exponent (value of the exponent field) and f is the value of the fraction field, the

number being represented is 1. f�2e�127.
What single-precision number does the following 32-bit word represent?

1 10000001 01000000000000000000000
Considered as an unsigned number, the exponent field is 129, making the value of
the exponent 129�127¼2. The fraction part is .012¼ .25, making the significand

1.25. Thus, this bit pattern represents the number �1.25�22¼�5.
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The fractional part of a floating-point number (.25 in the example above) must
not be confused with the significand, which is 1 plus the fractional part. The lead-
ing 1 in the significand 1.f does not appear in the representation; that is, the leading
bit is implicit. When performing arithmetic on IEEE format numbers, the fraction
part is usually unpacked, which is to say the implicit 1 is made explicit.

Figure J.7 summarizes the parameters for single (and other) precisions.
It shows the exponents for single precision to range from �126 to 127; accord-
ingly, the biased exponents range from 1 to 254. The biased exponents of 0 and
255 are used to represent special values. This is summarized in Figure J.8. When
the biased exponent is 255, a zero fraction field represents infinity, and a nonzero
fraction field represents a NaN. Thus, there is an entire family of NaNs. When the
biased exponent and the fraction field are 0, then the number represented is 0.
Because of the implicit leading 1, ordinary numbers always have a significand
greater than or equal to 1. Thus, a special convention such as this is required to
represent 0. Denormalized numbers are implemented by having a word with a zero
exponent field represent the number 0:f �2Emin .

The primary reason why the IEEE standard, like most other floating-point for-
mats, uses biased exponents is that it means nonnegative numbers are ordered in
the same way as integers. That is, the magnitude of floating-point numbers can be
compared using an integer comparator. Another (related) advantage is that 0 is repre-
sented by a word of all 0s. The downside of biased exponents is that adding them is

slightly awkward, because it requires that the bias be subtracted from their sum.

Figure J.7 Format parameters for the IEEE 754 floating-point standard. The first row
gives the number of bits in the significand. The blanks are unspecified parameters.

Figure J.8 Representation of special values.When the exponent of a number falls out-
side the range Emin�e�Emax, then that number has a special interpretation as indicated
in the table.
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Floating-Point Multiplication

The simplest floating-point operation is multiplication, so we discuss it first. A
binary floating-point number x is represented as a significand and an exponent,
x¼ s�2e. The formula

s1�2e1
� �� s2�2e2

� �¼ s1 � s2ð Þ�2e1 + e2

shows that a floating-point multiply algorithm has several parts. The first part mul-
tiplies the significands using ordinary integer multiplication. Because floating-
point numbers are stored in sign magnitude form, the multiplier need only deal
with unsigned numbers (although we have seen that Booth recoding handles
signed two’s complement numbers painlessly). The second part rounds the result.
If the significands are unsigned p-bit numbers (e.g., p¼24 for single precision),
then the product can have as many as 2p bits and must be rounded to a p-bit num-
ber. The third part computes the new exponent. Because exponents are stored with

a bias, this involves subtracting the bias from the sum of the biased exponents.
How does the multiplication of the single-precision numbers

1 1000001 0000… ¼ �1�23

0 1000001 1000… ¼ 1�24
proceed in binary?

When unpacked, the significands are both 1.0, their product is 1.0, and so the result
is of the form:

1 ???????? 000…

To compute the exponent, use the formula:

biased exp e1 + e2ð Þ¼ biased exp e1ð Þ + biased exp e2ð Þ�bias

From Figure J.7, the bias is 127¼011111112, so in two’s complement �127 is
100000012. Thus, the biased exponent of the product is

10000010
10000011

+ 10000001
10000110

Since this is 134 decimal, it represents an exponent of 134�bias¼134�127, as

expected.
The interesting part of floating-point multiplication is rounding. Some of the
different cases that can occur are illustrated in Figure J.9. Since the cases are similar

in all bases, the figure uses human-friendly base 10, rather than base 2.



Figure J.9 Examples of rounding a multiplication. Using base 10 and p¼3, parts (a)
and (b) illustrate that the result of a multiplication can have either 2p�1 or 2p digits;
hence, the position where a 1 is added when rounding up (just left of the arrow) can
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In the figure, p¼3, so the final result must be rounded to three significant
digits. The three most-significant digits are in boldface. The fourth most-
significant digit (marked with an arrow) is the round digit, denoted by r.

If the round digit is less than 5, then the bold digits represent the rounded result. If
the round digit is greater than 5 (as in part (a)), then 1 must be added to the least-
significant bold digit. If the round digit is exactly 5 (as in part (b)), then additional
digits must be examined to decide between truncation or incrementing by 1. It is only
necessary to know if any digits past 5 are nonzero. In the algorithm below, thiswill be
recorded in a sticky bit. Comparing parts (a) and (b) in the figure shows that there are
two possible positions for the round digit (relative to the least-significant digit of the
product). Case (c) illustrates that, when adding 1 to the least-significant bold digit,
there may be a carry-out. When this happens, the final significand must be 10.0.

There is a straightforward method of handling rounding using the multiplier of
Figure J.2 (page J-4) together with an extra sticky bit. If p is the number of bits in
the significand, then the A, B, and P registers should be p bits wide. Multiply the
two significands to obtain a 2p-bit product in the (P,A) registers (see Figure J.10).
During the multiplication, the first p�2 times a bit is shifted into the A register, OR
it into the sticky bit. This will be used in halfway cases. Let s represent the sticky
bit, g (for guard) the most-significant bit of A, and r (for round) the second most-
significant bit of A. There are two cases:

1. The high-order bit of P is 0. Shift P left 1 bit, shifting in the g bit from A. Shift-
ing the rest of A is not necessary.

2. The high-order bit of P is 1. Set s :¼ s _ r and r :¼ g, and add 1 to the exponent.

Now if r¼0, P is the correctly rounded product. If r¼1 and s¼1, then P+1 is

vary. Part (c) shows that rounding up can cause a carry-out.
the product (where by P+1 we mean adding 1 to the least-significant bit of P).
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Figure J.10 The two cases of the floating-point multiply algorithm. The top line
shows the contents of the P and A registers after multiplying the significands, with
p¼6. In case (1), the leading bit is 0, and so the P register must be shifted. In case
(2), the leading bit is 1, no shift is required, but both the exponent and the round
and sticky bits must be adjusted. The sticky bit is the logical OR of the bits marked s.
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If r¼1 and s¼0, we are in a halfway case and round up according to the least-
significant bit of P. As an example, apply the decimal version of these rules to
Figure J.9(b). After the multiplication, P¼126 and A¼501, with g¼5, r¼0
and s¼1. Since the high-order digit of P is nonzero, case (2) applies and
r :¼ g, so that r¼5, as the arrow indicates in Figure J.9. Since r¼5, we could
be in a halfway case, but s¼1 indicates that the result is in fact slightly over
1/2, so add 1 to P to obtain the correctly rounded product.

The precise rules for rounding depend on the rounding mode and are given in
Figure J.11. Note that P is nonnegative, that is, it contains the magnitude of the
result. A good discussion of more efficient ways to implement rounding is in

Santoro, Bewick, and Horowitz [1989].
In binary with p¼4, show how the multiplication algorithm computes the product

�5�10 in each of the four rounding modes.

In binary,�5 is�1.0102�22 and 10¼1.0102�23. Applying the integer multipli-
cation algorithm to the significands gives 011001002, so P¼01102, A¼01002,
g¼0, r¼1, and s¼0. The high-order bit of P is 0, so case (1) applies. Thus, P

becomes 11002, and since the result is negative, Figure J.11 gives:

round to�∞ 11012 add 1 since r _ s¼1 / 0¼TRUE

round to+∞ 11002

round to 0 11002

round to nearest 11002 no add since r ^ p0¼1 ^ 0¼FALSE and
ing to�∞, in which c
ase it is �1.1
012�25¼�52.
r ^ s¼1 ^ 0¼FALSE

The exponent is 2+3¼5, so the result is�1.1002�25¼�48, except when round-



Figure J.11 Rules for implementing the IEEE roundingmodes. Let S be themagnitude
of the preliminary result. Blanks mean that the pmost-significant bits of S are the actual
result bits. If the condition listed is true, add 1 to the pth most-significant bit of S. The
symbols r and s represent the round and sticky bits, while p0 is the pth most-significant
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Overflow occurs when the rounded result is too large to be represented. In sin-
gle precision, this occurs when the result has an exponent of 128 or higher. If e1 and
e2 are the two biased exponents, then 1�ei�254, and the exponent calculation
e1+e2�127 gives numbers between 1+1�127 and 254+254�127, or between
�125 and 381. This range of numbers can be represented using 9 bits. So one way
to detect overflow is to perform the exponent calculations in a 9-bit adder (see
Exercise J.12). Remember that you must check for overflow after rounding—
the example in Figure J.9(c) shows that this can make a difference.

Denormals

Checking for underflow is somewhat more complex because of denormals. In sin-
gle precision, if the result has an exponent less than�126, that does not necessarily
indicate underflow, because the result might be a denormal number. For example,
the product of (1�2�64) with (1�2�65) is 1�2�129, and �129 is below the legal
exponent limit. But this result is a valid denormal number, namely, 0.125�2�126.
In general, when the unbiased exponent of a product dips below �126, the result-
ing product must be shifted right and the exponent incremented until the exponent
reaches �126. If this process causes the entire significand to be shifted out, then
underflow has occurred. The precise definition of underflow is somewhat subtle—
see Section J.7 for details.

When one of the operands of a multiplication is denormal, its significand will
have leading zeros, and so the product of the significands will also have leading
zeros. If the exponent of the product is less than�126, then the result is denormal,
so right-shift and increment the exponent as before. If the exponent is greater than
�126, the result may be a normalized number. In this case, left-shift the product
(while decrementing the exponent) until either it becomes normalized or the
exponent drops to �126.

Denormal numbers present a major stumbling block to implementing
floating-point multiplication, because they require performing a variable
shift in the multiplier, which wouldn’t otherwise be needed. Thus, high-

bit of S.
performance, floating-point multipliers often do not handle denormalized
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numbers, but instead trap, letting software handle them. A few practical codes
frequently underflow, even when working properly, and these programs will
run quite a bit slower on systems that require denormals to be processed by
a trap handler.

So far we haven’t mentioned how to deal with operands of zero. This can be
handled by either testing both operands before beginning the multiplication or test-
ing the product afterward. If you test afterward, be sure to handle the case 0�∞
properly: This results in NaN, not 0. Once you detect that the result is 0, set the
biased exponent to 0. Don’t forget about the sign. The sign of a product is the
XOR of the signs of the operands, even when the result is 0.

Precision of Multiplication

In the discussion of integer multiplication, we mentioned that designers must
decide whether to deliver the low-order word of the product or the entire prod-
uct. A similar issue arises in floating-point multiplication, where the exact
product can be rounded to the precision of the operands or to the next higher
precision. In the case of integer multiplication, none of the standard high-level
languages contains a construct that would generate a “single times single gets
double” instruction. The situation is different for floating point. Many lan-
guages allow assigning the product of two single-precision variables to a
double-precision one, and the construction can also be exploited by numerical
algorithms. The best-known case is using iterative refinement to solve linear

systems of equations.

Floating-Point Addition

Typically, a floating-point operation takes two inputs with p bits of precision and
returns a p-bit result. The ideal algorithm would compute this by first performing
the operation exactly, and then rounding the result to p bits (using the current
rounding mode). The multiplication algorithm presented in the previous section
follows this strategy. Even though hardware implementing IEEE arithmetic must
return the same result as the ideal algorithm, it doesn’t need to actually perform the
ideal algorithm. For addition, in fact, there are better ways to proceed. To see this,
consider some examples.

First, the sum of the binary 6-bit numbers 1.100112 and 1.100012�2�5: When
the summands are shifted so they have the same exponent, this is

1:10011
+ :0000110001

Using a 6-bit adder (and discarding the low-order bits of the second addend) gives

1:10011
+ :00001

+ 1:10100
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The first discarded bit is 1. This isn’t enough to decide whether to round up. The
rest of the discarded bits, 0001, need to be examined. Or, actually, we just need to
record whether any of these bits are nonzero, storing this fact in a sticky bit just as
in the multiplication algorithm. So, for adding two p-bit numbers, a p-bit adder is
sufficient, as long as the first discarded bit (round) and the OR of the rest of the
bits (sticky) are kept. Then Figure J.11 can be used to determine if a roundup is
necessary, just as with multiplication. In the example above, sticky is 1, so a
roundup is necessary. The final sum is 1.101012.

Here’s another example:

1:11011
+ :0101001

A 6-bit adder gives:

1:11011
+ :01010
+ 10:00101

Because of the carry-out on the left, the round bit isn’t the first discarded bit; rather,
it is the low-order bit of the sum (1). The discarded bits, 01, are OR’ed together to
make sticky. Because round and sticky are both 1, the high-order 6 bits of the sum,
10.00102, must be rounded up for the final answer of 10.00112.

