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K.1
 Introduction

This appendix covers 10 instruction set architectures, some of which remain a vital
part of the IT industry and some of which have retired to greener pastures. We keep
them all in part to show the changes in fashion of instruction set architecture
over time.

We start with eight RISC architectures, using RISC V as our basis for compar-
ison. There are billions of dollars of computers shipped each year for ARM (includ-
ing Thumb-2), MIPS (including microMIPS), Power, and SPARC. ARM
dominates in both the PMD (including both smart phones and tablets) and the
embedded markets.

The 80x86 remains the highest dollar-volume ISA, dominating the desktop and
the much of the server market. The 80x86 did not get traction in either the embed-
ded or PMD markets, and has started to lose ground in the server market. It has
been extended more than any other ISA in this book, and there are no plans to stop
it soon. Now that it has made the transition to 64-bit addressing, we expect this
architecture to be around, although it may play a smaller role in the future then
it did in the past 30 years.

The VAX typifies an ISA where the emphasis was on code size and offering a
higher level machine language in the hopes of being a better match to programming
languages. The architects clearly expected it to be implemented with large amounts
of microcode, which made single chip and pipelined implementations more chal-
lenging. Its successor was the Alpha, a RISC architecture similar to MIPS and
RISC V, but which had a short life.

The vulnerable IBM 360/370 remains a classic that set the standard for many
instruction sets to follow. Among the decisions the architects made in the early
1960s were:

■ 8-bit byte

■ Byte addressing

■ 32-bit words

■ 32-bit single precision floating-point format + 64-bit double precision floating-
point format

■ 32-bit general-purpose registers, separate 64-bit floating-point registers

■ Binary compatibility across a family of computers with different cost-
performance

■ Separation of architecture from implementation

As mentioned in Chapter 2, the IBM 370 was extended to be virtualizable, so it
had the lowest overhead for a virtual machine of any ISA. The IBM 360/370
remains the foundation of the IBM mainframe business in a version that has

extended to 64 bits.
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K.2
 A Survey of RISC Architectures for Desktop, Server,
and Embedded Computers

Introduction

We cover two groups of Reduced Instruction Set Computer (RISC) architectures in
this section. The first group is the desktop, server RISCs, and PMD processors:

■ Advanced RISC Machines ARMv8, AArch64, the 64-bit ISA,

■ MIPS64, version 6, the most recent the 64-bit ISA,

■ Power version 3.0, which merges the earlier IBM Power architecture and the
PowerPC architecture.

■ RISC-V, specifically RV64G, the 64-bit extension of RISC-V.

■ SPARCv9, the 64-bit ISA.

As Figure K.1 shows these architectures are remarkably similar.
There are two other important historical RISC processors that are almost iden-

tical to those in the list above: the DEC Alpha processor, which was made by Dig-
ital Equipment Corporation from 1992 to 2004 and is almost identical to MIPS64.
Hewlett-Packard’s PA-RISC was produced by HP from about 1986 to 2005, when
it was replaced by Itanium. PA-RISC is most closely related to the Power ISA,
which emerged from the IBM Power design, itself a descendant of IBM 801.

The second group is the embedded RISCs designed for lower-end applications:

■ Advanced RISC Machines, Thumb-2: an 32-bit instruction set with 16-bit and
32-bit instructions. The architecture includes features from both ARMv7
and ARMv8.

■ microMIPS64: a version of the MIPS64 instruction set with 16-it
instructions, and

■ RISC-V Compressed extension (RV64GC), a set of 16-bit instructions added
to RV64G

Both RV64GC and microMIPS64 have corresponding 32-bit versions: RV32GC
and microMIPS32.

Since the comparison of the base 32-bit or 64-bit desktop and server architec-
ture will examine the differences among those ISAs, our discussion of the embed-
ded architectures focuses on the 16-bit instructions. Figure K.2 shows that these
embedded architectures are also similar. In all three, the 16-bit instructions are ver-
sions of 32-bit instructions, typically with a restricted set of registers.The idea is to
reduce the code size by replacing common 32-bit instructions with 16-bit versions.
For RV32GC or Thumb-2, including the 16-bit instructions yields a reduction in
code size to about 0.73 of the code size using only the 32-bit ISA (either RV32G

or ARMv7).



Figure K.1 Summary of the most recent version of five architectures for desktop, server, and PMD use (all had
earlier versions). Except for the number of data address modes and some instruction set details, the integer instruc-
tion sets of these architectures are very similar. Contrast this with Figure K.29. In ARMv8, register 31 is a 0 (like register
0 in the other architectures), but when it is used in a load or store, it is the current stack pointer, a special purpose
register. We can either think of SP-based addressing as a different mode (which is how the assembly mnemonics
operate) or as simply a register + offset addressing mode (which is how the instruction is encoded).

Figure K.2 Summary of three recent architectures for embedded applications. All three use 16-bit extensions of a
base instruction set. Except for number of data address modes and a number of instruction set details, the integer
instruction sets of these architectures are similar. Contrast this with Figure K.29. An earlier 16-bit version of the MIPS
instruction set, called MIPS16, was created in 1995 and was replaced by microMIPS32 and microMIPS64. The first
Thumb architecture had only 16-bit instructions and was created in 1996. Thumb-2 is built primarily on ARMv7,
the 32-bit ARM instruction set; it offers 16 registers. RISC-V also defines RV32E, which has only 16 registers, includes
the 16-bit instructions, and cannot have floating point. It appears that most implementations for embedded appli-
cations opt for RV32C or RV64GC.
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A key difference among these three architectures is the structure of the base
32-bit ISA. In the case of RV64GC, the 32-bit instructions are exactly those of
RV64G. This is possible because RISC V planned for the 16-it option from the
beginning, and branch addresses and jump addresses are specified to 16-it
boundaries. In the case of microMIPS64, the base ISA is MIPS64, with one
change: branch and jump offsets are interpreted as 16-bit rather than 32-bit
aligned. (microMIPS also uses the encoding space that was reserved in MIPS64
for user-defined instruction set extensions; such extensions are not part of the
base ISA.)

Thumb-2 uses a slightly different approach. The 32-bit instructions in Thumb-
2 are mostly a subset of those in ARMv7; certain features that were dropped in
ARMv8 are not included (e.g., conditional execution of most instructions and
the ability to write the PC as a GPR). Thumb-2 also includes a few dozen instruc-
tions introduced in ARMv8, specifically bit field manipulation, additional system
instructions, and synchronization support. Thus, the 32-bit instructions in Thumb-
2 constitute a unique ISA.

Earlier versions of the 16-bit instruction sets for MIPS (MIPS16) and ARM
(Thumb), took the approach of creating a separate mode, invoked by a procedure
call, to transfer control to a code segment that employed only 16-bit instructions.

The 16-bit instruction set was not complete and was only intended for user pro-
grams that were code-size critical.

One complication of this description is that some of the older RISCs have been
extended over the years. We decided to describe the most recent versions of the
architectures: ARMv8 (the 64-bit architecture AArch64), MIPS64 R6, Power
v3.0, RV64G, and SPARC v9 for the desktop/server/PMD, and the 16-bit subset
of the ISAs for microMIPS64, RV64GC, and Thumb-2.

The remaining sections proceed as follows. After discussing the addressing
modes and instruction formats of our RISC architectures, we present the survey
of the instructions in five steps:

■ Instructions found in the RV64G core, described in Appendix A.

■ Instructions not found in the RV64G or RV64GC but found in two or more of
the other architectures. We describe and organize these by functionality, e.g.
instructions that support extended integer arithmetic.

■ Instruction groups unique to ARM, MIPS, Power, or SPARC, organized by
function.

■ Multimedia extensions of the desktop/server/PMD RISCs

■ Digital signal-processing extensions of the embedded RISCs

Although the majority of the instructions in these architectures are included, we
have not included every single instruction; this is especially true for the Power

and ARM ISAs, which have many instructions.
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Addressing Modes and Instruction Formats

Figure K.3 shows the data addressing modes supported by the desktop/server/
PMD architectures. Since all, but ARM, have one register that always has the value
0 when used in address modes, the absolute address mode with limited range can be
synthesized using register 0 as the base in displacement addressing. (This register
can be changed by arithmetic-logical unit (ALU) operations in PowerPC, but is
always zero when it is used in an address calculation.) Similarly, register indirect
addressing is synthesized by using displacement addressing with an offset of 0.
Simplified addressing modes is one distinguishing feature of RISC architectures.

As Figure K.4 shows, the embedded architectures restrict the registers that
can be accessed with the 16-bit instructions, typically to only 8 registers, for most
instructions, and a few special instructions that refer to other registers. Figure K.5
shows the data addressing modes supported by the embedded architectures in their
16-bit instruction mode. These versions of load/store instructions restrict the reg-
isters that can be used in address calculations, as well as significantly shorten the
immediate fields, used for displacements.