Next, consider subtraction and the following example:

1:00000
� :00000101111

The simplest way of computing this is to convert� .000001011112 to its two’s
complement form, so the difference becomes a sum:

1:00000
+ 1:11111010001

Computing this sum in a 6-bit adder gives:

1:00000
+ 1:11111

0:11111

Because the top bits canceled, the first discarded bit (the guard bit) is needed to fill in
the least-significant bit of the sum, which becomes 0.1111102, and the second dis-
carded bit becomes the round bit. This is analogous to case (1) in the multiplication
algorithm (see page J-19). The round bit of 1 isn’t enough to decide whether to round
up. Instead, we need to OR all the remaining bits (0001) into a sticky bit. In this case,
sticky is1, so the final resultmustbe roundedup to0.111111.Thisexample shows that
if subtraction causes themost-significant bit to cancel, then one guard bit is needed. It
is natural to ask whether two guard bits are needed for the case when the two most-
significant bits cancel. The answer is no, because if x and y are so close that the top

two bits of x�y cancel, then x�y will be exact, so guard bits aren’t needed at all.
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To summarize, addition is more complex than multiplication because, depend-
ing on the signs of the operands, it may actually be a subtraction. If it is an addition,
there can be carry-out on the left, as in the second example. If it is subtraction, there
can be cancellation, as in the third example. In each case, the position of the round
bit is different. However, we don’t need to compute the exact sum and then round.
We can infer it from the sum of the high-order p bits together with the round and
sticky bits.

The rest of this section is devoted to a detailed discussion of the floatingpoint
addition algorithm. Let a1 and a2 be the two numbers to be added. The notations ei
and si are used for the exponent and significand of the addends ai. This means that
the floating-point inputs have been unpacked and that si has an explicit leading bit.
To add a1 and a2, perform these eight steps:

1. If e1<e2, swap the operands. This ensures that the difference of the exponents
satisfies d¼e1�e2�0. Tentatively set the exponent of the result to e1.

2. If the signs of a1 and a2 differ, replace s2 by its two’s complement.

3. Place s2 in a p-bit register and shift it d¼e1�e2 places to the right (shifting in
1’s if s2 was complemented in the previous step). From the bits shifted out, set g
to the most-significant bit, set r to the next most-significant bit, and set sticky to
the OR of the rest.

4. Compute a preliminary significand S¼ s1+ s2 by adding s1 to the p-bit register
containing s2. If the signs of a1 and a2 are different, the most-significant bit of S
is 1, and there was no carry-out, then S is negative. Replace S with its two’s
complement. This can only happen when d¼0.

5. Shift S as follows. If the signs of a1 and a2 are the same and there was a carryout
in step 4, shift S right by one, filling in the high-order position with 1 (the carry-
out). Otherwise, shift it left until it is normalized. When left-shifting, on the first
shift fill in the low-order position with the g bit. After that, shift in zeros. Adjust
the exponent of the result accordingly.

6. Adjust r and s. If S was shifted right in step 5, set r :¼ low-order bit of S before
shifting and s :¼ g OR r OR s. If there was no shift, set r :¼ g, s :¼ r OR s. If
there was a single left shift, don’t change r and s. If there were two or more left
shifts, r :¼ 0, s :¼ 0. (In the last case, two or more shifts can only happen when
a1 and a2 have opposite signs and the same exponent, in which case the com-
putation s1+ s2 in step 4 will be exact.)

7. Round S using Figure J.11; namely, if a table entry is nonempty, add 1 to the
low-order bit of S. If rounding causes carry-out, shift S right and adjust the expo-
nent. This is the significand of the result.

8. Compute the sign of the result. If a1 and a2 have the same sign, this is the sign of
the result. If a1 and a2 have different signs, then the sign of the result depends on
which of a1 or a2 is negative, whether there was a swap in step 1, and whether S

was replaced by its two’s complement in step 4. See Figure J.12.
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Figure J.12 Rules for computing the sign of a sum when the addends have
different signs. The swap column refers to swapping the operands in step 1, while the
compl column refers to performing a two’s complement in step 4. Blanks are “don’t care.”
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Example
 Use the algorithm to compute the sum (�1.0012�2 )+ (�1.1112�2 ).

s1¼1.001, e1¼�2, s2¼1.111, e2¼0

1. e1<e2, so swap. d¼2. Tentative exp¼0.

2. Signs of both operands negative, don’t negate s2.

3. Shift s2 (1.001 after swap) right by 2, giving s2¼ .010, g¼0, r¼1, s¼0.

4.
1:111

+ :010

1ð Þ0:001 S¼ 0:001, with a carry�out:

5. Carry-out, so shift S right, S¼1.000, exp¼exp+1, so exp¼1.

6. r¼ low-order bit of sum¼1, s¼g _ r _ s¼0 _ 1 _ 0¼1.

7. r AND s¼TRUE, so Figure J.11 says round up, S¼S+1 or S¼1.001.

8. Both signs negative, so sign of result is negative. Final answer:

�S�2exp¼1.0012�21.
Example
 Use the algorithm to compute the sum (�1.0102)+1.1002.

s1¼1.010, e1¼0, s2¼1.100, e2¼0

1. No swap, d¼0, tentative exp¼0.

2. Signs differ, replace s2 with 0.100.

3. d¼0, so no shift. r¼g¼ s¼0.

4.
1:010

+ 0:100

1:110 Signs are different, most-significant bit is 1, no carry-out, so

must two’s complement sum, giving S¼ 0:010:
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5. Shift left twice, so S¼1.000, exp¼exp�2, or exp¼�2.

6. Two left shifts, so r¼g¼ s¼0.

7. No addition required for rounding.

8. Answer is sign�S�2exp or sign�1.000�2�2. Get sign from Figure J.12.
Since complement but no swap and sign(a1) is�, the sign of the sum is +. Thus,

the answer¼1.0002�2�2.
Speeding Up Addition

Let’s estimate how long it takes to perform the algorithm above. Step 2 may require
an addition, step 4 requires one or two additions, and step 7 may require an addi-
tion. If it takes T time units to perform a p-bit add (where p¼24 for single preci-
sion, 53 for double), then it appears the algorithm will take at least 4 T time units.
But that is too pessimistic. If step 4 requires two adds, then a1 and a2 have the same
exponent and different signs, but in that case the difference is exact, so no roundup
is required in step 7. Thus, only three additions will ever occur. Similarly,
it appears that a variable shift may be required both in step 3 and step 5. But if
je1�e2j�1, then step 3 requires a right shift of at most one place, so only step
5 needs a variable shift. And, if je1�e2j>1, then step 3 needs a variable shift,
but step 5 will require a left shift of at most one place. So only a single variable
shift will be performed. Still, the algorithm requires three sequential adds, which,
in the case of a 53-bit double-precision significand, can be rather time consuming.

Anumber of techniques can speed up addition.One is to use pipelining. The “Put-
ting It All Together” section gives examples of how some commercial chips pipeline
addition. Another method (used on the Intel 860 [Kohn and Fu 1989]) is to perform
two additions in parallel. We now explain how this reduces the latency from 3T to T.

There are three cases to consider. First, suppose that both operands have the
same sign. We want to combine the addition operations from steps 4 and 7. The
position of the high-order bit of the sum is not known ahead of time, because
the addition in step 4 may or may not cause a carry-out. Both possibilities are
accounted for by having two adders. The first adder assumes the add in step 4 will
not result in a carry-out. Thus, the values of r and s can be computed before the add
is actually done. If r and s indicate that a roundup is necessary, the first adder will
compute S¼ s1+ s2+1, where the notation +1 means adding 1 at the position of the
least-significant bit of s1. This can be done with a regular adder by setting the low-
order carry-in bit to 1. If r and s indicate no roundup, the adder computes S¼ s1+ s2
as usual. One extra detail: When r¼1, s¼0, you will also need to know the low-
order bit of the sum, which can also be computed in advance very quickly. The
second adder covers the possibility that there will be carry-out. The values of r
and s and the position where the roundup 1 is added are different from above,
but again they can be quickly computed in advance. It is not known whether there
will be a carry-out until after the add is actually done, but that doesn’t matter. By

doing both adds in parallel, one adder is guaranteed to reduce the correct answer.
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The next case is when a1 and a2 have opposite signs but the same exponent.
The sum a1+a2 is exact in this case (no roundup is necessary) but the sign isn’t
known until the add is completed. So don’t compute the two’s complement (which
requires an add) in step 2, but instead compute s1 + s2 + 1 and s1 + s2 + 1 in parallel.
The first sum has the result of simultaneously complementing s1 and computing the
sum, resulting in s2� s1. The second sum computes s1� s2. One of these will be
nonnegative and hence the correct final answer. Once again, all the additions
are done in one step using two adders operating in parallel.

The last case, when a1 and a2 have opposite signs and different exponents, is
more complex. If je1�e2j>1, the location of the leading bit of the difference is in
one of two locations, so there are two cases just as in addition. When je1�e2j¼1,
cancellation is possible and the leading bit could be almost anywhere. However,
only if the leading bit of the difference is in the same position as the leading bit of s1
could a roundup be necessary. So one adder assumes a roundup, and the other
assumes no roundup. Thus, the addition of step 4 and the rounding of step 7
can be combined. However, there is still the problem of the addition in step 2!

To eliminate this addition, consider the following diagram of step 4:

j__ __ p __ __j
s1 1:xxxxxxx
s2� 1yyzzzzz

If the bits marked z are all 0, then the high-order p bits of S¼ s1� s2 can be com-
puted as s1 + s2 + 1. If at least one of the z bits is 1, use s1 + s2. So s1� s2 can be
computed with one addition. However, we still don’t know g and r for the two’s
complement of s2, which are needed for rounding in step 7.

To compute s1� s2 and get the proper g and r bits, combine steps 2 and 4 as
follows. Don’t complement s2 in step 2. Extend the adder used for computing S two
bits to the right (call the extended sum S0). If the preliminary sticky bit (computed
in step 3) is 1, compute S0 ¼ s01 + s

0
2, where s1

0 has two 0 bits tacked onto the right,
and s20 has preliminary g and r appended. If the sticky bit is 0, compute s01 + s

0
2 + 1.

Now the two low-order bits of S0 have the correct values of g and r (the sticky
bit was already computed properly in step 3). Finally, this modification can be
combined with the modification that combines the addition from steps 4 and 7
to provide the final result in time T, the time for one addition.

A fewmore details need to be considered, as discussed in Santoro, Bewick, and
Horowitz [1989] and Exercise J.17. Although the Santoro paper is aimed at mul-
tiplication, much of the discussion applies to addition as well. Also relevant is
Exercise J.19, which contains an alternative method for adding signed magnitude
numbers.

Denormalized Numbers

Unlike multiplication, for addition very little changes in the preceding description
if one of the inputs is a denormal number. There must be a test to see if the exponent

field is 0. If it is, then when unpacking the significand there will not be a leading 1.
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By setting the biased exponent to 1 when unpacking a denormal, the algorithm
works unchanged.

To deal with denormalized outputs, step 5 must be modified slightly. Shift S
until it is normalized, or until the exponent becomes Emin (that is, the biased expo-
nent becomes 1). If the exponent is Emin and, after rounding, the high-order bit of S
is 1, then the result is a normalized number and should be packed in the usual way,
by omitting the 1. If, on the other hand, the high-order bit is 0, the result is denor-
mal. When the result is unpacked, the exponent field must be set to 0. Section J.7
discusses the exact rules for detecting underflow.

Incidentally, detecting overflow is very easy. It can only happen if step 5
involves a shift right and the biased exponent at that point is bumped up to 255

in single precision (or 2047 for double precision), or if this occurs after rounding.
Division and Remainder

In this section, we’ll discuss floating-point division and remainder.

Iterative Division

We earlier discussed an algorithm for integer division. Converting it into a floating-
point division algorithm is similar to converting the integer multiplication algo-
rithm into floating point. The formula

s1�2e1ð Þ= s2�2e2ð Þ¼ s1=s2ð Þ�2e1�e2

shows that if the divider computes s1/s2, then the final answer will be this quotient
multiplied by 2e1�e2 . Referring to Figure J.2(b) (page J-4), the alignment of oper-
ands is slightly different from integer division. Load s2 into B and s1 into P. The A
register is not needed to hold the operands. Then the integer algorithm for divi-
sion (with the one small change of skipping the very first left shift) can be used,
and the result will be of the form q0 � q1⋯. To round, simply compute two addi-
tional quotient bits (guard and round) and use the remainder as the sticky bit. The
guard digit is necessary because the first quotient bit might be 0. However, since
the numerator and denominator are both normalized, it is not possible for the two
most-significant quotient bits to be 0. This algorithm produces one quotient bit in
each step.

A different approach to division converges to the quotient at a quadratic
rather than a linear rate. An actual machine that uses this algorithm will be dis-
cussed in Section J.10. First, we will describe the two main iterative algorithms,
and then we will discuss the pros and cons of iteration when compared with the
direct algorithms. A general technique for constructing iterative algorithms,
called Newton’s iteration, is shown in Figure J.13. First, cast the problem in
the form of finding the zero of a function. Then, starting from a guess for the zero,

approximate the function by its tangent at that guess and form a new guess based
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Figure J.13 Newton’s iteration for zero finding. If xi is an estimate for a zero of f, then
xi +1 is a better estimate. To compute xi+1, find the intersection of the x-axis with the
tangent line to f at f(xi).
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on where the tangent has a zero. If xi is a guess at a zero, then the tangent line has
the equation:

y� f xið Þ¼ f 0 xið Þ x� xið Þ
This equation has a zero at

x¼ xi+ 1 ¼ xi� f xið Þ
f 0 xið Þ

To recast division as finding the zero of a function, consider f(x)¼x�1�b. Since the
zero of this function is at 1/b, applying Newton’s iteration to it will give an iterative
method of computing 1/b from b. Using f 0(x)¼�1/x2, Equation J.6.1 becomes:

xi+ 1 ¼ xi�1=xi�b

�1=x2i
¼ xi + xi� x2i b¼ xi 2� xibð Þ

Thus, we could implement computation of a/b using the following method:

1. Scale b to lie in the range 1�b<2 and get an approximate value of 1/b (call it
x0) using a table lookup.

2. Iterate xi+1¼xi(2�xib) until reaching an xn that is accurate enough.

3. Compute axn and reverse the scaling done in step 1.

Here are some more details. Howmany times will step 2 have to be iterated? To
say that xi is accurate to p bits means that j(xi�1/b)/(1/b)j¼2�p, and a simple alge-
braic manipulation shows that when this is so, then (xi+1�1/b)/(1/b)¼2�2p. Thus,
the number of correct bits doubles at each step. Newton’s iteration is self-correct-
ing in the sense that making an error in xi doesn’t really matter. That is, it treats xi as
a guess at 1/b and returns xi+1 as an improvement on it (roughly doubling the

digits). One thing that would cause xi to be in error is rounding error. More
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importantly, however, in the early iterations we can take advantage of the fact that
we don’t expect many correct bits by performing the multiplication in reduced pre-
cision, thus gaining speed without sacrificing accuracy. Another application of
Newton’s iteration is discussed in Exercise J.20.

The second iterative division method is sometimes called Goldschmidt’s algo-
rithm. It is based on the idea that to compute a/b, you should multiply the numer-
ator and denominator by a number r with rb�1. In more detail, let x0¼a
and y0þ¼b. At each step compute xi+1¼ rixi and yi+1¼ riyi. Then the quotient
xi+1/yi+1¼xi/yi¼a/b is constant. If we pick ri so that yi!1, then xi!a/b, so the
xi converge to the answer we want. This same idea can be used to compute other
functions. For example, to compute the square root of a, let x0¼a and y0¼a, and at
each step compute xi+1¼ ri

2xi, yi+1¼ riyi. Then xi+1/yi+1
2 ¼xi/yi

2¼1/a, so if the ri are
chosen to drive xi!1, then yi !

ffiffiffi
a

p
. This technique is used to compute square

roots on the TI 8847.
Returning to Goldschmidt’s division algorithm, set x0¼a and y0¼b, and write

b¼1�δ, where jδj<1. If we pick r0¼1+δ, then y1¼ r0y0¼1�δ2. We next pick
r1¼1+δ2, so that y2¼ r1y1¼1�δ4, and so on. Since jδj<1, yi!1. With this

choice of ri, the xi will be computed as xi + 1 ¼ rixi ¼ 1 + δ2
i

� �
xi ¼

1 + 1�bð Þ2i
� �

xi, or

xi+ 1 ¼ a 1 + 1�bð Þ½ 	 1 + 1�bð Þ2
h i

1 + 1�bð Þ4
h i

⋯ 1 + 1�bð Þ2i
h i

There appear to be two problems with this algorithm. First, convergence is slow
when b is not near 1 (that is, δ is not near 0), and, second, the formula isn’t self-
correcting—since the quotient is being computed as a product of independent
terms, an error in one of them won’t get corrected. To deal with slow convergence,
if you want to compute a/b, look up an approximate inverse to b (call it b0), and run
the algorithm on ab0/bb0. This will converge rapidly since bb0 �1.

To deal with the self-correction problem, the computation should be run with
a few bits of extra precision to compensate for rounding errors. However, Gold-
schmidt’s algorithm does have a weak form of self-correction, in that the precise
value of the ri does not matter. Thus, in the first few iterations, when the full pre-
cision of 1�δ2

i
is not needed you can choose ri to be a truncation of 1 + δ

2i , which
may make these iterations run faster without affecting the speed of convergence.
If ri is truncated, then yi is no longer exactly 1�δ2

i
. Thus, Equation J.6.3 can no

longer be used, but it is easy to organize the computation so that it does not
depend on the precise value of ri. With these changes, Goldschmidt’s algorithm
is as follows (the notes in brackets show the connection with our earlier
formulas).

1. Scale a and b so that 1�b<2.

2. Look up an approximation to 1/b (call it b0) in a table.
3. Set x0¼ab0 and y0¼bb0.
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4. Iterate until xi is close enough to a/b:

Loop

r� 2� y if yi ¼ 1 + δi, then r� 1�δi½ 	
y¼ y� r yi+ 1 ¼ yi� r� 1�δi

2
� �

xi +1 ¼ xi� r xi +1 ¼ xi� r½ 	
End loop

The two iteration methods are related. Suppose in Newton’s method that we
unroll the iteration and compute each term xi+1 directly in terms of b, instead of
recursively in terms of xi. By carrying out this calculation (see Exercise J.22),
we discover that

xi + 1 ¼ x0 2� x0bð Þ 1 + x0b�1ð Þ2
� i

1 + x0b�1ð Þ4
h i

⋯ 1 + x0b�1ð Þ2i
h ih

This formula is very similar to Equation J.6.3. In fact, they are identical if a and b in
J.6.3 are replaced with ax0, bx0, and a¼1. Thus, if the iterations were done to infi-
nite precision, the two methods would yield exactly the same sequence xi.

The advantage of iteration is that it doesn’t require special divide hardware.
Instead, it can use the multiplier (which, however, requires extra control). Further,
on each step, it delivers twice as many digits as in the previous step—unlike ordi-
nary division, which produces a fixed number of digits at every step.

There are two disadvantages with inverting by iteration. The first is that the
IEEE standard requires division to be correctly rounded, but iteration only delivers
a result that is close to the correctly rounded answer. In the case of Newton’s iter-
ation, which computes 1/b instead of a/b directly, there is an additional problem.
Even if 1/bwere correctly rounded, there is no guarantee that a/bwill be. An exam-
ple in decimal with p¼2 is a¼13, b¼51. Then a/b¼ .2549…, which rounds to
.25. But 1/b¼ .0196…, which rounds to .020, and then a� .020¼ .26, which is off
by 1. The second disadvantage is that iteration does not give a remainder. This is
especially troublesome if the floating-point divide hardware is being used to
perform integer division, since a remainder operation is present in almost every
high-level language.

Traditional folklore has held that the way to get a correctly rounded result from
iteration is to compute 1/b to slightly more than 2p bits, compute a/b to slightly
more than 2p bits, and then round to p bits. However, there is a faster way, which
apparently was first implemented on the TI 8847. In this method, a/b is computed
to about 6 extra bits of precision, giving a preliminary quotient q. By comparing qb
with a (again with only 6 extra bits), it is possible to quickly decide whether q
is correctly rounded or whether it needs to be bumped up or down by 1 in the
least-significant place. This algorithm is explored further in Exercise J.21.

One factor to take into account when deciding on division algorithms is the rel-
ative speed of division and multiplication. Since division is more complex than mul-
tiplication, it will run more slowly. A common rule of thumb is that division

algorithms should try to achieve a speed that is about one-third that of multiplication.
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One argument in favor of this rule is that there are real programs (such as some ver-
sions of spice) where the ratio of division to multiplication is 1:3. Another place
where a factor of 3 arises is in the standard iterative method for computing square
root. This method involves one division per iteration, but it can be replaced by one

using three multiplications. This is discussed in Exercise J.20.
Floating-Point Remainder

For nonnegative integers, integer division and remainder satisfy:

a¼ a DIV bð Þb + a REM b, 0� a REM b< b

A floating-point remainder x REM y can be similarly defined as x¼ INT(x/y)y+x REM

y. How should x/y be converted to an integer? The IEEE remainder function uses
the round-to-even rule. That is, pick n¼ INT (x/y) so that jx/y�nj�1/2. If two dif-
ferent n satisfy this relation, pick the even one. Then REM is defined to be x�yn.
Unlike integers where 0�a REM b<b, for floating-point numbers jx REM yj�y/2.
Although this defines REM precisely, it is not a practical operational definition,
because n can be huge. In single precision, n could be as large as 2127/
2�126¼2253�1076.

There is a natural way to compute REM if a direct division algorithm is used.
Proceed as if you were computing x/y. If x¼ s12e1 and y¼ s22e2 and the divider
is as in Figure J.2(b) (page J-4), then load s1 into P and s2 into B. After e1�e2
division steps, the P register will hold a number r of the form x�yn satisfying
0� r<y. Since the IEEE remainder satisfies jREMj�y/2, REM is equal to either r
or r�y. It is only necessary to keep track of the last quotient bit produced, which
is needed to resolve halfway cases. Unfortunately, e1�e2 can be a lot of steps, and
floating-point units typically have a maximum amount of time they are allowed to
spend on one instruction. Thus, it is usually not possible to implement REM directly.
None of the chips discussed in Section J.10 implements REM, but they could by
providing a remainder-step instruction—this is what is done on the Intel 8087 fam-
ily. A remainder step takes as arguments two numbers x and y, and performs divide
steps until either the remainder is in P or n steps have been performed, where n is a
small number, such as the number of steps required for division in the highest-
supported precision. Then REM can be implemented as a software routine that calls
the REM step instruction b(e1�e2)/nc times, initially using x as the numerator but
then replacing it with the remainder from the previous REM step.

REM can be used for computing trigonometric functions. To simplify things,
imagine that we are working in base 10 with five significant figures, and consider
computing sin x. Suppose that x¼7. Then we can reduce by π¼3.1416 and com-
pute sin(7)¼ sin(7�2�3.1416)¼ sin(0.7168) instead. But, suppose we want to
compute sin(2.0�105). Then 2�105/3.1416¼63661.8, which in our five-place
system comes out to be 63662. Since multiplying 3.1416 times 63662 gives
200000.5392, which rounds to 2.0000�105, argument reduction reduces

2�105 to 0, which is not even close to being correct. The problem is that our
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five-place system does not have the precision to do correct argument reduction.
Suppose we had the REM operator. Then we could compute 2�105 REM 3.1416
and get� .53920. However, this is still not correct because we used 3.1416, which
is an approximation for π. The value of 2�105 REM π is� .071513.

Traditionally, there have been two approaches to computing periodic functions
with large arguments. The first is to return an error for their value when x is large.
The second is to store π to a very large number of places and do exact argument
reduction. The REM operator is not much help in either of these situations. There is a
third approach that has been used in some math libraries, such as the Berkeley
UNIX 4.3bsd release. In these libraries, π is computed to the nearest floating-point
number. Let’s call this machine π, and denote it by π0. Then, when computing sin x,
reduce x using x REM π0. As we saw in the above example, x REM π0 is quite different
from x REM π when x is large, so that computing sin x as sin(x REM π0) will not give
the exact value of sin x. However, computing trigonometric functions in this fash-
ion has the property that all familiar identities (such as sin2x+cos2x¼1) are true to
within a few rounding errors. Thus, using REM together with machine π provides a
simple method of computing trigonometric functions that is accurate for small
arguments and still may be useful for large arguments.

When REM is used for argument reduction, it is very handy if it also returns the
low-order bits of n (where x REM y¼x�ny). This is because a practical implemen-
tation of trigonometric functions will reduce by something smaller than 2π.
For example, it might use π/2, exploiting identities such as sin(x�π/2)¼�cos
x, sin(x�π)¼�sin x. Then the low bits of n are needed to choose the correct

identity.
More on Floating-Point Arithmetic

Before leaving the subject of floating-point arithmetic, we present a few additional
topics.

Fused Multiply-Add

Probably the most common use of floating-point units is performing matrix
operations, and the most frequent matrix operation is multiplying a matrix times
a matrix (or vector), which boils down to computing an inner product,
x1 �y1+x2 �y2+…+xn �yn. Computing this requires a series of multiply-add
combinations.

Motivated by this, the IBM RS/6000 introduced a single instruction that
computes ab+c, the fused multiply-add. Although this requires being able to read
three operands in a single instruction, it has the potential for improving the perfor-
mance of computing inner products.

The fused multiply-add computes ab+c exactly and then rounds. Although
rounding only once increases the accuracy of inner products somewhat, that is

not its primary motivation. There are two main advantages of rounding once. First,
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as we saw in the previous sections, rounding is expensive to implement because it
may require an addition. By rounding only once, an addition operation has been
eliminated. Second, the extra accuracy of fused multiply-add can be used to com-
pute correctly rounded division and square root when these are not available
directly in hardware. Fused multiply-add can also be used to implement efficient
floating-point multiple-precision packages.

The implementation of correctly rounded division using fused multiply-add
has many details, but the main idea is simple. Consider again the example from
Section J.6 (page J-30), which was computing a/b with a¼13, b¼51. Then 1/b
rounds to b0 ¼ .020, and ab0 rounds to q0 ¼ .26, which is not the correctly rounded
quotient. Applying fused multiply-add twice will correctly adjust the result, via the
formulas

r¼ a�bq0

q00 ¼ q0 + rb0

Computing to two-digit accuracy, bq0 ¼51� .26 rounds to 13, and so r¼a�bq0

would be 0, giving no adjustment. But using fused multiply-add gives
r¼a�bq0 ¼13� (51� .26)¼� .26, and then q00 ¼q0 + rb0 ¼ .26� .0052¼ .2548,
which rounds to the correct quotient, .25. More details can be found in the papers

by Montoye, Hokenek, and Runyon [1990] and Markstein [1990].
Precisions

The standard specifies four precisions: single, single extended, double, and double
extended. The properties of these precisions are summarized in Figure J.7 (page J-
16). Implementations are not required to have all four precisions, but are encour-
aged to support either the combination of single and single extended or all of sin-
gle, double, and double extended. Because of the widespread use of double
precision in scientific computing, double precision is almost always implemented.
Thus, the computer designer usually only has to decide whether to support double
extended and, if so, how many bits it should have.

The Motorola 68882 and Intel 387 coprocessors implement extended precision
using the smallest allowable size of 80 bits (64 bits of significand). However, many
of the more recently designed, high-performance floating-point chips do not imple-
ment 80-bit extended precision. One reason is that the 80-bit width of extended
precision is awkward for 64-bit buses and registers. Some new architectures, such
as SPARC V8 and PA-RISC, specify a 128-bit extended (or quad) precision. They
have established a de facto convention for quad that has 15 bits of exponent and
113 bits of significand.