References to code are normally PC-relative, although jump register indirect is
supported for returning from procedures, for case statements, and for pointer func-
tion calls. One variation is that PC-relative branch addresses are often shifted left 2
bits before being added to the PC for the desktop RISCs, thereby increasing the

branch distance. This works because the length of all instructions for the desktop

a addressing modes supported by the desktop architectures, where B, H, W, D indi-
e the addressing mode. Note that ARM includes two different types of address modes
is included in Power.



Figure K.4 Register encodings for the 16-bit subsets of microMIPS64, RV64GC, and Thumb-2, including the core
general purpose registers, and special-purpose registers accessible by some instructions.

Figure K.5 Summary of data addressing modes supported by the embedded architectures.microMIPS64, RV64c,
and Thumb-2 show only the modes supported in 16-bit instruction formats. The stack pointer in RV64GC and micro-
MIPS64 is a designed GPR; it is another version of r31 is Thumb-2. In microMIPS64, the global pointer is register 30 and
is used by the linkage convention to point to the global variable data pool. Notice that typically only 8 registers are
accessible as base registers (and as we will see as ALU sources and destinations).
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RISCs is 32 bits and instructions must be aligned on 32-bit words in memory.
Embedded architectures and RISC V (when extended) have 16-bit-long instruc-
tions and usually shift the PC-relative address by 1 for similar reasons.

Figure K.6 shows the most important instruction formats of the desktop/server/
PMD RISC instructions. Each instruction set architecture uses four primary
instruction formats, which typically include 90–98% of the instructions. The
register-register format is used for register-register ALU instructions, while the
ALU immediate format is used for ALU instructions with an immediate operand
and also for loads and stores. The branch format is used for conditional branches,
and the jump/call format for unconditional branches (jumps) and procedures calls.

There are a number of less frequently used instruction formats that Figure K.6
leaves out. Figure K.7 summarizes these for the desktop/server/PMD architectures.

Unlike, their 32-bit base architectures, the 16-bit extensions (microMIPS64,
RV64GC, and Thumb-2) are focused on minimizing code. As a result, there are

a larger number of instruction formats, even though there are far fewer instructions.
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Figure K.6 Instruction formats for desktop/server RISC architectures. These four formats are found in all five archi-
tectures. (The superscript notation in this figure means the width of a field in bits.) Although the register fields are
located in similar pieces of the instruction, be aware that the destination and two source fields are sometimes scram-
bled. Op¼ the main opcode, Opx¼ an opcode extension, Rd¼ the destination register, Rs1¼ source register 1, Rs2
¼ source register 2, and Const¼ a constant (used as an immediate, address, mask, or sift amount). Although the labels
on the instruction formats tell where various instructions are encoded, there are variations. For example, loads and
stores, both use the ALU immediate form inMIPS. In RISC-V, loads use the ALU immediate format, while stores use the
branch format.
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Figure K.7 Other instruction formats beyond the four major formats of the previous figure. In some cases, there
are formats very similar to one of the four core formats, but where a register field is used for other purposes. The
Power architecture also includes a number of formats for vector operations.
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microMIPs64 and RV64GC have eight and seven major formats, respectively, and
Thumb-2 has 15. As Figure K.8 shows, these involve varying number of register
operands (0 to 3), different immediate sizes, and even different size register spec-
ifiers, with a small number of registers accessible my most instructions, and fewer
instructions able to access all 32 registers.

Instructions

The similarities of each architecture allow simultaneous descriptions, starting with

the operations equivalent to the RISC-V 64-bit ISA.



Architecture

Opcode 
main: 
extended

Register 
specifiers x 
length

Immediate 
field 
length Typical instructions

microMIPS64 6 none 10 Jumps
6 1x5 5 Register-register operation (32 registers) and Load using SP 

as base register; any destination
6 1x3 7 Branches equal/not equal zero. Loads using GP. as base.

,noitareporetsiger-retsigeR3x24:6  rd/rs1, and rs2; 8 registers
6:1 2x3 3 Register-register immediate, rd/rs1, and rs2; 8 registers
6 2x3 4 Loads and stores; 8 registers

itareporetsiger-retsigeR3x24:6 on, rd, and rs1; 8 registers
retsiger-retsigeR5x26 operation; 32 registers.

RV64GC 2:3 11 Jumps
2:3 1x3 7 Branch
2:3 1x3 8 Immediate one source register.
2:3 1x5 6 Store using SP as base.
2:3 1x5 6 ALU immediate and load using SP as base.

noitareporetsiger-retsigeR5x24:2
2:3 2x3 5 Loads and stores using 8 registers. 

Thumb-2 3:2 2x3 5 Shift, move, load/store word/byte
3:2 1x3 8 immediates: add, subtract, move, and compare
4:1 1x3 8 Load/store with stack pointer as base, Add to SP or PC, 

Load/store multiple
dexedniretsigerdaoL3x33:4

4:4 8 Conditional branch, system instruction
tnereffid22:suoenallecsiM21:4 instructions with 12 formats 

(includes compare and branch on zero, pop/push registers, 
adjust stack pointer, reverse bytes, IF-THEN instruction). 

5 1x3 8 Load relative to PC
hcnarblanoitidnocnU115

tcartbus/ddA3x31:6
6:3 1x4, 1x3 Special data processing

gnissecorpatadlacigoL3x24:6
tsniegnahcdnahcnarB4x16:6 ruction set (ARM vs. Thumb)

Figure K.8 Instruction formats for the 16-bit instructions of microMIPS64, RV64GC, and Thumb-2. For instructions
with a destination and two sources, but only two register fields, the instruction uses one of the registers as both
source and destination. Note that the extended opcode field (or function field) and immediate field sometimes over-
lap or are identical. For RV64GC and microMIPS64, all the formats are shown; for Thumb-2, the Miscellaneous format
includes 22 instructions with 12 slightly different formats; we use the extended opcode field, but a few of these
instructions have immediate or register fields.
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RV64G Core Instructions

Almost every instruction found in the RV64G is found in the other architectures, as
Figures K.9 through K.19 show. (For reference, definitions of the RISC-V instruc-
tions are found in Section A.9.) Instructions are listed under four categories: data
transfer (Figure K.9); arithmetic, logical (Figure K.10); control (Figure K.11 and
Figure K.12); and floating point (Figure K.13).

If a RV64G core instruction requires a short sequence of instructions in other
architectures, these instructions are separated by semicolons in Figure K.9 through
Figure K.13. (To avoid confusion, the destination register will always be the left-
most operand in this appendix, independent of the notation normally used with
each architecture.).

Compare and Conditional Branch

Every architecture must have a scheme for compare and conditional branch, but
despite all the similarities, each of these architectures has found a different way
to perform the operation! Figure K.11 summarizes the control instructions, while
Figure K.12 shows details of how conditional branches are handled. SPARC uses
the traditional four condition code bits stored in the program status word: negative,
zero, carry, and overflow. They can be set on any arithmetic or logical instruction;
unlike earlier architectures, this setting is optional on each instruction. An explicit
option leads to fewer problems in pipelined implementation. Although condition
codes can be set as a side effect of an operation, explicit compares are synthesized
with a subtract using r0 as the destination. SPARC conditional branches test con-
dition codes to determine all possible unsigned and signed relations. Floating point
uses separate condition codes to encode the EEE 754 conditions, requiring a
floating-point compare instruction. Version 9 expanded SPARC branches in four
ways: a separate set of condition codes for 64-bit operations; a branch that tests the
contents of a register and branches if the value is =, not=, <, <=, >=, or
<= 0; three more sets of floating-point condition codes; and branch instructions
that encode static branch prediction.

Power also uses four condition codes: less than, greater than, equal, and sum-
mary overflow, but it has eight copies of them. This redundancy allows the Power
instructions to use different condition codes without conflict, essentially giving
Power eight extra 4-bit registers. Any of these eight condition codes can be the target
of a compare instruction, and any can be the source of a conditional branch. The
integer instructions have an option bit that behaves as if the integer is followed
by a compare to zero that sets the first condition “register.” Power also lets the second
“register” be optionally set by floating-point instructions. PowerPC provides logical
operations among these eight 4-bit condition code registers (CRAND, CROR,
CRXOR, CRNAND, CRNOR, CREQV), allowing more complex conditions to be
tested by a single branch. Finally, Power includes a set of branch count registers,
that are automatically decremented when tested, and can be used in a branch con-

dition. There are also special instructions for moving from/to the condition register.



Figure K.9 Desktop RISC data transfer instructions equivalent to RV64G core. A sequence of instructions to syn-
thesize a RV64G instruction is shown separated by semicolons. The MIPS and Power instructions for atomic opera-
tions load and conditionally store a pair of registers and can be used to implement the RV64G atomic operations with
at most one intervening ALU instruction. The SPARC instructions: compare-and-swap, swap, LDSTUB provide atomic
updates to a memory location and can be used to build the RV64G instructions. The Power3 instructions provide all
the functionality, as the RV64G instructions, depending on a function field.
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Figure K.10 Desktop RISC arithmetic/logical instructions equivalent to RISC-V integer ISA. MIPS also provides
instructions that trap on arithmetic overflow, which are synthesized in other architectures with multiple instructions.
Note that in the “Arithmetic/logical” category all machines but SPARC use separate instructionmnemonics to indicate
an immediate operand; SPARC offers immediate versions of these instructions but uses a single mnemonic. (Of
course, these are separate opcodes!)
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Instruction name ARMv8 MIPS64 PowerPC RISC-V SPARC v.9

Branch on integer  
compare

B.cond, 
CBZ, CBNZ

BEQ, BNE, 
B_Z (<, 
>, 
<=, >=) 
OR
S***; BEZ

BC BEQ, BNE, 
BLT, BGE, 
BLTU, BGEU 

BR_Z, BPcc 
(<, >,
<=, >=, =, 
not=)

Branch on floating-point 
compare

B.cond BC1T, 
BC1F

BC BEZ, BNZ FBPfcc (<, >, 
<=,
>=, =,...)

Jump, jump register B, BR J, JR B, BCLR, 
BCCTR

JAL, JALR 
(with x0)

BA, JMPL 
r0,...

Call, call register BL, BLR JAL,
JALR

BL, BLA, 
BCLRL, 
BCCTRL

JAL, JALR CALL, JMPL

Trap SVC, HVC, 
SMC

BREAK TW, TWI ECALL Ticc, SIR

Return from interrupt ERET JR; ERET RFI EBREAK DONE, RETRY,
RETURN 

Figure K.11 Desktop RISC control instructions equivalent to RV64G.

ARMv8 MIPS64 PowerPC RISC-V SPARC v.9

Number of condition code bits  
(integer and FP)

16 (8 + the 
inverse)

none 8  4 both none 2  4 
integer,
4  2 FP

Basic compare instructions  
(integer and FP)

1 integer; 1 
FP

1 integer, 1 FP 4 integer, 2 FP 2 integer; 3 FP 1 FP

Basic branch instructions  
(integer and FP)

1 2 integer, 1 FP 1 both 4 integer (used 
for FP as well)

3 integer,
1 FP

Compare register with register/  
constant and branch

— =, not= — =, not =, >=, < —

Compare register to zero and  
branch

— =, not=, <, <=, 
>, >=

— =, not=, <, <=, 
>, >=

=, not=, <, 
<=, >, >=

Figure K.12 Summary of five desktop RISC approaches to conditional branches. Integer compare on SPARC is
synthesized with an arithme
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RISC-V andMIPS are most similar. RISC-V uses a compare and branch with a
full set of arithmetic comparisons. MIPS also uses compare and branch, but the
comparisons are limited to equality and tests against zero. This limited set of con-
ditions simplifies the branch determination (since an ALU operation is not required
to test the condition), at the cost of sometimes requiring the use of a set-on-less-than
instruction (SLT, SLTI, SLTU, SLTIU), which compares two operands and then

tic instruction that sets the condition codes using r0 as the destination.
set the destination register to 1 if less and to 0 otherwise. Figure K.12 provides



Floating point  (instruc-

Multiply add; Negative 
multiply add: single, 
double
Multiply subtract single, 
double, Negative multiply 
subtract: single, double
Copy sign or negative sign 
double or single to another 
FP register
Replace sign bit with XOR 
of sign bits single double
Maximum or minimum 
single, double
Classify floating point 
value single double

Convert between FP single 
or double and FP single or 
double, OR integer single 
or double, signed and 
unsigned with rounding

tion formats) R-R R-R R-R R-R R-R

Instruction name ARMv8 MIPS64 PowerPC RISC-V SPARC v.9

Add single, double FADD ADD.* FADD* FADD.* FADD*

Subtract single, double FSUB SUB.* FSUB* FSUB.* FSUB*

Multiply single, double FMUL MUL.* FMUL* FMUL.* FMUL*

Divide single, double FDIV DIV.* FDIV* FDIV.* FDIV*

Square root single, double FSQRT SQRT.* FSQRT* FSQRT.* FSQRT*

FMADD, 
FNMADD

MADD.*
NMAD.*

FMADD*, 
FNMADD*

FMADD.*
FNMADD.*

FMSUB, 
FNMSUB

MSUB.*, 
NMSUB.*

FMSUB*, 
FNMSUB*

FMSUB.*,
FNMSUB.*

FMOV, 
FNEG

FMOV.*, FNEG.* FMOV*, 
FNEG*

FSGNJ.*, 
FSGNJN.*

FMOV*, 
FNEG*

FABS FABS.* FABS* FSGNJX.* FABS*

FMAX, 
FMIN

MAX.*, MIN.* FMAX.*, FMIN.*

FCLASS.*CLASS.*

Compare FCMP CMP.* FCMP* FCMP.* FCMP*

FCVT CVT, CEIL, 
FLOO R

FCVT F*TO*

Figure K.13 Desktop RISC floating-point instructions equivalent to RV64G ISA with an empty entry meaning that
the instruction is unavailable. ARMv8 uses the same assembly mnemonic for single and double precision; the reg-
ister designator indicates the precision. “*” is used as an abbreviation for S or D. For floating point compares all con-
ditions: equal, not equal, less than, and less-then or equal are provided. Moves operate in both directions from/to
integer registers. Classify sets a register based onwhether the floating point quantity is plus orminus infinity, denorm,
+/ � 0, etc.). The sign-injection instructions take two operands, but are primarily used to form floating point move,
negate, and absolute value, which are separate instructions in the other ISAs.

K.2 A Survey of RISC Architectures for Desktop, Server, and Embedded Computers ■ K-15
additional details on conditional branch. RISC-V floating point comparisons sets an
integer register to 0 or 1, and then use conditional branches on that content.MIPS also
uses separate floating-point compare, which sets a floating point register to 0 or 1,

which is then tested by a floating-point conditional branch.



Instruction name

Load word

Load double word

Load word with stack pointer

Load double word with stack 

Store word

Store double word

Store word with stack pointer

Store double with stack point

Figure K.14 Embedded RISC
instruction is not a 16-bit ins
ber of registers that can the b
the destination for a load or t
For example: 8; 8; 5 for a load
load, and a 5-bit offset for th
comes from one of 8 register
and that RV64GC and micro

K-16 ■ Appendix K Survey of Instruction Set Architectures
ARM is similar to SPARC, in that it provides four traditional condition codes
that are optionally set. CMP subtracts one operand from the other and the difference
sets the condition codes. Compare negative (CMN) adds one operand to the other,
and the sum sets the condition codes. TST performs logical AND on the two oper-
ands to set all condition codes but overflow, while TEQ uses exclusive OR to set
the first three condition codes. Like SPARC, the conditional version of the ARM
branch instruction tests condition codes to determine all possible unsigned and
signed relations. ARMv8 added both bit-test instructions and also compare and
branch against zero. Floating point compares on ARM, set the integer condition
codes, which are used by the B.cond instruction.

As Figure K.13 shows the floating point support is similar on all five
architectures.

RV64GC Core 16-bit Instructions

Figures K.14 through K.17 summarize the data transfer, ALU, and control instruc-
tions for our three embedded processors: microMIPS64, RV64GC, and Thumb-2.
Since these architectures are all based on 32-bit or 64-bit versions of the full archi-
tecture, we focus our attention on the functionality implemented by the 16-bit

instructions. Since floating point is optional, we do not include it. I

microMIPS64
rs1;rs2/dst; offset

RV64GC
rs1;rs2/dst; offset

Thumb-2
rs1;rs2/dst; offset

8;8;4 8;8;5 8;8;5
8;8;5

 as base register 1;32;5 1;32;6 1;3;8
pointer as base register 1;32;6

8;8;4 8;8;5 8;8;5
8;8;5

 as base register 1;32;5 1;32;6 1;3;8
er as base register 1;32;6

data transfer instructions equivalent to RV64GC 16-bit ISA; a blank indicates that the
truction. Rather than show the instruction name, where appropriate, we show the num-
ase register for the address calculation, followed by the number of registers that can be
he source for a store, and finally, the size of the immediate used for address calculation.
means that there are 8 possible base registers, 8 possible destination registers for the
e address calculation. For a store, 8; 8; 5, specifies that the source of the value to store
s. Remember that Thumb-2 also has 32-bit instructions (although not the full ARMv8 set)
MIPS64 have the full set of 32-bit instructions in RV64I or MIPS64.



microMIPS64 RV64GC Thumb-2

sffotib-01hcnarblanoitidnocnU et 11-bit offset 11-bit offset
Unconditional branch and link 11-bit offset 11-bit offset
Unconditional branch to register w/wo link any of 32 registers any of 32 registers
Compare register to zero (=/!=) and branch 8 registers; 7-bit offset 8 registers; 8-bit 

offset
no: but see caption

Figure K.16 Summary of three embedded RISC approaches to conditional branches. A blank indicates that
the instruction does not exist. Thumb-2 uses 4 condition code bits; it provides a conditional branch that tests the
4-bit condition code and has a branch offset of 8 bits.