Although most high-level languages do not provide access to extended preci-
sion, it is very useful to writers of mathematical software. As an example, consider
writing a library routine to compute the length of a vector (x,y) in the plane, namely,ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 + y2
p

. If x is larger than 2Emax=2, then computing this in the obvious way will

overflow. This means that either the allowable exponent range for this subroutine
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will be cut in half or a more complex algorithm using scaling will have to be
employed. But, if extended precision is available, then the simple algorithm will
work. Computing the length of a vector is a simple task, and it is not difficult to
come up with an algorithm that doesn’t overflow. However, there are more com-
plex problems for which extended precision means the difference between a
simple, fast algorithm and a much more complex one. One of the best examples
of this is binary-to-decimal conversion. An efficient algorithm for binary-to-
decimal conversion that makes essential use of extended precision is very readably
presented in Coonen [1984]. This algorithm is also briefly sketched in Goldberg
[1991]. Computing accurate values for transcendental functions is another example
of a problem that is made much easier if extended precision is present.

One very important fact about precision concerns double rounding. To illus-
trate in decimals, suppose that we want to compute 1.9�0.66 and that single
precision is two digits, while extended precision is three digits. The exact result
of the product is 1.254. Rounded to extended precision, the result is 1.25. When
further rounded to single precision, we get 1.2. However, the result of 1.9�0.66
correctly rounded to single precision is 1.3. Thus, rounding twice may not pro-
duce the same result as rounding once. Suppose you want to build hardware that
only does double-precision arithmetic. Can you simulate single precision by
computing first in double precision and then rounding to single? The above
example suggests that you can’t. However, double rounding is not always
dangerous. In fact, the following rule is true (this is not easy to prove, but
see Exercise J.25).

If x and y have p-bit significands, and x+y is computed exactly and then rounded
to q places, a second rounding to p places will not change the answer if q�2p+2.
This is true not only for addition, but also for multiplication, division, and square
root.

In our example above, q¼3 and p¼2, so q Š 2p+2 is not true. On the other
hand, for IEEE arithmetic, double precision has q¼53 and p¼24, so q¼53 Š
2p +2¼50. Thus, single precision can be implemented by computing in double
precision—that is, computing the answer exactly and then rounding to double—
and then rounding to single precision.

Exceptions

The IEEE standard defines five exceptions: underflow, overflow, divide by zero,
inexact, and invalid. By default, when these exceptions occur, they merely set a
flag and the computation continues. The flags are sticky, meaning that once set they
remain set until explicitly cleared. The standard strongly encourages implementa-
tions to provide a trap-enable bit for each exception. When an exception with an
enabled trap handler occurs, a user trap handler is called, and the value of the asso-
ciated exception flag is undefined. In Section J.3 we mentioned that

ffiffiffiffiffiffiffi�3
p

has the

value NaN and 1/0 is∞. These are examples of operations that raise an exception.
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By default, computing
ffiffiffiffiffiffiffi�3

p
sets the invalid flag and returns the value NaN.

Similarly 1/0 sets the divide-by-zero flag and returns ∞.
The underflow, overflow, and divide-by-zero exceptions are found in most

other systems. The invalid exception is for the result of operations such asffiffiffiffiffiffiffi�1
p

, 0/0, or∞�∞, which don’t have any natural value as a floating-point num-
ber or as
∞. The inexact exception is peculiar to IEEE arithmetic and occurs
either when the result of an operation must be rounded or when it overflows. In
fact, since 1/0 and an operation that overflows both deliver∞, the exception flags
must be consulted to distinguish between them. The inexact exception is an
unusual “exception,” in that it is not really an exceptional condition because it
occurs so frequently. Thus, enabling a trap handler for the inexact exception will
most likely have a severe impact on performance. Enabling a trap handler doesn’t
affect whether an operation is exceptional except in the case of underflow. This is
discussed below.

The IEEE standard assumes that when a trap occurs, it is possible to identify the
operation that trapped and its operands. On machines with pipelining or multiple
arithmetic units, when an exception occurs, it may not be enough to simply have
the trap handler examine the program counter. Hardware support may be necessary
to identify exactly which operation trapped.

Another problem is illustrated by the following program fragment.

r1 = r2/r3
r2 = r4 + r5

These two instructions might well be executed in parallel. If the divide traps, its
argument r2 could already have been overwritten by the addition, especially since
addition is almost always faster than division. Computer systems that support trap-
ping in the IEEE standard must provide some way to save the value of r2, either in
hardware or by having the compiler avoid such a situation in the first place. This
kind of problem is not peculiar to floating point. In the sequence

r1 = 0(r2)
r2 = r3

it would be efficient to execute r2 = r3 while waiting for memory. But, if acces-
sing 0(r2) causes a page fault, r2might no longer be available for restarting the
instruction r1 = 0(r2).

One approach to this problem, used in theMIPSR3010, is to identify instructions
that may cause an exception early in the instruction cycle. For example, an addition
can overflow only if one of the operands has an exponent of Emax, and so on. This
early check is conservative: It might flag an operation that doesn’t actually cause an
exception. However, if such false positives are rare, then this technique will have
excellent performance. When an instruction is tagged as being possibly exceptional,
special code in a trap handler can compute it without destroying any state. Remember
that all these problems occur only when trap handlers are enabled. Otherwise, setting

the exception flags during normal processing is straightforward.
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Underflow

We have alluded several times to the fact that detection of underflow is more
complex than for the other exceptions. The IEEE standard specifies that if an
underflow trap handler is enabled, the system must trap if the result is denormal.
On the other hand, if trap handlers are disabled, then the underflow flag is set
only if there is a loss of accuracy—that is, if the result must be rounded. The
rationale is, if no accuracy is lost on an underflow, there is no point in setting a
warning flag. But if a trap handler is enabled, the user might be trying to sim-
ulate flush-to-zero and should therefore be notified whenever a result dips
below 1:0�2Emin .

So if there is no trap handler, the underflow exception is signaled only when
the result is denormal and inexact, but the definitions of denormal and inexact
are both subject to multiple interpretations. Normally, inexact means there was
a result that couldn’t be represented exactly and had to be rounded. Consider
the example (in a base 2 floating-point system with 3-bit significands) of
1:112�2�2
� �� 1:112�2Emin

� �¼ 0:1100012�2Emin , with round to nearest in effect.
The delivered result is 0:112�2Emin , which had to be rounded, causing inexact to
be signaled. But is it correct to also signal underflow? Gradual underflow loses
significance because the exponent range is bounded. If the exponent range were
unbounded, the delivered result would be 1:102�2Emin�1, exactly the same answer
obtained with gradual underflow. The fact that denormalized numbers have fewer
bits in their significand than normalized numbers therefore doesn’t make any
difference in this case. The commentary to the standard [Cody et al. 1984] encour-
ages this as the criterion for setting the underflow flag. That is, it should be
set whenever the delivered result is different from what would be delivered in a
system with the same fraction size, but with a very large exponent range. However,
owing to the difficulty of implementing this scheme, the standard allows setting
the underflow flag whenever the result is denormal and different from the infinitely
precise result.

There are two possible definitions of what it means for a result to be denormal.
Consider the example of 1.102�2�1 multiplied by 1:102�2Emin . The exact product
is 0:1111�2Emin . The rounded result is the normal number 1:002�2Emin . Should
underflow be signaled? Signaling underflow means that you are using the before
rounding rule, because the result was denormal before rounding. Not signaling
underflow means that you are using the after rounding rule, because the result
is normalized after rounding. The IEEE standard provides for choosing either rule;
however, the one chosen must be used consistently for all operations.

To illustrate these rules, consider floating-point addition. When the result of an
addition (or subtraction) is denormal, it is always exact. Thus, the underflow flag
never needs to be set for addition. That’s because if traps are not enabled then no
exception is raised. And if traps are enabled, the value of the underflow flag is
undefined, so again it doesn’t need to be set.

One final subtlety should be mentioned concerning underflow. When there is

no underflow trap handler, the result of an operation on p-bit numbers that causes
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an underflow is a denormal number with p�1 or fewer bits of precision. When
traps are enabled, the trap handler is provided with the result of the operation
rounded to p bits and with the exponent wrapped around. Now there is a potential
double-rounding problem. If the trap handler wants to return the denormal result, it
can’t just round its argument, because that might lead to a double-rounding error.
Thus, the trap handler must be passed at least one extra bit of information if it is to

be able to deliver the correctly rounded result.
Speeding Up Integer Addition

The previous section showed that many steps go into implementing floating-point
operations; however, each floating-point operation eventually reduces to an integer
operation. Thus, increasing the speed of integer operations will also lead to faster
floating point.

Integer addition is the simplest operation and the most important. Even for
programs that don’t do explicit arithmetic, addition must be performed to incre-
ment the program counter and to calculate addresses. Despite the simplicity of
addition, there isn’t a single best way to perform high-speed addition. We will dis-
cuss three techniques that are in current use: carry-lookahead, carry-skip, and
carry-select.

Carry-Lookahead

An n-bit adder is just a combinational circuit. It can therefore be written by a logic
formula whose form is a sum of products and can be computed by a circuit with two
levels of logic. How do you figure out what this circuit looks like? From
Equation J.2.1 (page J-3) the formula for the ith sum can be written as:

si ¼ aibici + aibici + aibici + aibici

where ci is both the carry-in to the ith adder and the carry-out from the (i�1)-st
adder.

The problem with this formula is that, although we know the values of ai
and bi—they are inputs to the circuit—we don’t know ci. So our goal is to write
ci in terms of ai and bi. To accomplish this, we first rewrite Equation J.2.2
(page J-3) as:

ci ¼ gi�1 + pi�1ci�1, gi�1 ¼ ai�1bi�1, pi�1 ¼ ai�1 + bi�1

Here is the reason for the symbols p and g: If gi�1 is true, then ci is certainly
true, so a carry is generated. Thus, g is for generate. If pi�1 is true, then if ci�1 is
true, it is propagated to ci. Start with Equation J.8.1 and use Equation J.8.2 to
replace ci with gi�1+pi�1ci�1. Then, use Equation J.8.2 with i�1 in place of i
to replace ci�1 with ci�2, and so on. This gives the result:
ci ¼ gi�1 + pi�1gi�2 + pi�1pi�2gi�3 +⋯+ pi�1pi�2⋯p1g0 + pi�1pi�2⋯p1p0c0
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An adder that computes carries using Equation J.8.3 is called a carry-lookahead
adder, or CLA. A CLA requires one logic level to form p and g, two levels to form
the carries, and two for the sum, for a grand total of five logic levels. This is a vast
improvement over the 2n levels required for the ripple-carry adder.

Unfortunately, as is evident from Equation J.8.3 or from Figure J.14, a carry-
lookahead adder on n bits requires a fan-in of n+1 at the OR gate as well as at the
rightmost AND gate. Also, the pn�1 signal must drive n AND gates. In addition, the
rather irregular structure and many long wires of Figure J.14 make it impractical to
build a full carry-lookahead adder when n is large.

However, we can use the carry-lookahead idea to build an adder that has about
log2n logic levels (substantially fewer than the 2n required by a ripplecarry adder)
and yet has a simple, regular structure. The idea is to build up the p’s and g’s in
steps. We have already seen that

c1 ¼ g0 + c0p0

This says there is a carry-out of the 0th position (c1) either if there is a carry gen-
erated in the 0th position or if there is a carry into the 0th position and the carry
propagates. Similarly,

c2 ¼G01 +P01c0

G01 means there is a carry generated out of the block consisting of the first two bits.
P01 means that a carry propagates through this block. P and G have the following
logic equations:

G01 ¼ g1 + p1g0

P01 ¼ p1p0
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More generally, for any j with i< j, j+1<k, we have the recursive relations:

ck + 1 ¼Gik +Pikci

Gik ¼Gj+ 1,k +Pj+ 1,kGij

Pik ¼PijPj + 1,k

Equation J.8.5 says that a carry is generated out of the block consisting of bits i
through k inclusive if it is generated in the high-order part of the block (j+1, k)
or if it is generated in the low-order part of the block (i,j) and then propagated
through the high part. These equations will also hold for i� j<k if we set Gii¼gi
and Pii¼pi.
Example
 Express P03 and G03 in terms of p’s and g’s.

Using Equation J.8.6, P03¼P01P23¼P00P11P22P33. Since Pii¼pi, P03¼p0p1p2p3.
For G03, Equation J.8.5 says G03¼G23+P23G01¼ (G33+P33G22)+ (P22P33)

(G11+P11G00)¼g3+p3g2+p3p2g1+p3p2p1g0.
With these preliminaries out of the way, we can now show the design of a
practical CLA. The adder consists of two parts. The first part computes various
values of P and G from pi and gi, using Equations J.8.5 and J.8.6; the second part
uses these P and G values to compute all the carries via Equation J.8.4. The first
part of the design is shown in Figure J.15. At the top of the diagram, input num-
bers a7… a0 and b7… b0 are converted to p’s and g’s using cells of type 1. Then
various P’s and G’s are generated by combining cells of type 2 in a binary tree
structure. The second part of the design is shown in Figure J.16. By feeding c0 in
at the bottom of this tree, all the carry bits come out at the top. Each cell must
know a pair of (P,G) values in order to do the conversion, and the value it needs
is written inside the cells. Now compare Figures J.15 and J.16. There is a one-to-
one correspondence between cells, and the value of (P,G) needed by the carry-
generating cells is exactly the value known by the corresponding (P,G)-
generating cells. The combined cell is shown in Figure J.17. The numbers to
be added flow into the top and downward through the tree, combining with c0
at the bottom and flowing back up the tree to form the carries. Note that one thing
is missing from Figure J.17: a small piece of extra logic to compute c8 for the
carry-out of the adder.