Instruction Name/Function

Load immediate
etaidemmireppudaoL

add immediate
add immediate word (32 bits) & sign 
extend
add immediate to stack pointer

add immediate to stack pointer store 
in reg.
shift left/right logical 

citemhtirathgirtfihs
AND immediate

evom
dda

AND, OR, XOR

Thumb-2

8;8

8;8;3

1;7

8;8;5 (shift amt.)
8;8;5 (shift amt.)
8;8

61;61
8;8;8

16;16
8;8

8;8;8

microMIPS64

8;7

32;4

1;9

1;8;6

8;8;3 (shift amt.)

8;8;4
23;23
8;8;8

8;8
8;8;8tcartbus

add word, subtract word (32 bits)
& sign extend 

RV64GC

32;6
6;23

32;6
32;6

1;6 
(adds 16x imm.)
1;8;6
(adds 4x imm.)
8;6(shift amt.)

fihs(6;8 t amt.)
8;6

23;23
23;23

8;8
8;8

8;8

Figure K.15 ALU instructions provided in RV64GC and the equivalents, if any, in the 16-bit instructions of micro-
MIPS64 or Thumb-2. An entry shows the number of register sources/destinations, followed by the size of the imme-
diate field, if it exists for that instruction. The add to stack pointer with scaled immediate instructions are used for
adjusting the stack pointer and creating a pointer to a location on the stack. In Thumb, the add has two forms one
with three operands from the 8-register subset (Lo) and one with two operands but any of 16-registers.
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Function Definition ARMv8 MIPS64 PowerPC SPARC v.9

Load/store 
multiple registers 

Loads or stores 2 or 
more registers 

Load pair, 
store pair

Load store 
multiple (<=31 
registers), 

Cache 
manipulation and 
prefetch

Modifies status of a 
cache line or does a 
prefetch

Prefetch CACHE, 
PREFETCH

Prefetch Prefetch

Figure K.17 Data transfer instructions not found in RISC-V core but found in two or more of the five desktop
architectures. SPARC requires memory accesses to be aligned, while the other architectures support unaligned
access, albeit, often with major performance penalties. The other architectures do not require alignment, but may
use slow mechanisms to handle unaligned accesses.MIPS provides a set of instructions to handle misaligned
accesses: LDL and LDR (load double left and load double right instructions) work as a pair to load a misaligned word;
the corresponding store instructions perform the inverse. The Prefetch instruction causes a cache prefetch, while
CACHE provides limited user control over the cache state.

Name Defini

Delayed branches Delaye
with/w

Conditional trap Traps i

Figure K.18 Control instruc
MIPS64 Release 6 has nonde
cellation based on the static
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Instructions: Common Extensions beyond RV64G

Figures K.15 through K.18 list instructions not found in Figures K.9 through K.13
in the same four categories (data transfer, ALU, and control. The only significant
floating point extension is the reciprocal instruction, which both MIPS64 and
Power support. Instructions are put in these lists if they appear in more than
one of the standard architectures. Recall that Figure K.3 on page 6 showed the
address modes supported by the various instruction sets. All three processors pro-
vide more address modes than provided by RV64G. The loads and stores using
these additional address modes are not shown in Figure K.17, but are effectively
additional data transfer instructions. This means that ARM has 64 additional load
and store instructions, while Power3 has 12, and MIPS64 and SPARVv9 each
have 4.

To accelerate branches, modern processors use dynamic branch prediction (see
Section 3.3). Many of these architectures in earlier versions supported delayed

branches, although they have been dropped or largely eliminated in later versions

tion ARMv8 MIPS64 PowerPC SPARC v.9

d branches 
ithout cancellation

BEQ, BNE, BGTZ, 
BLEZ, BCxEQZ, 
BCxNEZ

BPcc, A,
FPBcc, A

f a condition is true TEQ, TNE, TGE, 
TLT, TGEU, TLTU

TW, TD, 
TWI, TDI

Tcc

tions not found in RV64G core but found in two or more of the other architectures.
layed and normal delayed branches, while SPARC v.9 has delayed branches with can-
prediction.



Instruction 
class Instructio

ALU Byte align

Align Imm

Bit swap
No-op and
Logical N

Control transfer Branch an

Jump inde
link index

Figure K.19 Additional inst
virtual machines, most are p
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of the architecture, typically by offering a nondelayed version, as the preferred con-
ditional branch. The SPARC “annulling” branch is an optimized form of delayed
branch that executes the instruction in the delay slot only if the branch is taken;
otherwise, the instruction is annulled. This means the instruction at the target of
the branch can safely be copied into the delay slot since it will only be executed
if the branch is taken. The restrictions are that the target is not another branch and
that the target is known at compile time. (SPARC also offers a nondelayed jump
because an unconditional branch with the annul bit set does not execute the follow-
ing instruction.).

In contrast to the differences among the full ISAs, the 16-bit subsets of the three
embedded ISAs have essentially no significant differences other than those
described in the earlier figures (e.g. size of immediate fields, uses of SP or other
registers, etc.).

Now that we have covered the similarities, we will focus on the unique features
of each architecture. We first cover the desktop/server RISCs, ordering them by
length of description of the unique features from shortest to longest, and then
the embedded RISCs.

Instructions Unique to MIPS64 R6

MIPS has gone through six generations of instruction sets. Generations 1–4 mostly
added instructions. Release 6 eliminated many older instructions but also provided
support for nondelayed branches and misaligned data access. Figure K.19 summa-

rizes the unique instructions in MIPS64 R6.

n name(s) Function

Take a pair of registers and extract a word or double word of bytes. 
Used to implement unaligned byte copies. 

ediate to PC Adds the upper 16 bits of the PC to an immediate shifted left 16 bits 
and puts the result in a register; Used to get a PC-relative address. 
Reverses the bits in each byte of a register.

 link Puts the value of PC+8 into a register
OR Computes the NOR of 2 registers
d Link conditional Compares a register to 0 and does a branch if condition is true; places 

the return address in the link register.
xed, Jump and 
ed

Adds an offset and register to get new PC, w/wo link address

ructions provided MIPS64 R6. In addition, there are several instructions for supporting
rivileged.
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Instructions Unique to SPARC v.9

Several features are unique to SPARC. We review the major figures and then sum-
marize those and small differences in a figure.

Register Windows

The primary unique feature of SPARC is register windows, an optimization for
reducing register traffic on procedure calls. Several banks of registers are used, with
a new one allocated on each procedure call. Although this could limit the depth of
procedure calls, the limitation is avoided by operating the banks as a circular buffer.
The knee of the cost-performance curve seems to be six to eight banks; programs
with deeper call stacks, would need to save and restore the registers to memory.

SPARC can have between 2 and 32 windows, typically using 8 registers each
for the globals, locals, incoming parameters, and outgoing parameters. (Given that
each window has 16 unique registers, an implementation of SPARC can have as
few as 40 physical registers and as many as 520, although most have 128 to 136, so
far.) Rather than tie window changes with call and return instructions, SPARC has
the separate instructions SAVE and RESTORE. SAVE is used to “save” the caller’s
window by pointing to the next window of registers in addition to performing an
add instruction. The trick is that the source registers are from the caller’s window of
the addition operation, while the destination register is in the callee’s window.
SPARC compilers typically use this instruction for changing the stack pointer
to allocate local variables in a new stack frame. RESTORE is the inverse of SAVE,
bringing back the caller’s window while acting as an add instruction, with the
source registers from the callee’s window and the destination register in the caller’s
window. This automatically deallocates the stack frame. Compilers can also make
use of it for generating the callee’s final return value.

The danger of register windows is that the larger number of registers could
slow down the clock rate. This was not the case for early implementations. The
SPARC architecture (with register windows) and the MIPS R2000 architecture
(without) have been built in several technologies since 1987. For several genera-
tions the SPARC clock rate has not been slower than theMIPS clock rate for imple-
mentations in similar technologies, probably because cache access times dominate
register access times in these implementations. With the advent of multiple issue,
which requires many more register ports, as will as register renaming or reorder
buffers, register windows posed a larger penalty.Register windows were a feature
of the original Berkeley RISC designs, and their inclusion in SPARC was inspired
by those designs. Tensilica is the only other major architecture in use today
employs them, and they were not included in the RISC-V ISA.

Fast Traps

SPARCv9 includes support to make traps fast. It expands the single level of traps to at
least four levels,allowing thewindowoverflowandunderflowtraphandlers tobe inter-

rupted. The extra levels mean the handler does not need to check for page faults or
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misalignedstackpointersexplicitly in thecode, therebymaking thehandler faster.Two
new instructions were added to return from this multilevel handler: RETRY (which
retries the interrupted instruction) and DONE (which does not). To support user-level
traps, the instruction RETURN will return from the trap in nonprivileged mode.

Support for LISP and Smalltalk

The primary remaining arithmetic feature is tagged addition and subtraction. The
designers of SPARC spent some time thinking about languages like LISP and
Smalltalk, and this influenced some of the features of SPARC already discussed:
register windows, conditional trap instructions, calls with 32-bit instruction
addresses, and multi-word arithmetic (see Taylor et al. [1986] and Ungar et al.
[1984]). A small amount of support is offered for tagged data types with operations
for addition, subtraction, and hence comparison. The two least-significant bits indi-
cate whether the operand is an integer (coded as 00), so TADDcc and TSUBcc set
the overflow bit if either operand is not tagged as an integer or if the result is too
large. A subsequent conditional branch or trap instruction can decide what to do.
(If the operands are not integers, software recovers the operands, checks the types
of the operands, and invokes the correct operation based on those types.) It turns
out that the misaligned memory access trap can also be put to use for tagged data,
since loading from a pointer with the wrong tag can be an invalid access.

Figure K.20 shows both types of tag support.

(a) Add, sub, or
compare integers
(coded as 00)

(b) Loading via
valid pointer
(coded as 11)

00 (R5)

00 (R6)

00 (R7)

11

3

(R4)

00 (Word
address)

TADDcc r7, r5, r6

LD rD, r4, – 3

+
–

–

Figure K.20 SPARC uses the two least-significant bits to encode different data types
for the tagged arithmetic instructions. (a) Integer arithmetic, which takes a single cycle
as long as the operands and the result are integers. (b) The misaligned trap can be used
to catch invalid memory accesses, such as trying to use an integer as a pointer. For lan-
guages with paired data like LISP, an offset of –3 can be used to access the even word of
a pair (CAR) and +1 can be used for the odd word of a pair (CDR).



Instruction 
class Instruction name(s) Function

Data transfer SAVE, RESTORE Save or restore a register window
Nonfaulting load Version of load instructions that do not generate faults on address 

exceptions; allows speculation for loads.
ALU Tagged add, Tagged subtract, 

with and without trap 
Perform a tagged add/subtract, set condition codes, optionally 
trap.

Control transfer Retry, Return, and Done To provide handling for traps.
Floating Point 
Instructions

FMOVcc Conditional move between FP registers based on integer or FP 
condition codes.

Figure K.21 Additional instructions provided in SPARCv9. Although register windows are by far the most signif-
icant distinction, they do not require many instructions!
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Figure K.21 summarizes the additional instructions mentioned above as well as
several others.

Instructions Unique to ARM

Earlier versions of the ARM architecture (ARM v6 and v7) had a number of
unusual features including conditional execution of all instructions, and making
the PC a general purpose register. These features were eliminated with the arrival
of ARMv8 (in both the 32-bit and 64-bit ISA). What remains, however, is much of
the complexity, at least in terms of the size of the instruction set. As Figure K.3 on
page 6 shows, ARM has the most addressing modes, including all those listed in
the table; remember that these addressing modes add dozens of load/store instruc-
tions compared to RVG, even though they are not listed in the table that follows. As
Figure K.6 on page 8 shows, ARMv8 also has by far the largest number of different
instruction formats, which reflects a variety of instructions, as well as the different
addressing modes, some of which are applicable to some loads and stores but not
others.

Most ARMv8 ALU instructions allow the second operand to be shifted before
the operation is completed. This extends the range of immediates, but operand
shifting is not limited to immediates. The shift options are shift left logical, shift
right logical, shift right arithmetic, and rotate right. In addition, as in Power3, most
ALU instructions can optionally set the condition flags. Figure K.22 includes the
additional instructions, but does not enumerate all the varieties (such as optional
setting of the condition flags); see the caption for more detail. While conditional
execution of all instructions was eliminated, ARMv8 provides a number of condi-
tional instructions beyond the conditional move and conditional set, mentioned

earlier.



Instruction 
class Instruction name(s) Function

Data transfer Load/Store Non-temporal pair Loads/stores a pair of registers with an indication not to cache 
the data. Base + scaled offset addressing mode only. 

ALU Add Extended word/double word Add 2 registers after left shifting the second register operand 
and extending it.

Add with shift; add immediate with 
shift

Adds with shift of the second operand.

Address of page Computes the address of a page based on PC (similar to 
ADDUIPC, which is the same as ADR in ARMv8)

AND, OR, XOR, XOR NOT shifted 
register

Logical operation on a register and a shifted register.

Bit field clear shifted Shift operand, invert and AND with another operand
Conditional compare, immediate, 
negative, negative immediate

If condition true, then set condition flags to compare result, 
otherwise leave condition flags untouched. 

Conditional increment, invert, 
negate

If condition then set destination to increment/invert/negate of 
source register

elbuod,drowflah,drow,etyb:muskcehcCRCasetupmoCCRC
Multiply add, subtract Integer multiply-add or multiply-subtract
Multiply negate Negate the product of two integers; word & double word
Move immediate or inverse Replace 16-bits in a register with immediate, possibly shifted
Reverse bit order Reverses the order of bits in a register
Signed bit field move Move a signed bit field; sign extend to left; zero extend to right
Unsigned divide, multiple, multiply 
negate, multiply-add, multiply-sub

Unsigned versions of the basic instructions

Control transfer CBNZ, CBZ Compare branch =/!= 0, indicating this is not a call or return.
TBNZ, TBZ Tests bit in a register =/!= 0, and branch.

Figure K.22 Additional instructions provided in ARMv8, the AArch64 instruction set. Unless noted the instruction
is available in a word and double word format, if there is a difference. Most of the ALU instructions can optionally set
the condition codes; these are not included as separate instructions here or in earlier tables.
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Instructions Unique to Power3

Power3 is the result of several generations of IBM commercial RISC machines—
IBM RT/PC, IBM Power1, and IBM Power2, and the PowerPC development,
undertaken primarily by IBM and Motorola. First, we describe branch registers
and the support for loop branches. Figure K.23 then lists the other instructions pro-

vided only in Power3.



Instruction 
class Instruction name(s) Function

Data transfer LHBRX, LWBRX, LDBRX Loads a halfword/word/double word but reverses the byte order.
SHBRX, SWBRX, SDBRX Stores a halfword/word/double word but reverses the byte order 
LDQ, STQ Load/store quadword to a register pair.

retsigeranirebmunmodnaraetareneGNARDULA
CMPB

CMPRB

Compares the individual bytes in a register and sets another 
register byte by byte. 
Compares a byte (x) against two other bytes (y and z) and sets a 
condition to indicate if the value of y<=x<=z. 

CRAND, CRNAND, CROR, 
CRNOR, CRXOR, CREQV, 
CORC, CRANDC

Logical operations on the condition register.

ZCMPEQB Compares a byte (x) against the eight bytes in another register and 
sets a condition to indicate if x = any of the 8 bytes

EXTSWSL Sign extend word and shift left
POPCNTB, POPCNTW
POPCNTD

Count number of 1s in each byte and place total in another byte.
Count number of 1s in each word and place total in another word.
Count number of 1s in a double word.

PRTYD, PRTYW Compute byte parity of the bytes in a word or double word.
BPERMD Permutes the bits in a double word, producing a permuted byte.

CDTBCD, CDCBCD, 
ADDGCS

Instructions to convert from/to binary coded decimal (BCD) or 
operate on two BCD values

Control transfer BA, BCA Branches to an absolute address, conditionally & unconditionally 
BCCTR, BCCTRL Conditional branch to address in the count register, w/wo linking 
BCTSAR, BCTARL Conditional branch to address in the Branch Target Address 

register, w/wo linking 
CLRBHRB, MFBHRBE Manipulate the branch history rolling buffer. 

Floating Point 
Instructions

FRSQRTE Computes an estimate of reciprocal of the square root,

FTDIV, FTSQRT Tests for divide by zero or square of negative number
dnaoreztsniagaretsigertseTLESF select one of two operands to move

Decimal floating point 
operations

A series of 48 instructions to support decimal floating point.