The bits in a CLA must pass through about log2 n logic levels, compared with
2n for a ripple-carry adder. This is a substantial speed improvement, especially for
a large n. Whereas the ripple-carry adder had n cells, however, the CLA has 2n
cells, although in our layout they will take n log n space. The point is that a small
investment in size pays off in a dramatic improvement in speed.

A number of technology-dependent modifications can improve CLAs. For

example, if each node of the tree has three inputs instead of two, then the height
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of the tree will decrease from log2 n to log3 n. Of course, the cells will be more
complex and thus might operate more slowly, negating the advantage of the
decreased height. For technologies where rippling works well, a hybrid design

might be better. This is illustrated in Figure J.19. Carries ripple between adders
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at the top level, while the “B” boxes are the same as those in Figure J.17. This
design will be faster if the time to ripple between four adders is faster than the time
it takes to traverse a level of “B” boxes. (To make the pattern more clear,
Figure J.19 shows a 16-bit adder, so the 8-bit adder of Figure J.17 corresponds
to the right half of Figure J.19.)

Carry-Skip Adders

A carry-skip adder sits midway between a ripple-carry adder and a carry-
lookahead adder, both in terms of speed and cost. (A carry-skip adder is not called
a CSA, as that name is reserved for carry-save adders.) The motivation for this
adder comes from examining the equations for P and G. For example,

P03 ¼ p0p1p2p3
G03 ¼ g3 + p3g2 + p3p2g1 + p3p2p1g0

Computing P is much simpler than computing G, and a carry-skip adder only

computes the P’s. Such an adder is illustrated in Figure J.18. Carries begin rippling
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simultaneously through each block. If any block generates a carry, then the carry-out
of ablockwill be true, even though the carry-in to theblockmaynot becorrect yet. If at
the start of each add operation the carry-in to each block is 0, then no spurious carry-
outswill be generated. Thus, the carry-out of each block can be thought of as if itwere
the G signal. Once the carry-out from the least-significant block is generated, it not
only feeds into the next block but is also fed through the AND gate with the
P signal from that next block. If the carry-out and P signals are both true, then the
carry skips the second block and is ready to feed into the third block, and so on.
The carry-skip adder is only practical if the carry-in signals can be easily cleared
at the start of each operation—for example, by precharging in CMOS.

To analyze the speed of a carry-skip adder, let’s assume that it takes 1 time
unit for a signal to pass through two logic levels. Then it will take k time units for
a carry to ripple across a block of size k, and it will take 1 time unit for a carry to
skip a block. The longest signal path in the carry-skip adder starts with a carry
being generated at the 0th position. If the adder is n bits wide, then it takes k time
units to ripple through the first block, n/k�2 time units to skip blocks, and kmore
to ripple through the last block. To be specific: if we have a 20-bit adder broken

into groups of 4 bits, it will take 4+ (20/4�2)+4¼11 time units to perform an
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add. Some experimentation reveals that there are more efficient ways to divide 20
bits into blocks. For example, consider five blocks with the least-significant 2 bits
in the first block, the next 5 bits in the second block, followed by blocks of size 6,
5, and 2. Then the add time is reduced to 9 time units. This illustrates an important
general principle. For a carry-skip adder, making the interior blocks larger will
speed up the adder. In fact, the same idea of varying the block sizes can
sometimes speed up other adder designs as well. Because of the large amount
of rippling, a carry-skip adder is most appropriate for technologies where rippling
is fast.

Carry-Select Adder

A carry-select adder works on the following principle: Two additions are
performed in parallel, one assuming the carry-in is 0 and the other assuming the
carry-in is 1. When the carry-in is finally known, the correct sum (which has been
precomputed) is simply selected. An example of such a design is shown in
Figure J.20. An 8-bit adder is divided into two halves, and the carry-out from
the lower half is used to select the sum bits from the upper half. If each block
is computing its sum using rippling (a linear time algorithm), then the design in
Figure J.20 is twice as fast at 50% more cost. However, note that the c4 signal must
drive manymuxes, which may be very slow in some technologies. Instead of divid-
ing the adder into halves, it could be divided into quarters for a still further speedup.
This is illustrated in Figure J.21. If it takes k time units for a block to add k-bit
numbers, and if it takes 1 time unit to compute the mux input from the two
carry-out signals, then for optimal operation each block should be 1 bit wider than
the next, as shown in Figure J.21. Therefore, as in the carry-skip adder, the best
design involves variable-size blocks.

As a summary of this section, the asymptotic time and space requirements

for the different adders are given in Figure J.22. (The times for carry-skip and
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carry-select come from a careful choice of block size. See Exercise J.26 for the
carry-skip adder.) These different adders shouldn’t be thought of as disjoint
choices, but rather as building blocks to be used in constructing an adder. The util-
ity of these different building blocks is highly dependent on the technology used.
For example, the carry-select adder works well when a signal can drive many
muxes, and the carry-skip adder is attractive in technologies where signals can
be cleared at the start of each operation. Knowing the asymptotic behavior of
adders is useful in understanding them, but relying too much on that behavior is
a pitfall. The reason is that asymptotic behavior is only important as n grows very
large. But n for an adder is the bits of precision, and double precision today is the
same as it was 20 years ago—about 53 bits. Although it is true that as computers
get faster, computations get longer—and thus have more rounding error, which in

turn requires more precision—this effect grows very slowly with time.

Speeding Up Integer Multiplication and Division

The multiplication and division algorithms presented in Section J.2 are fairly slow,
producing 1 bit per cycle (although that cycle might be a fraction of the CPU
instruction cycle time). In this section, we discuss various techniques for
higher-performance multiplication and division, including the division algorithm

used in the Pentium chip.
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Shifting over Zeros

Although the technique of shifting over zeros is not currently used much, it is
instructive to consider. It is distinguished by the fact that its execution time is oper-
and dependent. Its lack of use is primarily attributable to its failure to offer enough
speedup over bit-at-a-time algorithms. In addition, pipelining, synchronization
with the CPU, and good compiler optimization are difficult with algorithms that
run in variable time. In multiplication, the idea behind shifting over zeros is to
add logic that detects when the low-order bit of the A register is 0 (see
Figure J.2(a) on page J-4) and, if so, skips the addition step and proceeds directly
to the shift step—hence the term shifting over zeros.

What about shifting for division? In nonrestoring division, an ALU oper-
ation (either an addition or subtraction) is performed at every step. There
appears to be no opportunity for skipping an operation. But think about
division this way: To compute a/b, subtract multiples of b from a, and then
report how many subtractions were done. At each stage of the subtraction pro-
cess the remainder must fit into the P register of Figure J.2(b) (page J-4). In the
case when the remainder is a small positive number, you normally subtract b;
but suppose instead you only shifted the remainder and subtracted b the next
time. As long as the remainder was sufficiently small (its high-order bit 0),
after shifting it still would fit into the P register, and no information would
be lost. However, this method does require changing the way we keep track
of the number of times b has been subtracted from a. This idea usually goes
under the name of SRT division, for Sweeney, Robertson, and Tocher, who
independently proposed algorithms of this nature. The main extra complica-
tion of SRT division is that the quotient bits cannot be determined immediately
from the sign of P at each step, as they can be in ordinary nonrestoring
division.

More precisely, to divide a by b where a and b are n-bit numbers, load a and b

into the A and B registers, respectively, of Figure J.2 (page J-4).

1. If B has k leading zeros when expressed using n bits, shift all the registers left
k bits.

2. For i¼0, n�1,

a) If the top three bits of P are equal, set qi¼0 and shift (P,A) one bit left.

b) If the top three bits of P are not all equal and P is negative, set qi¼�1 (also
written as 1), shift (P,A) one bit left, and add B.

c) Otherwise set qi¼1, shift (P,A) one bit left, and subtract B.

End loop

3. If the final remainder is negative, correct the remainder by adding B, and correct
the quotient by subtracting 1 from q0. Finally, the remainder must be shifted k

bits right, where k is the initial shift.



Figure J.23 SRT division of 10002/00112. The quotient bits are shown in bold, using
the notation 1 for �1.
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Anumerical example is given in Figure J.23. Althoughwe are discussing integer
division, it helps in explaining the algorithm to imagine the binary point just left of
the most-significant bit. This changes Figure J.23 from 010002/00112 to 0.10002/
.00112. Since the binary point is changed in both the numerator and denominator,
the quotient is not affected. The (P,A) register pair holds the remainder and is a two’s
complement number. For example, if P contains 111102 andA¼0, then the remain-
der is 1.11102¼�1/8. If r is the value of the remainder, then �1� r<1.

Given these preliminaries, we can now analyze the SRT division algorithm. The
first step of the algorithm shifts b so that b�1/2. The rule for which ALU operation
to perform is this: If�1/4� r<1/4 (true whenever the top three bits of P are equal),
then compute 2r by shifting (P,A) left one bit; if r<0 (and hence r<�1/4, since
otherwise it would have been eliminated by the first condition), then compute 2r
+b by shifting and then adding; if r�1/4 and subtract b from 2r. Using b�1/2,
it is easy to check that these rules keep �1/2� r<1/2. For nonrestoring division,
we only have jrj�b, and we need P to be n+1 bits wide. But, for SRT division,
the bound on r is tighter, namely, �1/2� r<1/2. Thus, we can save a bit by elim-
inating the high-order bit of P (and b and the adder). In particular, the test for equality
of the top three bits of P becomes a test on just two bits.

The algorithm might change slightly in an implementation of SRT division.
After each ALU operation, the P register can be shifted as many places as necessary
to make either r�1/4 or r<�1/4. By shifting k places, k quotient bits are set equal
to zero all at once. For this reason SRT division is sometimes described as one that

keeps the remainder normalized to jrj�1/4.
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Notice that the value of the quotient bit computed in a given step is based on
which operation is performed in that step (which in turn depends on the result of the
operation from the previous step). This is in contrast to nonrestoring division,
where the quotient bit computed in the ith step depends on the result of the oper-
ation in the same step. This difference is reflected in the fact that when the final
remainder is negative, the last quotient bit must be adjusted in SRT division,
but not in nonrestoring division. However, the key fact about the quotient bits
in SRT division is that they can include 1. Although Figure J.23 shows the quotient
bits being stored in the low-order bits of A, an actual implementation can’t do this
because you can’t fit the three values �1, 0, 1 into one bit. Furthermore, the quo-
tient must be converted to ordinary two’s complement in a full adder. A common
way to do this is to accumulate the positive quotient bits in one register and the
negative quotient bits in another, and then subtract the two registers after all the
bits are known. Because there is more than one way to write a number in terms
of the digits �1, 0, 1, SRT division is said to use a redundant quotient
representation.

The differences between SRT division and ordinary nonrestoring division can
be summarized as follows:

1. ALU decision rule—In nonrestoring division, it is determined by the sign of P;
in SRT, it is determined by the two most-significant bits of P.

2. Final quotient—In nonrestoring division, it is immediate from the successive
signs of P; in SRT, there are three quotient digits (1, 0, 1), and the final quotient
must be computed in a full n-bit adder.

3. Speed—SRT division will be faster on operands that produce zero quotient bits.

The simple version of the SRT division algorithm given above does not offer
enough of a speedup to be practical in most cases. However, later on in this section
we will study variants of SRT division that are quite practical.

Speeding Up Multiplication with a Single Adder

As mentioned before, shifting-over-zero techniques are not used much in current
hardware. We now discuss some methods that are in widespread use. Methods that
increase the speed of multiplication can be divided into two classes: those that use a
single adder and those that use multiple adders. Let’s first discuss techniques that
use a single adder.

In the discussion of addition we noted that, because of carry propagation, it is
not practical to perform addition with two levels of logic. Using the cells of
Figure J.17, adding two 64-bit numbers will require a trip through seven cells
to compute the P’s and G’s and seven more to compute the carry bits, which will
require at least 28 logic levels. In the simple multiplier of Figure J.2 on page J-4,
each multiplication step passes through this adder. The amount of computation in
each step can be dramatically reduced by using carry-save adders (CSAs). A carry-

save adder is simply a collection of n independent full adders. A multiplier using
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such an adder is illustrated in Figure J.24. Each circle marked “+” is a single-bit full
adder, and each box represents one bit of a register. Each addition operation results
in a pair of bits, stored in the sum and carry parts of P. Since each add is indepen-
dent, only two logic levels are involved in the add—a vast improvement over 28.

To operate the multiplier in Figure J.24, load the sum and carry bits of P with
zero and perform the first ALU operation. (If Booth recoding is used, it might be a
subtraction rather than an addition.) Then shift the low-order sum bit of P into A, as
well as shifting A itself. The n�1 high-order bits of P don’t need to be shifted
because on the next cycle the sum bits are fed into the next lower-order adder. Each
addition step is substantially increased in speed, since each add cell is working
independently of the others, and no carry is propagated.

There are two drawbacks to carry-save adders. First, they require more
hardware because there must be a copy of register P to hold the carry outputs
of the adder. Second, after the last step, the high-order word of the result must
be fed into an ordinary adder to combine the sum and carry parts. One way to
accomplish this is by feeding the output of P into the adder used to perform
the addition operation. Multiplying with a carry-save adder is sometimes called
redundant multiplication because P is represented using two registers. Since there
are many ways to represent P as the sum of two registers, this representation is
redundant. The term carry-propagate adder (CPA) is used to denote an adder that
is not a CSA. A propagate adder may propagate its carries using ripples, carry-
lookahead, or some other method.