Figure K.23 Additional instructions provided in Power3. Rotate instructions have two forms: one that sets a con-
dition register and one that does not. There are a set of string instructions that load up to 32 bytes from an arbitrary
address to a set of registers. These instructions will be phased out in future implementations, and hence we just
mention them here.
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Branch Registers: Link and Counter

Rather than dedicate one of the 32 general-purpose registers to save the return
address on procedure call, Power3 puts the address into a special register called
the link register. Since many procedures will return without calling another pro-
cedure, link doesn’t always have to be saved away. Making the return address a
special register makes the return jump faster since the hardware need not go
through the register read pipeline stage for return jumps.

In a similar vein, Power3 has a count register to be used in for loops where the
program iterates for a fixed number of times. By using a special register the branch
hardware can determine quickly whether a branch based on the count register is
likely to branch, since the value of the register is known early in the execution
cycle. Tests of the value of the count register in a branch instruction will automat-
ically decrement the count register.

Given that the count register and link register are already located with the hard-
ware that controls branches, and that one of the problems in branch prediction is
getting the target address early in the pipeline (see Appendix C), the Power archi-
tects decided to make a second use of these registers. Either register can hold a
target address of a conditional branch. Thus, PowerPC supplements its basic con-
ditional branch with two instructions that get the target address from these registers
(BCLR, BCCTR). Figure K.23 shows the several dozen instructions that have been

added; note that there is an extensive facility for decimal floating point, as well.
Instructions: Multimedia Extensions of the
Desktop/Server RISCs

Support for multimedia and graphics operations developed in several phases,
beginning in 1996 with Intel MMX,MIPSMDMX, and SPARCVIS. As described
in Section 4.3, which we assume the reader has read, these extensions allowed a
register to be treated as multiple independent small integers (8 or 16 bits long) with
arithmetic and logical operations done in parallel on all the items in a register.
These initial SIMD extensions, sometimes called packed SIMD, were further
developed after 2000 by widening the registers, partially or totally separating them
from the general purpose or floating pointer registers, and by adding support for
parallel floating point operations. RISC-V has reserved an extension for such
packed SIMD instructions, but the designers have opted to focus on a true vector
extension for the present. The vector extension RV64V is a vector architecture,
and, as Section 4.3 points out, a true vector instruction set is considerably more
general, and can typically perform the operations handled by the SIMD extensions
using vector operations.

Figure K.24 shows the basic structure of the SIMD extensions in ARM, MIPS,
Power, and SPARC. Note the difference in how the SIMD “vector registers” are
structured: repurposing the floating point, extending the floating point, or adding

additional registers. Other key differences include support for FP as well as integers,



ARMv8 MIPS64 R6 Power v3.0 SPARCv9

Name of ISA extension Advanced SIMD MIPS64 SIMD 
Architecture

Vector Facility VIS

Date of Current Version 2011 2012 2015 1995
Vector registers: # x size 32 x 128 bits 32 x 128 bits 32 x 128 bits 32 x 64 bits
Use GP/FP registers or 
independent set

extend FP registers 
doubling width

extend FP registers 
doubling width

Independent Same as FP registers

Integer data sizes 8, 16, 32, 64 8, 16, 32, 64 8, 16, 32, 64, 128 8,16, 32
FP data sizes 32, 64 32, 64 32
Immediates for integer and 
logical operations

5 bits arithmetic
8 bits logical

Figure K.24 Structure of the SIMD extensions intended for multimedia support. In addition to the vector facility,
The last row states whether the SIMD instruction set supports immediates (e.g, add vector immediate or AND vector
immediate); the entry states the size of immediates for those ISAs that support them. Note that the fact that an imme-
diate is present is encoded in the opcode space, and could alternatively be added to the next table as additional
instructions. Power 3 has an optional Vector-Scalar Extension. The Vector-Scalar Extension defines a set of vector
registers that overlap the FP and normal vector registers, eliminating the need to move data back and forth to
the vector registers. It also supports double precision floating point operations.
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support for 128-bit integers, and provisions for immediate fields as operands in inte-
ger and logical operations. Standard load and store instructions are used for moving
data from the SIMD registers to memory with special extensions to handle moving
less than a full SIMD register. SPARCVIS, which was one of the earliest ISA exten-
sions for graphics, is much more limited: only add, subtract, and multiply are
included, there is no FP support, and only limited instructions for bit element oper-
ations; we include it in Figure K.24 but will not be going into more detail.

Figure K.25 shows the arithmetic instructions included in these SIMD exten-
sions; only those appearing in at least two extensions are included. MIPS SIMD
includes many other instructions, as does the Power 3 Vector-Scalar extension,
which we do not cover. One frequent feature not generally found in general-
purpose microprocessors is saturating operations. Saturation means that when a
calculation overflows the result is set to the largest positive number or most neg-
ative number, rather than a modulo calculation as in two’s complement arithmetic.
Commonly found in digital signal processors (see the next subsection), these sat-
urating operations are helpful in routines for filtering. Another common extension
are instructions for accumulating values within a single register; the dot product
instruction an the maximum/minimum instructions are typical examples.

In addition to the arithmetic instructions, the most common additions are log-
ical and bitwise operations and instructions for doing version of permutations and
packing elements into the SIMD registers. These additions are summarized in
Figure K.26, Lastly, all three extensions support SIMD FP operations, as summa-

rized in Figure K.27.



Instruction category ARM Advanced SIMD MIPS SIMD Power Vector Facility

Q,D2,W4,H8,B61D2;W4;H8,B61D2;W4,H8,B61tcartbus/ddA
Saturating add/sub 16B, 8H, 4W; 2 D 16B, 8H; 4W; 2 D 16B, 8H, 4W, 2 D, Q
Absolute value of difference 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q
Adjacent add & subtract (pairwise) 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D

Q;D2;W4,H8,B61D2;W4,H8,B61egarevA
Dot product add, dot product subtract 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D
Divide: signed, unsigned 16B, 8H, 4W 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q
Multiply: signed, unsigned 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D
Multiply add, multiply subtract 16B, 8H, 4W 16B, 8H, 4W 16B, 8H, 4W; 2 D
Maximum, signed & unsigned 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q
Minimum, signed & unsigned 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

Q;D2;W4,H8,B61D2;W4,H8,B61dengisnu&dengis,oludoM
Q;D2;W4,H8,B61D2;W4,H8,B61D2;W4,H8,B61lauqeerapmoC

Compare <, <=, signed, unsigned 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

Figure K.25 Summary of arithmetic SIMD instructions. B stands for byte (8 bits), H for half word (16 bits), and W for
word (32 bits), D for double word (64 bits), and Q for quadword (128 bits). Thus, 8Bmeans an operation on 8 bytes in a
single instruction. Note that some instructions–such as adjacent add/subtract, or multiply–produce results that are
twice the width of the inputs (e.g. multiply on 16 bytes produces 8 halfword results). Dot product is a multiply and
accumulate. The SPARC VIS instructions are aimed primarily at graphics and are structured accordingly.

Instruction category ARM Advanced SIMD MIPS SIMD Power Vector Facility

Shift right/left, logical, arithmetic 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q 16B, 8H, 4W; 2 D; Q
Count leading or trailing zeros 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

QQQrox/ro/dna
Bit insert & extract 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D 16B, 8H, 4W; 2 D; Q

;W4,H8,B61tnuocnoitalupoP 2 D 16B, 8H, 4W; 2 D; Q
D2;W4,H8,B6D2;W4,H8,B61thgir/tfel,ddo/neveevaelretnI
D2;W4,H8,B6D2;W4,H8,B61ddo/nevekcaP
D2;W4,H8,B61D2;W4,H8,B61elffuhS
D2;W4,H8,B61D2;W4,H8,B61TALPS

Figure K.26 Summary of logical, bitwise, permute, and pack/unpack instructions, using the same format as the
previous figure. When there is a single operand the instruction applies to the entire register; for logical operations
there is no difference.Interleave puts together the elements (all even, odd, leftmost or rightmost) from two different
registers to create one value; it can be used for unpacking. Pack moves the even or odd elements from two different
registers to the leftmost and rightmost halves of the result. Shuffle creates a from two registers based on a mask that
selects which source for each item. SPLAT copies a value into each item in a register.



Figure K.27 Summary of floating point, using the same format as the previous figure.
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Instructions: Digital Signal-Processing Extensions
of the Embedded RISCs

Both Thumb2 and microMIPS32 provide instructions for DSP (Digital Signal Pro-
cessing) and multimedia operations. In Thumb2, these are part of the core instruc-
tion set; in microMIPS32, they are part of the DSP extension. These extensions,
which are encoded as 32-bit instructions, are less extensive than the multimedia
and graphics support provided in the SIMD/Vector extensions of MIPS64 or
ARMv8 (AArch64). Like those more comprehensive extensions, the ones in
Thumb2 and microMIPS32 also rely on packed SIMD, but they use the existing
integer registers, with a small extension to allow a wide accumulator, and only
operate on integer data. RISC-V has specified that the “P” extension will support
packed integer SIMD using the floating point registers, but at the time of publica-
tion, the specification was not completed.

DSP operations often include linear algebra functions and operations such
as convolutions; these operations produce intermediate results that will be larger
than the inputs. In Thumb2, this is handled by a set of operations that produce
64-bit results using a pair of integer registers. In microMIPS32 DSP, there are 4
64-bit accumulator registers, including the Hi-Lo register, which is already
exists for doing integer multiply and divide. Both architectures provide parallel
arithmetic using bytes, halfwords, and words, as in the multimedia extensions in
ARMv8 and MIPS64. In addition, the MIPS DSP extension handles fractional
data, such data is heavily used in DSP operations. Fractional data items have a
sign bit and the remaining bits are used to represent the fraction, providing a
range of values from -1.0 to 0.9999 (in decimal). MIPS DSP supports two
fractional data sizes Q15 and Q31 each with one sign bit and 15 or 31 bits
of fraction.

Figure K.28 shows the common operations using the same notation as was
used in Figure K.25. Remember that the basic 32-bit instruction set provides
additional functionality, including basic arithmetic, logical, and bit

manipulation.



PSD23SPIMorcim2-bmuhTnoitcnuF

51Q2,B4H2,B4tcartbuS/ddA
13Q,51Q2,B4H2,B4noitarutashtiwtcartbuS/ddA

Add/Subtract with Exchange (exchanges halfwords in rt, then adds first 
halfword and subtracts second) with optional saturation

2H

B4)seulavehtmus(ddaybecudeR
13Q,51Q2eulavetulosbA

Precision reduce/increase (reduces or increases the precision of a value) 2B, Q15, 2Q15, Q31
H2,B4noitarutaslanoitpohtiw,citemhtira&lacigol,thgir,tfel:stfihS

51Q2,H2,B2H2ylpitluM
Multiply add/subtract (to GPR or accumulator register in MIPS) 2H 2Q15
Complex multiplication step (2 multiplies and addition/subtraction) 2H 2Q15
Multiply and accumulate (by addition or subtraction) 2H Q15, Q31

H,BstibetacilpeR
Compare: =, <, <=, se H2,B4dleifnoitidnocst
Pick (use condition bits to choose bytes or halfwords from two operands) 4B, 2H

HdnarepohcaemorfdrowflahagnisoohckcaP
Extract Q63
Move from/to WDrotalumucca

Figure K.28 Summary of two embedded RISC DSP operations, showing the data types for each operation. A blank
indicates that the operation is not supported as a single instruction. Byte quantities are usually unsigned. Complex
multiplication step implements multiplication of complex numbers where each component is a Q15 value. ARM uses
its standard condition register, while MIPS adds a set of condition bits as part of the state in the DSP extension.
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Concluding Remarks

This survey covers the addressing modes, instruction formats, and almost all the
instructions found in 8 RISC architectures. Although the later sections concentrate
on the differences, it would not be possible to cover 8 architectures in these few
pages if there were not so many similarities. In fact, we would guess that more than
90% of the instructions executed for any of these architectures would be found in
Figures K.9 through K.13. To contrast this homogeneity, Figure K.29 gives a sum-
mary for four architectures from the 1970s in a format similar to that shown in
Figure K.1. (Since it would be impossible to write a single section in this style
for those architectures, the next three sections cover the 80x86, VAX, and IBM
360/370.) In the history of computing, there has never been such widespread agree-
ment on computer architecture as there has been since the RISC ideas emerged in

the 1980s.



IBM 360/370 Intel 8086 Motorola 68000 DEC VAX

Date announced 1964/1970 1978 1980 1977
Instruction size(s) (bits) 16, 32, 48 8, 16, 24, 32, 40, 48 16, 32, 48, 64, 80 8, 16, 24, 32, ... , 

432
Addressing (size, model) 24 bits, flat/  

31 bits, flat
4 + 16 bits, 
segmented

24 bits, flat 32 bits, flat

Data aligned? Yes 360/No 370 No 16-bit aligned No
Data addressing modes 2/3 5 9 =14
Protection Page None Optional Page
Page size 2 KB & 4 KB — 0.25 to 32 KB 0.5 KB

deppamyromeMdeppamyromeMedocpOedocpOO/I
Integer registers (size, model, 
number)

16 GPR × 32 bits 8 dedicated  
data × 16 bits

8 data and 8 address  
× 32 bits

15 GPR × 32 bits

Separate floating-point 
registers

4 × 64 bits Optional: 8 × 80 bits Optional: 8 × 80 bits 0

Floating-point format IBM (floating  
hexadecimal)

IEEE 754 single,  
double, extended

IEEE 754 single,  
double, extended

DEC 

Figure K.29 Summary of four 1970s architectures. Unlike the architectures in Figure K.1, there is little agreement
between these architectures in any category. (See Section K.3 for more details on the 80x86 and Section K.4 for a
description of the VAX.)
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K.3
 The Intel 80x86

Introduction

MIPS was the vision of a single architect. The pieces of this architecture fit nicely
together and the whole architecture can be described succinctly. Such is not the case
of the 80x86: It is the product of several independent groups who evolved the archi-
tecture over 20 years, adding new features to the original instruction set as you might
add clothing to a packed bag. Here are important 80x86 milestones:

■ 1978—The Intel 8086 architecture was announced as an assembly language–
compatible extension of the then-successful Intel 8080, an 8-bit microproces-
sor. The 8086 is a 16-bit architecture, with all internal registers 16 bits wide.
Whereas the 8080 was a straightforward accumulator machine, the 8086
extended the architecture with additional registers. Because nearly every reg-
ister has a dedicated use, the 8086 falls somewhere between an accumulator
machine and a general-purpose register machine, and can fairly be called an
extended accumulator machine.

■ 1980—The Intel 8087 floating-point coprocessor is announced. This architec-
ture extends the 8086 with about 60 floating-point instructions. Its architects

rejected extended accumulators to go with a hybrid of stacks and registers,
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essentially an extended stack architecture: A complete stack instruction set is
supplemented by a limited set of register-memory instructions.

■ 1982—The 80286 extended the 8086 architecture by increasing the address
space to 24 bits, by creating an elaborate memory mapping and protection
model, and by adding a few instructions to round out the instruction set and
to manipulate the protection model. Because it was important to run 8086 pro-
grams without change, the 80286 offered a real addressing mode to make the
machine look just like an 8086.

■ 1985—The 80386 extended the 80286 architecture to 32 bits. In addition to a
32-bit architecture with 32-bit registers and a 32-bit address space, the 80386
added new addressing modes and additional operations. The added instructions
make the 80386 nearly a general-purpose register machine. The 80386 also
added paging support in addition to segmented addressing (see Chapter 2). Like
the 80286, the 80386 has a mode to execute 8086 programs without change.

This history illustrates the impact of the “golden handcuffs” of compatibility on
the 80x86, as the existing software base at each step was too important to jeopar-
dize with significant architectural changes. Fortunately, the subsequent 80486 in
1989, Pentium in 1992, and P6 in 1995 were aimed at higher performance, with
only four instructions added to the user-visible instruction set: three to help with
multiprocessing plus a conditional move instruction.

Since 1997 Intel has added hundreds of instructions to support multimedia by
operating on many narrower data types within a single clock (see Appendix A).
These SIMD or vector instructions are primarily used in hand-coded libraries or
drivers and rarely generated by compilers. The first extension, called MMX,
appeared in 1997. It consists of 57 instructions that pack and unpack multiple
bytes, 16-bit words, or 32-bit double words into 64-bit registers and performs shift,
logical, and integer arithmetic on the narrow data items in parallel. It supports both
saturating and nonsaturating arithmetic. MMX uses the registers comprising the
floating-point stack and hence there is no new state for operating systems to save.

In 1999 Intel added another 70 instructions, labeled SSE, as part of Pentium III.
The primary changes were to add eight separate registers, double their width to 128
bits, and add a single-precision floating-point data type. Hence, four 32-bit
floating-point operations can be performed in parallel. To improve memory perfor-
mance, SSE included cache prefetch instructions plus streaming store instructions
that bypass the caches and write directly to memory.