Another way to speed upmultiplication without using extra adders is to examine
k low-order bits of A at each step, rather than just one bit. This is often called higher-
radix multiplication. As an example, suppose that k¼2. If the pair of bits is 00, add
0 to P; if it is 01, add B. If it is 10, simply shift b one bit left before adding it to P.
Unfortunately, if the pair is 11, it appears we would have to compute b+2b. But this
can be avoided by using a higher-radix version of Booth recoding. Imagine A as a
base 4 number: When the digit 3 appears, change it to 1 and add 1 to the next higher
digit to compensate. An extra benefit of using this scheme is that just like ordinary

Booth recoding, it works for negative as well as positive integers (Section J.2).
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The precise rules for radix-4 Booth recoding are given in Figure J.25. At the ith
multiply step, the two low-order bits of the A register contain a2i and a2i+1. These
two bits, together with the bit just shifted out (a2i�1), are used to select the multiple
of b that must be added to the P register. A numerical example is given in
Figure J.26. Another name for this multiplication technique is overlapping triplets,
since it looks at 3 bits to determine what multiple of b to use, whereas ordinary
Booth recoding looks at 2 bits.

Besides having more complex control logic, overlapping triplets also requires
that the P register be 1 bit wider to accommodate the possibility of 2b or�2b being
added to it. It is possible to use a radix-8 (or even higher) version of Booth recod-
ing. In that case, however, it would be necessary to use the multiple 3B as a poten-
tial summand. Radix-8 multipliers normally compute 3B once and for all at the

beginning of a multiplication operation.

Figure J.25 Multiples of b to use for radix-4 Booth recoding. For example, if the two
low-order bits of the A register are both 1, and the last bit to be shifted out of the A
register is 0, then the correct multiple is�b, obtained from the second-to-last row of
the table.

Figure J.26 Multiplication of27 times25 using radix-4 Booth recoding. The column
labeled L contains the last bit shifted out the right end of A.
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Faster Multiplication with Many Adders

If the space for many adders is available, then multiplication speed can be
improved. Figure J.27 shows a simple array multiplier for multiplying two 5-bit
numbers, using three CSAs and one propagate adder. Part (a) is a block diagram
of the kind we will use throughout this section. Parts (b) and (c) show the adder in
more detail. All the inputs to the adder are shown in (b); the actual adders with their

interconnections are shown in (c). Each row of adders in (c) corresponds to a box in
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(a). The picture is “twisted” so that bits of the same significance are in the same
column. In an actual implementation, the array would most likely be laid out as
a square instead.

The array multiplier in Figure J.27 performs the same number of additions as
the design in Figure J.24, so its latency is not dramatically different from that of a
single carry-save adder. However, with the hardware in Figure J.27, multiplication
can be pipelined, increasing the total throughput. On the other hand, although this
level of pipelining is sometimes used in array processors, it is not used in any of the
single-chip, floating-point accelerators discussed in Section J.10. Pipelining is dis-
cussed in general in Appendix C and by Kogge [1981] in the context of multipliers.

Sometimes the space budgeted on a chip for arithmetic may not hold an array
large enough to multiply two double-precision numbers. In this case, a popular
design is to use a two-pass arrangement such as the one shown in Figure J.28.
The first pass through the array “retires” 5 bits of B. Then the result of this first
pass is fed back into the top to be combined with the next three summands. The
result of this second pass is then fed into a CPA. This design, however, loses
the ability to be pipelined.

If arrays require as many addition steps as the much cheaper arrangements in
Figures J.2 and J.24, why are they so popular? First of all, using an array has a
smaller latency than using a single adder—because the array is a combinational
circuit, the signals flow through it directly without being clocked. Although the
two-pass adder of Figure J.28 would normally still use a clock, the cycle time
for passing through k arrays can be less than k times the clock that would be needed
for designs like the ones in Figures J.2 or J.24. Second, the array is amenable to
various schemes for further speedup. One of them is shown in Figure J.29. The
idea of this design is that two adds proceed in parallel or, to put it another way,

each stream passes through only half the adders. Thus, it runs at almost twice
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the speed of the multiplier in Figure J.27. This even/odd multiplier is popular in
VLSI because of its regular structure. Arrays can also be speeded up using asyn-
chronous logic. One of the reasons why the multiplier of Figure J.2 (page J-4)
needs a clock is to keep the output of the adder from feeding back into the input
of the adder before the output has fully stabilized. Thus, if the array in Figure J.28 is
long enough so that no signal can propagate from the top through the bottom in the
time it takes for the first adder to stabilize, it may be possible to avoid clocks alto-
gether. Williams et al. [1987] discussed a design using this idea, although it is for
dividers instead of multipliers.

The techniques of the previous paragraph still have a multiply time of 0(n), but
the time can be reduced to log n using a tree. The simplest tree would combine pairs
of summands b0A⋯bn�1A, cutting the number of summands from n to n/2. Then
these n/2 numbers would be added in pairs again, reducing to n/4, and so on, and
resulting in a single sum after log n steps. However, this simple binary tree idea
doesn’t map into full (3,2) adders, which reduce three inputs to two rather than
reducing two inputs to one. A tree that does use full adders, known as a Wallace

tree, is shown in Figure J.30. When computer arithmetic units were built out of
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MSI parts, a Wallace tree was the design of choice for high-speed multipliers.
There is, however, a problem with implementing it in VLSI. If you try to fill in
all the adders and paths for the Wallace tree of Figure J.30, you will discover that
it does not have the nice, regular structure of Figure J.27. This is why VLSI
designers have often chosen to use other log n designs such as the binary tree mul-
tiplier, which is discussed next.

The problem with adding summands in a binary tree is coming up with a (2,1)
adder that combines two digits and produces a single-sum digit. Because of
carries, this isn’t possible using binary notation, but it can be done with some
other representation. We will use the signed-digit representation 1, 1, and 0,
which we used previously to understand Booth’s algorithm. This representation
has two costs. First, it takes 2 bits to represent each signed digit. Second, the algo-
rithm for adding two signed-digit numbers ai and bi is complex and requires
examining aiai�1ai�2 and bibi�1bi�2. Although this means you must look 2 bits
back, in binary addition you might have to look an arbitrary number of bits back
because of carries.

We can describe the algorithm for adding two signed-digit numbers as follows.
First, compute sum and carry bits si and ci+1 using Figure J.31. Then compute the
final sum as si+ci. The tables are set up so that this final sum does not generate a
carry.
Example
 What is the sum of the signed-digit numbers 1102 and 0012?

The two low-order bits sum to 0 + 1¼ 11, the next pair sums to 1 + 0¼ 01, and the

high-order pair sums to 1+0¼01, so the sum is 11 + 010 + 0100¼ 1012.



Figure J.31 Signed-digit addition table. The leftmost sum shows that when comput-
ing 1+1, the sum bit is 0 and the carry bit is 1.
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This, then, defines a (2,1) adder. With this in hand, we can use a straightforward
binary tree to perform multiplication. In the first step it adds b0A+b1A in parallel
with b2A+b3A,…, bn�2A+bn�1A. The next step adds the results of these sums in
pairs, and so on. Although the final sum must be run through a carry-propagate
adder to convert it from signed-digit form to two’s complement, this final add step
is necessary in any multiplier using CSAs.

To summarize, both Wallace trees and signed-digit trees are log n multipliers.
The Wallace tree uses fewer gates but is harder to lay out. The signed-digit tree has
a more regular structure, but requires 2 bits to represent each digit and has more
complicated add logic. As with adders, it is possible to combine different multiply
techniques. For example, Booth recoding and arrays can be combined. In
Figure J.27 instead of having each input be biA, we could have it be bibi�1A.
To avoid having to compute the multiple 3b, we can use Booth recoding.

Faster Division with One Adder

The two techniques we discussed for speeding up multiplication with a single
adder were carry-save adders and higher-radix multiplication. However, there is
a difficulty when trying to utilize these approaches to speed up nonrestoring divi-
sion. If the adder in Figure J.2(b) on page J-4 is replaced with a carry-save adder,
then P will be replaced with two registers, one for the sum bits and one for the carry
bits (compare with the multiplier in Figure J.24). At the end of each cycle, the sign
of P is uncertain (since P is the unevaluated sum of the two registers), yet it is the
sign of P that is used to compute the quotient digit and decide the next ALU oper-
ation. When a higher radix is used, the problem is deciding what value to subtract
from P. In the paper-and-pencil method, you have to guess the quotient digit. In
binary division, there are only two possibilities. We were able to finesse the prob-
lem by initially guessing one and then adjusting the guess based on the sign of P.
This doesn’t work in higher radices because there are more than two possible quo-
tient digits, rendering quotient selection potentially quite complicated: You would
have to compute all the multiples of b and compare them to P.

Both the carry-save technique and higher-radix division can be made to work
if we use a redundant quotient representation. Recall from our discussion of SRT
division (page J-45) that by allowing the quotient digits to be �1, 0, or 1, there is
often a choice of which one to pick. The idea in the previous algorithm was to

choose 0 whenever possible, because that meant an ALU operation could be
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skipped. In carry-save division, the idea is that, because the remainder (which is the
value of the (P,A) register pair) is not known exactly (being stored in carry-save
form), the exact quotient digit is also not known. But, thanks to the redundant rep-
resentation, the remainder doesn’t have to be known precisely in order to pick a
quotient digit. This is illustrated in Figure J.32, where the x-axis represents ri,
the remainder after i steps. The line labeled qi¼1 shows the value that ri+1 would
be if we chose qi¼1, and similarly for the lines qi¼0 and qi¼�1. We can choose
any value for qi, as long as ri+1¼2ri�qib satisfies jri+1j�b. The allowable ranges
are shown in the right half of Figure J.32. This shows that you don’t need to know
the precise value of ri in order to choose a quotient digit qi. You only need to know
that r lies in an interval small enough to fit entirely within one of the overlapping
bars shown in the right half of Figure J.32.

This is the basis for using carry-save adders. Look at the high-order bits of the
carry-save adder and sum them in a propagate adder. Then use this approximation
of r (together with the divisor, b) to compute qi, usually by means of a lookup table.
The same technique works for higher-radix division (whether or not a carry-save
adder is used). The high-order bits P can be used to index a table that gives one of
the allowable quotient digits.

The design challenge when building a high-speed SRT divider is figuring out
how many bits of P and B need to be examined. For example, suppose that we take
a radix of 4, use quotient digits of 2, 1, 0, 1, 2, but have a propagate adder. How
many bits of P and B need to be examined? Deciding this involves two steps. For
ordinary radix-2 nonrestoring division, because at each stage jrj�b, the P buffer
won’t overflow. But, for radix 4, ri+1¼4ri�qib is computed at each stage, and if ri
is near b, then 4riwill be near 4b, and even the largest quotient digit will not bring r
back to the range jri+1j�b. In other words, the remainder might grow without
bound. However, restricting jrij�2b/3 makes it easy to check that ri will stay
bounded.

After figuring out the bound that ri must satisfy, we can draw the diagram in

Figure J.33, which is analogous to Figure J.32. For example, the diagram shows
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that if ri is between (1/12)b and (5/12)b, we can pick q¼1, and so on. Or, to put it
another way, if r/b is between 1/12 and 5/12, we can pick q¼1. Suppose the
divider examines 5 bits of P (including the sign bit) and 4 bits of b (ignoring
the sign, since it is always nonnegative). The interesting case is when the high bits
of P are 00011xxx⋯, while the high bits of b are 1001xxx⋯. Imagine the binary
point at the left end of each register. Since we truncated, r (the value of P
concatenated with A) could have a value from 0.00112 to 0.01002, and b could
have a value from .10012 to .10102. Thus, r/b could be as small as 0.00112/
.10102 or as large as 0.01002/.10012, but 0.00112/.10102¼3/10<1/3 would
require a quotient bit of 1, while 0.01002/.10012¼4/9>5/12 would require a quo-
tient bit of 2. In other words, 5 bits of P and 4 bits of b aren’t enough to pick a
quotient bit. It turns out that 6 bits of P and 4 bits of b are enough. This can be
verified by writing a simple program that checks all the cases. The output of such
a program is shown in Figure J.34.
Example
 Using 8-bit registers, compute 149/5 using radix-4 SRT division.

Follow the SRT algorithm on page J-45, but replace the quotient selection rule in

step 2 with one that uses Figure J.34. See Figure J.35.
The Pentium uses a radix-4 SRT division algorithm like the one just presented,
except that it uses a carry-save adder. Exercises J.34(c) and J.35 explore this in
detail. Although these are simple cases, all SRT analyses proceed in the same
way. First compute the range of ri, then plot ri against ri+1 to find the quotient
ranges, and finally write a program to compute how many bits are necessary.
(It is sometimes also possible to compute the required number of bits analytically.)

Various details need to be considered in building a practical SRT divider.



J.10

Figure J.34 Quotient digits for radix-4 SRT division with a propagate adder. The top
row says that if the high-order 4 bits of b are 10002¼8, and if the top 6 bits of P are
between 1101002¼�12 and 1110012¼�7, then �2 is a valid quotient digit.
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For example, the quotient lookup table has a fairly regular structure, which means it
is usually cheaper to encode it as a PLA rather than in ROM. For more details about

SRT division, see Burgess and Williams [1995].
Putting It All Together

In this section, we will compare the Weitek 3364, the MIPS R3010, and the Texas
Instruments 8847 (see Figures J.36 and J.37). In many ways, these are ideal chips

to compare. They each implement the IEEE standard for addition, subtraction,



Figure J.35 Example of radix-4 SRT division. Division of 149 by 5.

Figure J.36 Summary of the three floating-point chips discussed in this section. The
cycle times are for production parts available in June 1989. The cycle counts are for
double-precision operations.
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Figure J.37 Chip layout for the TI 8847, MIPS R3010, and Weitek 3364. In the left-hand columns are the photo-
micrographs; the right-hand columns show the corresponding floor plans.

(Continued)
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Figure J.37 (Continued)
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multiplication, and division on a single chip. All were introduced in 1988 and run
with a cycle time of about 40 nanoseconds. However, as we will see, they use quite
different algorithms. The Weitek chip is well described in Birman et al. [1990], the
MIPS chip is described in less detail in Rowen, Johnson, and Ries [1988], and
details of the TI chip can be found in Darley et al. [1989].

These three chips have a number of things in common. They perform addition
and multiplication in parallel, and they implement neither extended precision nor a
remainder step operation. (Recall from Section J.6 that it is easy to implement the
IEEE remainder function in software if a remainder step instruction is available.)
The designers of these chips probably decided not to provide extended precision
because the most influential users are those who run portable codes, which can’t
rely on extended precision. However, as we have seen, extended precision can
make for faster and simpler math libraries.

In the summary of the three chips given in Figure J.36, note that a higher tran-
sistor count generally leads to smaller cycle counts. Comparing the cycles/op num-
bers needs to be done carefully, because the figures for the MIPS chip are those for
a complete system (R3000/3010 pair), while the Weitek and TI numbers are for
stand-alone chips and are usually larger when used in a complete system.

The MIPS chip has the fewest transistors of the three. This is reflected in the

fact that it is the only chip of the three that does not have any pipelining or hardware
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square root. Further, the multiplication and addition operations are not completely
independent because they share the carry-propagate adder that performs the final
rounding (as well as the rounding logic).

Addition on the R3010 uses a mixture of ripple, CLA, and carry-select. A
carry-select adder is used in the fashion of Figure J.20 (page J-43). Within each
half, carries are propagated using a hybrid ripple-CLA scheme of the type indicated
in Figure J.19 (page J-42). However, this is further tuned by varying the size of
each block, rather than having each fixed at 4 bits (as they are in Figure J.19).
The multiplier is midway between the designs of Figures J.2 (page J-4) and
J.27 (page J-50). It has an array just large enough so that output can be fed back
into the input without having to be clocked. Also, it uses radix-4 Booth recoding
and the even/odd technique of Figure J.29 (page J-52). The R3010 can do a divide
and multiply in parallel (like the Weitek chip but unlike the TI chip). The divider is
a radix-4 SRTmethod with quotient digits�2,�1, 0, 1, and 2, and is similar to that
described in Taylor [1985]. Double-precision division is about four times slower
than multiplication. The R3010 shows that for chips using an 0(n) multiplier, an
SRT divider can operate fast enough to keep a reasonable ratio between multiply
and divide.

The Weitek 3364 has independent add, multiply, and divide units. It also uses
radix-4 SRT division. However, the add and multiply operations on the Weitek
chip are pipelined. The three addition stages are (1) exponent compare, (2) add
followed by shift (or vice versa), and (3) final rounding. Stages (1) and (3) take
only a half-cycle, allowing the whole operation to be done in two cycles, even
though there are three pipeline stages. The multiplier uses an array of the style
of Figure J.28 but uses radix-8 Booth recoding, which means it must compute 3
times the multiplier. The three multiplier pipeline stages are (1) compute 3b,
(2) pass through array, and (3) final carry-propagation add and round. Single pre-
cision passes through the array once, double precision twice. Like addition, the
latency is two cycles.

The Weitek chip uses an interesting addition algorithm. It is a variant on the
carry-skip adder pictured in Figure J.18 (page J-42). However, Pij, which is the log-
ical AND of many terms, is computed by rippling, performing one AND per
ripple. Thus, while the carries propagate left within a block, the value of Pij is prop-
agating right within the next block, and the block sizes are chosen so that both waves
complete at the same time. Unlike theMIPS chip, the 3364 has hardware square root,
which shares the divide hardware. The ratio of double-precision multiply to divide is
2:17. The large disparity between multiply and divide is due to the fact that multi-
plication uses radix-8 Booth recoding, while division uses a radix-4 method. In the
MIPS R3010, multiplication and division use the same radix.

The notable feature of the TI 8847 is that it does division by iteration (using the
Goldschmidt algorithm discussed in Section J.6). This improves the speed of divi-
sion (the ratio of multiply to divide is 3:11), but means that multiplication and divi-
sion cannot be done in parallel as on the other two chips. Addition has a two-stage
pipeline. Exponent compare, fraction shift, and fraction addition are done in the

first stage, normalization and rounding in the second stage. Multiplication uses
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a binary tree of signed-digit adders and has a three-stage pipeline. The first stage
passes through the array, retiring half the bits; the second stage passes through the
array a second time; and the third stage converts from signed-digit form to two’s
complement. Since there is only one array, a new multiply operation can only be
initiated in every other cycle. However, by slowing down the clock, two passes
through the array can be made in a single cycle. In this case, a new multiplication
can be initiated in each cycle. The 8847 adder uses a carry-select algorithm rather
than carry-lookahead. As mentioned in Section J.6, the TI carries 60 bits of pre-
cision in order to do correctly rounded division.

These three chips illustrate the different trade-offs made by designers with sim-
ilar constraints. One of the most interesting things about these chips is the diversity
of their algorithms. Each uses a different add algorithm, as well as a different mul-
tiply algorithm. In fact, Booth recoding is the only technique that is universally

used by all the chips.
Fallacies and Pitfalls
Underflows rarely occur in actual floating-point application code

Although most codes rarely underflow, there are actual codes that underflow fre-
quently. SDRWAVE [Kahaner 1988], which solves a one-dimensional wave equa-
tion, is one such example. This program underflows quite frequently, even when
functioning properly. Measurements on one machine show that adding hardware

support for gradual underflow would cause SDRWAVE to run about 50% faster.

Conversions between integer and floating point are rare

In fact, in spice they are as frequent as divides. The assumption that conversions
are rare leads to a mistake in the SPARC version 8 instruction set, which does not

provide an instruction to move from integer registers to floating-point registers.

Don’t increase the speed of a floating-point unit without increasing its memory
bandwidth

A typical use of a floating-point unit is to add two vectors to produce a third vector.
If these vectors consist of double-precision numbers, then each floating-point
add will use three operands of 64 bits each, or 24 bytes of memory. The memory
bandwidth requirements are even greater if the floating-point unit can perform

addition and multiplication in parallel (as most do).

�x is not the same as 0�x

This is a fine point in the IEEE standard that has tripped up some designers.
Because floating-point numbers use the sign magnitude system, there are two
zeros, +0 and �0. The standard says that 0�0¼+0, whereas� (0)¼�0. Thus,

�x is not the same as 0�x when x¼0.
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J.12
 Historical Perspective and References

The earliest computers used fixed point rather than floating point. In “Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument,” Burks,
Goldstine, and von Neumann [1946] put it like this:

There appear to be two major purposes in a “floating” decimal point system both of
which arise from the fact that the number of digits in a word is a constant fixed by
design considerations for each particular machine. The first of these purposes is to
retain in a sum or product as many significant digits as possible and the second of
these is to free the human operator from the burden of estimating and inserting into
a problem “scale factors”—multiplicative constants which serve to keep numbers
within the limits of the machine.
There is, of course, no denying the fact that human time is consumed in arrang-

ing for the introduction of suitable scale factors. We only argue that the time so
consumed is a very small percentage of the total time we will spend in preparing
an interesting problem for our machine. The first advantage of the floating point
is, we feel, somewhat illusory. In order to have such a floating point, one must
waste memory capacity that could otherwise be used for carrying more digits
per word. It would therefore seem to us not at all clear whether the modest advan-
tages of a floating binary point offset the loss of memory capacity and the
increased complexity of the arithmetic and control circuits.

This enables us to see things from the perspective of early computer designers,
who believed that saving computer time and memory were more important than
saving programmer time.

The original papers introducing the Wallace tree, Booth recoding, SRT divi-
sion, overlapped triplets, and so on are reprinted in Swartzlander [1990]. A good
explanation of an early machine (the IBM 360/91) that used a pipelined Wallace
tree, Booth recoding, and iterative division is in Anderson et al. [1967]. A discus-
sion of the average time for single-bit SRT division is in Freiman [1961]; this is one
of the few interesting historical papers that does not appear in Swartzlander.

The standard book of Mead and Conway [1980] discouraged the use of CLAs
as not being cost effective in VLSI. The important paper by Brent and Kung [1982]
helped combat that view. An example of a detailed layout for CLAs can be found in
Ngai and Irwin [1985] or in Weste and Eshraghian [1993], and a more theoretical
treatment is given by Leighton [1992]. Takagi, Yasuura, and Yajima [1985] pro-
vide a detailed description of a signed-digit tree multiplier.

Before the ascendancy of IEEE arithmetic, many different floating-point for-
mats were in use. Three important ones were used by the IBM 370, the DEC VAX,
and the Cray. Here is a brief summary of these older formats. The VAX format is
closest to the IEEE standard. Its single-precision format (F format) is like IEEE
single precision in that it has a hidden bit, 8 bits of exponent, and 23 bits of fraction.
However, it does not have a sticky bit, which causes it to round halfway cases up

instead of to even. The VAX has a slightly different exponent range from IEEE
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single: Emin is �128 rather than �126 as in IEEE, and Emax is 126 instead of 127.
The main differences between VAX and IEEE are the lack of special values and
gradual underflow. The VAX has a reserved operand, but it works like a signaling
NaN: It traps whenever it is referenced. Originally, the VAX’s double precision
(D format) also had 8 bits of exponent. However, as this is too small for many
applications, a G format was added; like the IEEE standard, this format has 11 bits
of exponent. The VAX also has an H format, which is 128 bits long.

The IBM370 floating-point format uses base 16 rather than base 2. Thismeans it
cannot use a hidden bit. In single precision, it has 7 bits of exponent and 24 bits (6 hex
digits) of fraction. Thus, the largest representable number is 1627¼24�27¼229,
compared with 228 for IEEE. However, a number that is normalized in the hexadec-
imal sense only needs to have a nonzero leading digit.When interpreted in binary, the
threemost-significant bits could be zero. Thus, there are potentially fewer than24bits
of significance. The reason for using the higher base was to minimize the amount of
shifting required when adding floating-point numbers. However, this is less signifi-
cant in current machines, where the floating-point add time is usually fixed indepen-
dently of the operands. Another difference between 370 arithmetic and IEEE
arithmetic is that the 370 has neither a round digit nor a sticky digit, which effectively
means that it truncates rather than rounds. Thus, inmany computations, the resultwill
systematically be too small. Unlike theVAXand IEEE arithmetic, every bit pattern is
a valid number. Thus, library routinesmust establish conventions forwhat to return in
case of errors. In the IBM FORTRAN library, for example,

ffiffiffiffiffiffiffi�4
p

returns 2!
Arithmetic on Cray computers is interesting because it is driven by a motiva-

tion for the highest possible floating-point performance. It has a 15-bit exponent
field and a 48-bit fraction field. Addition on Cray computers does not have a guard
digit, and multiplication is even less accurate than addition. Thinking of multipli-
cation as a sum of p numbers, each 2p bits long, Cray computers drop the low-order
bits of each summand. Thus, analyzing the exact error characteristics of the mul-
tiply operation is not easy. Reciprocals are computed using iteration, and division
of a by b is done by multiplying a times 1/b. The errors in multiplication and recip-
rocation combine to make the last three bits of a divide operation unreliable. At
least Cray computers serve to keep numerical analysts on their toes!

The IEEE standardization process began in 1977, inspired mainly byW. Kahan
and based partly on Kahan’s work with the IBM 7094 at the University of Toronto
[Kahan 1968]. The standardization process was a lengthy affair, with gradual
underflow causing the most controversy. (According to Cleve Moler, visitors to
the United States were advised that the sights not to be missed were Las Vegas,
the Grand Canyon, and the IEEE standards committee meeting.) The standard
was finally approved in 1985. The Intel 8087 was the first major commercial IEEE
implementation and appeared in 1981, before the standard was finalized. It con-
tains features that were eliminated in the final standard, such as projective bits.
According to Kahan, the length of double-extended precision was based on what
could be implemented in the 8087. Although the IEEE standard was not based on
any existing floating-point system, most of its features were present in some other

system. For example, the CDC 6600 reserved special bit patterns for INDEFINITE
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and INFINITY, while the idea of denormal numbers appears in Goldberg [1967] as
well as in Kahan [1968]. Kahan was awarded the 1989 Turing prize in recognition
of his work on floating point.

Although floating point rarely attracts the interest of the general press, news-
papers were filled with stories about floating-point division in November 1994. A
bug in the division algorithm used on all of Intel’s Pentium chips had just come to
light. It was discovered by Thomas Nicely, a math professor at Lynchburg College
in Virginia. Nicely found the bug when doing calculations involving reciprocals of
prime numbers. News of Nicely’s discovery first appeared in the press on the front
page of the November 7 issue of Electronic Engineering Times. Intel’s immediate
response was to stonewall, asserting that the bug would only affect theoretical
mathematicians. Intel told the press, “This doesn’t even qualify as an errata… even
if you’re an engineer, you’re not going to see this.”

Under more pressure, Intel issued a white paper, dated November 30, explain-
ing why they didn’t think the bug was significant. One of their arguments was
based on the fact that if you pick two floating-point numbers at random and divide
one into the other, the chance that the resulting quotient will be in error is about 1 in
9 billion. However, Intel neglected to explain why they thought that the typical
customer accessed floating-point numbers randomly.

Pressure continued to mount on Intel. One sore point was that Intel had known
about the bug before Nicely discovered it, but had decided not to make it public.
Finally, on December 20, Intel announced that they would unconditionally replace
any Pentium chip that used the faulty algorithm and that they would take an unspe-
cified charge against earnings, which turned out to be $300 million.

The Pentium uses a simple version of SRT division as discussed in Section J.9.
The bug was introduced when they converted the quotient lookup table to a PLA.
Evidently there were a few elements of the table containing the quotient digit 2 that
Intel thought would never be accessed, and they optimized the PLA design using
this assumption. The resulting PLA returned 0 rather than 2 in these situations.
However, those entries were really accessed, and this caused the division bug.
Even though the effect of the faulty PLA was to cause 5 out of 2048 table entries
to be wrong, the Pentium only computes an incorrect quotient 1 out of 9 billion

times on random inputs. This is explored in Exercise J.34.
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Exercises

J.1 [12]< J.2>Using n bits, what is the largest and smallest integer that can be repre-
sented in the two’s complement system?

J.2 [20/25]< J.2> In the subsection “Signed Numbers” (page J-7), it was stated that
two’s complement overflows when the carry into the high-order bit position is dif-

ferent from the carry-out from that position.
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a. [20]< J.2>Give examples of pairs of integers for all four combinations of
carry-in and carry-out. Verify the rule stated above.
b. [25]< J.2>Explain why the rule is always true.

J.3 [12]< J.2>Using 4-bit binary numbers, multiply�8��8 using Booth recoding.

J.4 [15]< J.2>Equations J.2.1 and J.2.2 are for adding two n-bit numbers.
Derive similar equations for subtraction, where there will be a borrow instead
of a carry.

J.5 [25]< J.2>On a machine that doesn’t detect integer overflow in hardware, show
how you would detect overflow on a signed addition operation in software.

J.6 [15/15/20]< J.3>Represent the following numbers as single-precision and

double-precision IEEE floating-point numbers:

a. [15]< J.3>10.

b. [15]< J.3>10.5.
c. [20]< J.3>0.1.

J.7 [12/12/12/12/12]< J.3>Below is a list of floating-point numbers. In single preci-
sion, write down each number in binary, in decimal, and give its representation in

IEEE arithmetic.

a. [12]< J.3>The largest number less than 1.

b. [12]< J.3>The largest number.

c. [12]< J.3>The smallest positive normalized number.

d. [12]< J.3>The largest denormal number.
e. [12]< J.3>The smallest positive number.

J.8 [15]< J.3> Is the ordering of nonnegative floating-point numbers the same as inte-
gers when denormalized numbers are also considered?

J.9 [20]< J.3>Write a program that prints out the bit patterns used to represent
floating-point numbers on your favorite computer. What bit pattern is used
for NaN?

J.10 [15]< J.4>Using p¼4, show how the binary floating-point multiply algorithm
computes the product of 1.875�1.875.
[12/10]< J.4>Concerning the addition of exponents in floating-point multiply:

a. [12]< J.4>What would the hardware that implements the addition of expo-
nents look like?

b. [10]< J.4> If the bias in single precision were 129 instead of 127, would addi-

tion be harder or easier to implement?

J.12 [15/12]< J.4> In the discussion of overflow detection for floating-point multipli-
cation, it was stated that (for single precision) you can detect an overflowed expo-

nent by performing exponent addition in a 9-bit adder.
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a. [15]< J.4>Give the exact rule for detecting overflow.

b. [12]< J.4>Would overflow detection be any easier if you used a 10-bit adder

instead?
[15/10]< J.4>Floating-point multiplication:

a. [15]< J.4>Construct two single-precision floating-point numbers whose prod-
uct doesn’t overflow until the final rounding step.
b. [10]< J.4> Is there any rounding mode where this phenomenon cannot occur?

J.14 [15]< J.4>Give an example of a product with a denormal operand but a normal-
ized output. How large was the final shifting step? What is the maximum possible
shift that can occur when the inputs are double-precision numbers?

J.15 [15]< J.5>Use the floating-point addition algorithm on page J-23 to compute
1.0102� .10012 (in 4-bit precision).

J.16 [10/15/20/20/20]< J.5> In certain situations, you can be sure that a+b is exactly

representable as a floating-point number, that is, no rounding is necessary.

a. [10]< J.5> If a, b have the same exponent and different signs, explain why a
+b is exact. This was used in the subsection “Speeding Up Addition” on page
J-25.

b. [15]< J.5>Give an example where the exponents differ by 1, a and b have dif-
ferent signs, and a+b is not exact.

c. [20]< J.5> If a�b�0, and the top two bits of a cancel when computing a�b,
explain why the result is exact (this fact is mentioned on page J-22).

d. [20]< J.5> If a�b�0, and the exponents differ by 1, show that a�b is exact
unless the high order bit of a�b is in the same position as that of a (mentioned
in “Speeding Up Addition,” page J-25).

e. [20]< J.5> If the result of a�b or a+b is denormal, show that the result is

exact (mentioned in the subsection “Underflow,” on page J-36).
[15/20]< J.5>Fast floating-point addition (using parallel adders) for p¼5.

a. [15]< J.5>Step through the fast addition algorithm for a+b, where
a¼1.01112 and b¼ .110112.

b. [20]< J.5>Suppose the rounding mode is toward+∞. What complication
arises in the above example for the adder that assumes a carry-out? Suggest

a solution.

J.18 [12]< J.4, J.5>Howwould you use two parallel adders to avoid the final round-up
addition in floating-point multiplication?

J.19 [30/10]< J.5>This problem presents a way to reduce the number of addition steps

in floating-point addition from three to two using only a single adder.

a. [30]< J.5>Let A and B be integers of opposite signs, with a and b their mag-
nitudes. Show that the following rules for manipulating the unsigned numbers a

and b gives A+B.
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1. Complement one of the operands.
2. Use end-around carry to add the complemented operand and the other

(uncomplemented) one.
3. If there was a carry-out, the sign of the result is the sign associated with the

uncomplemented operand.
4. Otherwise, if there was no carry-out, complement the result, and give it the

sign of the complemented operand.

b. [10]< J.5>Use the above to showhow steps 2 and 4 in the floating-point addi-

tion algorithm on page J-23 can be performed using only a single addition.
[20/15/20/15/20/15]< J.6> Iterative square root.

a. [20]< J.6>Use Newton’s method to derive an iterative algorithm for square
root. The formula will involve a division.

b. [15]< J.6>What is the fastest way you can think of to divide a floating-point
number by 2?

c. [20]< J.6> If division is slow, then the iterative square root routine will also be
slow. Use Newton’s method on f(x)¼1/x2�a to derive a method that doesn’t
use any divisions.

d. [15]< J.6>Assume that the ratio division by 2 : floating-point add : floating-
point multiply is 1:2:4. What ratios of multiplication time to divide time makes
each iteration step in the method of part (c) faster than each iteration in the
method of part (a)?

e. [20]< J.6>When using the method of part (a), how many bits need to be in the
initial guess in order to get double-precision accuracy after three iterations?
(You may ignore rounding error.)

f. [15]< J.6>Suppose that when spice runs on the TI 8847, it spends 16.7% of its
time in the square root routine (this percentage has been measured on other
machines). Using the values in Figure J.36 and assuming three iterations,
how much slower would spice run if square root were implemented in software

using the method of part(a)?

J.21 [10/20/15/15/15]< J.6>Correctly rounded iterative division. Let a and b be
floating-point numbers with p-bit significands (p¼53 in double precision). Let
q be the exact quotient q¼a/b, 1�q<2. Suppose that q is the result of an iteration
process, that q has a few extra bits of precision, and that 0< q�q< 2�p. For the
following, it is important that q< q, even when q can be exactly represented as a

floating-point number.

a. [10]< J.6> If x is a floating-point number, and 1�x<2, what is the next rep-
resentable number after x?

b. [20]< J.6>Show how to compute q0 from q, where q0 has p+1 bits of precision
and jq�q0j<2�p.

c. [15]< J.6>Assuming round to nearest, show that the correctly rounded quo-

tient is either q0, q0 �2�p, or q0 +2�p.
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d. [15]< J.6>Give rules for computing the correctly rounded quotient from q0

based on the low-order bit of q0 and the sign of a�bq0.
e. [15]< J.6>Solve part (c) for the other three rounding modes.

J.22 [15]< J.6>Verify the formula on page J-30. (Hint: If xn ¼ x0 2� x0bð Þ�
Πi¼1,n 1 + 1� x0bð Þ2i

h i
, then 2� xnb¼ 2� x0b 2� x0bð ÞΠ 1 + 1� x0bð Þ2i

h i
¼

2� 1� 1� x0bð Þ2
h i

Π 1 + 1� x0bð Þ2i
h i

.)

J.23 [15]< J.7>Our example that showed that double rounding can give a different
answer from rounding once used the round-to-even rule. If halfway cases are
always rounded up, is double rounding still dangerous?

J.24 [10/10/20/20]< J.7>Some of the cases of the italicized statement in the “Preci-

sions” subsection (page J-33) aren’t hard to demonstrate.

a. [10]< J.7>What formmust a binary number have if rounding to q bits followed
by rounding to p bits gives a different answer than rounding directly to p bits?

b. [10]< J.7>Show that for multiplication of p-bit numbers, rounding to q bits
followed by rounding to p bits is the same as rounding immediately to p bits
if q�2p.

c. [20]< J.7> If a and b are p-bit numbers with the same sign, show that rounding
a+b to q bits followed by rounding to p bits is the same as rounding immedi-
ately to p bits if q�2p+1.
d. [20]< J.7>Do part (c) when a and b have opposite signs.

J.25 [Discussion]< J.7> In the MIPS approach to exception handling, you need a test
for determining whether two floating-point operands could cause an exception.
This should be fast and also not have too many false positives. Can you come
up with a practical test? The performance cost of your design will depend on
the distribution of floating-point numbers. This is discussed in Knuth [1981]
and the Hamming paper in Swartzlander [1990].
[12/12/10]< J.8>Carry-skip adders.

a. [12]< J.8>Assuming that time is proportional to logic levels, how long does it
take an n-bit adder divided into (fixed) blocks of length k bits to perform an
addition?

b. [12]< J.8>What value of k gives the fastest adder?
c. [10]< J.8>Explain why the carry-skip adder takes time 0
ffiffiffi
n

pð Þ.
J.27 [10/15/20]< J.8>Complete the details of the block diagrams for the following
adders.

a. [10]< J.8> In Figure J.15, show how to implement the “1” and “2” boxes in
terms of AND and OR gates.

b. [15]< J.8> In Figure J.19, what signals need to flow from the adder cells in the
top row into the “C” cells? Write the logic equations for the “C” box.

c. [20]< J.8>Show how to extend the block diagram in J.17 so it will produce the

carry-out bit c8.
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J.28 [15]< J.9>For ordinary Booth recoding, the multiple of b used in the ith step
is simply ai�1�ai. Can you find a similar formula for radix-4 Booth recoding
(overlapped triplets)?

J.29 [20]< J.9>Expand Figure J.29 in the fashion of J.27, showing the individual
adders.

J.30 [25]< J.9>Write out the analog of Figure J.25 for radix-8 Booth recoding.

J.31 [18]< J.9>Suppose that an�1 … a1a0 and bn�1 … b1b0 are being added in a
signed-digit adder as illustrated in the example on page J-53. Write a formula
for the ith bit of the sum, si, in terms of ai, ai�1, ai�2, bi, bi�1, and bi�2.

J.32 [15]< J.9>The text discussed radix-4 SRT division with quotient digits of �2,
�1, 0, 1, 2. Suppose that 3 and�3 are also allowed as quotient digits.What relation
replaces jrij�2b/3?
J.33
 [25/20/30]< J.9>Concerning the SRT division table, Figure J.34:

a. [25]< J.9>Write a program to generate the results of Figure J.34.

b. [20]< J.9>Note that Figure J.34 has a certain symmetry with respect to pos-
itive and negative values of P. Can you find a way to exploit the symmetry and
only store the values for positive P?

c. [30]< J.9>Suppose a carry-save adder is used instead of a propagate adder.
The input to the quotient lookup table will be k bits of divisor and l bits of
remainder, where the remainder bits are computed by summing the top l bits
of the sum and carry registers. What are k and l? Write a program to generate

the analog of Figure J.34.

J.34 [12/12/12]< J.9, J.12>The first several million Pentium chips produced had a
flaw that caused division to sometimes return the wrong result. The Pentium uses
a radix-4 SRT algorithm similar to the one illustrated in the example on page J-56
(but with the remainder stored in carry-save format; see Exercise J.33(c)). Accord-

ing to Intel, the bug was due to five incorrect entries in the quotient lookup table.

a. [12]< J.9, J.12>The bad entries should have had a quotient of plus or minus 2,
but instead had a quotient of 0. Because of redundancy, it’s conceivable that the
algorithm could “recover” from a bad quotient digit on later iterations. Show
that this is not possible for the Pentium flaw.

b. [12]< J.9, J.12>Since the operation is a floating-point divide rather than an
integer divide, the SRT division algorithm on page J-45 must be modified in
two ways. First, step 1 is no longer needed, since the divisor is already normal-
ized. Second, the very first remainder may not satisfy the proper bound
(jrj�2b/3 for Pentium; see page J-55). Show that skipping the very first left
shift in step 2(a) of the SRT algorithm will solve this problem.

c. [12]< J.9, J.12> If the faulty table entries were indexed by a remainder that
could occur at the very first divide step (when the remainder is the divisor), ran-
dom testing would quickly reveal the bug. This didn’t happen. What does that

tell you about the remainder values that index the faulty entries?
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J.35 [12]< J.6, J.9>The discussion of the remainder-step instruction assumed that
division was done using a bit-at-a-time algorithm. What would have to change
if division were implemented using a higher-radix method?

J.36 [25]< J.9> In the array of Figure J.28, the fact that an array can be pipelined is not
exploited. Can you come up with a design that feeds the output of the bottom CSA
into the bottom CSAs instead of the top one, and that will run faster than the

arrangement of Figure J.28?