In 2001, Intel added yet another 144 instructions, this time labeled SSE2. The
new data type is double-precision arithmetic, which allows pairs of 64-bit floating-
point operations in parallel. Almost all of these 144 instructions are versions of
existing MMX and SSE instructions that operate on 64 bits of data in parallel.
Not only does this change enable multimedia operations, but it also gives the com-
piler a different target for floating-point operations than the unique stack architec-
ture. Compilers can choose to use the eight SSE registers as floating-point registers
as found in the RISC machines. This change has boosted performance on the

Pentium 4, the first microprocessor to include SSE2 instructions. At the time of
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announcement, a 1.5 GHz Pentium 4 was 1.24 times faster than a 1 GHz Pentium
III for SPECint2000(base), but it was 1.88 times faster for SPECfp2000(base).

In 2003 a company other than Intel enhanced the IA-32 architecture this time.
AMD announced a set of architectural extensions to increase the address space for
32 to 64 bits. Similar to the transition from 16- to 32-bit address space in 1985 with
the 80386, AMD64 widens all registers to 64 bits. It also increases the number of
registers to sixteen and has 16 128-bit registers to support XMM, AMD’s answer to
SSE2. Rather than expand the instruction set, the primary change is adding a new
mode called long mode that redefines the execution of all IA-32 instructions with
64-bit addresses. To address the larger number of registers, it adds a new prefix to
instructions. AMD64 still has a 32-bit mode that is backwards compatible to the
standard Intel instruction set, allowing a more graceful transition to 64-bit addres-
sing than the HP/Intel Itanium. Intel later followed AMD’s lead, making almost
identical changes so that most software can run on either 64-bit address version
of the 80x86 without change.

Whatever the artistic failures of the 80x86, keep in mind that there are more
instances of this architectural family than of any other server or desktop processor
in the world. Nevertheless, its checkered ancestry has led to an architecture that is
difficult to explain and impossible to love.

We start our explanation with the registers and addressing modes, move on to
the integer operations, then cover the floating-point operations, and conclude with
an examination of instruction encoding.

80x86 Registers and Data Addressing Modes

The evolution of the instruction set can be seen in the registers of the 80x86
(Figure K.30). Original registers are shown in black type, with the extensions of
the 80386 shown in a lighter shade, a coloring scheme followed in subsequent fig-
ures. The 80386 basically extended all 16-bit registers (except the segment regis-
ters) to 32 bits, prefixing an “E” to their name to indicate the 32-bit version. The
arithmetic, logical, and data transfer instructions are two-operand instructions that
allow the combinations shown in Figure K.31.

To explain the addressing modes, we need to keep in mind whether we are talk-
ing about the 16-bit mode used by both the 8086 and 80286 or the 32-bit mode
available on the 80386 and its successors. The seven data memory addressing
modes supported are

■ Absolute

■ Register indirect

■ Based

■ Indexed

■ Based indexed with displacement

■ Based with scaled indexed
■ Based with scaled indexed and displacement



FPR 0

FPR 1

FPR 2

FPR 3

FPR 4

FPR 5

FPR 6

FPR 7

079

015

015

8 731

GPR 0 AccumulatorEAX AX AH AL

GPR 3 Base addr. regEBX BX BH BL

GPR 1 Count reg: string, loopECX CX CH CL

GPR 2 Data reg: multiply, divideEDX DX DH DL

GPR 6 ESI Index reg, string source ptr.SI

Code segment ptr.CS

Stack  segment ptr. (top of stack)SS

Data segment ptr.DS

Extra data segment ptr. ES

Data segment ptr. 2FS

Data segment ptr. 3GS

GPR 7 EDI Index reg, string dest. ptr.DI

GPR 5 EBP Base ptr. (for base of stack seg.)BP

PC

GPR 4 ESP Stack ptr.SP

EIP Instruction ptr. (PC)IP

EFLAGS Condition codesFLAGS

 Top of FP stack,

 FP condition codes
Status

80x86, 80x28680x386, 80x486, Pentium

Figure K.30 The 80x86 has evolved over time, and so has its register set. The original set is shown in black and the
extended set in gray. The 8086 divided the first four registers in half so that they could be used either as one 16-bit
register or as two 8-bit registers. Starting with the 80386, the top eight registers were extended to 32 bits and could
also be used as general-purpose registers. The floating-point registers on the bottom are 80 bits wide, and although
they look like regular registers they are not. They implement a stack, with the top of stack pointed to by the status
register. One operand must be the top of stack, and the other can be any of the other seven registers below the top
of stack.
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Source/destination operand type Second source operand

retsigeR
etaidemmI

yromeM
retsigeR

etaidemmI

retsigeR
retsigeR
retsigeR
yromeM
yromeM

Figure K.31 Instruction types for the arithmetic, logical, and data transfer instruc-
tions. The 80x86 allows the combinations shown. The only restriction is the absence
of a memory-memory mode. Immediates may be 8, 16, or 32 bits in length; a register
is any one of the 14 major registers in Figure K.30 (not IP or FLAGS).
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Displacements can be 8 or 32 bits in 32-bit mode, and 8 or 16 bits in 16-bit mode.
If we count the size of the address as a separate addressing mode, the total is 11
addressing modes.

Although a memory operand can use any addressing mode, there are restric-
tions on what registers can be used in a mode. The section “80x86 Instruction
Encoding” on page K-11 gives the full set of restrictions on registers, but the fol-
lowing description of addressing modes gives the basic register options:

■ Absolute—With 16-bit or 32-bit displacement, depending on the mode.

■ Register indirect—BX, SI, DI in 16-bit mode and EAX, ECX, EDX, EBX,
ESI, and EDI in 32-bit mode.

■ Based mode with 8-bit or 16-bit/32-bit displacement—BP, BX, SI, and DI
in 16-bit mode and EAX, ECX, EDX, EBX, ESI, and EDI in 32-bit mode.
The displacement is either 8 bits or the size of the address mode: 16 or 32 bits.
(Intel gives two different names to this single addressing mode, based and
indexed, but they are essentially identical and we combine them. This book
uses indexed addressing to mean something different, explained next.)

■ Indexed—The address is the sum of two registers. The allowable combinations
are BX+SI, BX+DI, BP+SI, and BP+DI. This mode is called based
indexed on the 8086. (The 32-bit mode uses a different addressing mode to
get the same effect.)

■ Based indexed with 8- or 16-bit displacement—The address is the sum of dis-
placement and contents of two registers. The same restrictions on registers
apply as in indexed mode.

■ Base plus scaled indexed—This addressing mode and the next were added in
the 80386 and are only available in 32-bit mode. The address calculation is
Base register + 2Scale� Index� register
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where Scale has the value 0, 1, 2, or 3; Index register can be any of the eight
32-bit general registers except ESP; and Base register can be any of the eight
32-bit general registers.

■ Base plus scaled index with 8- or 32-bit displacement—The address is the sum
of the displacement and the address calculated by the scaled mode immediately
above. The same restrictions on registers apply.

The 80x86 uses Little Endian addressing.
Ideally, we would refer discussion of 80x86 logical and physical addresses to

Chapter 2, but the segmented address space prevents us from hiding that infor-
mation. Figure K.32 shows the memory mapping options on the generations of
80x86 machines; Chapter 2 describes the segmented protection scheme in greater
detail.

The assembly language programmer clearly must specify which segment reg-
ister should be used with an address, no matter which address mode is used. To
save space in the instructions, segment registers are selected automatically depend-
ing on which address register is used. The rules are simple: References to instruc-
tions (IP) use the code segment register (CS), references to the stack (BP or SP)
use the stack segment register (SS), and the default segment register for the other
registers is the data segment register (DS). The next section explains how they can

be overridden.
80x86 Integer Operations

The 8086 provides support for both 8-bit (byte) and 16-bit (called word) data
types. The data type distinctions apply to register operations as well as memory
accesses. The 80386 adds 32-bit addresses and data, called double words. Almost
every operation works on both 8-bit data and one longer data size. That size is
determined by the mode and is either 16 or 32 bits.

Clearly some programs want to operate on data of all three sizes, so the 80x86
architects provide a convenient way to specify each version without expanding
code size significantly. They decided that most programs would be dominated
by either 16- or 32-bit data, and so it made sense to be able to set a default large
size. This default size is set by a bit in the code segment register. To override the
default size, an 8-bit prefix is attached to the instruction to tell the machine to use
the other large size for this instruction.

The prefix solution was borrowed from the 8086, which allows multiple prefixes
to modify instruction behavior. The three original prefixes override the default seg-
ment register, lock the bus so as to perform a semaphore (see Chapter 5), or repeat the
following instruction until CX counts down to zero. This last prefix was intended to
be paired with a byte move instruction to move a variable number of bytes. The

80386 also added a prefix to override the default address size.
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Figure K.32 The original segmented scheme of the 8086 is shown on the left.All 80x86 processors support this style
of addressing, called real mode. It simply takes the contents of a segment register, shifts it left 4 bits, and adds it to the
16-bit offset, forming a 20-bit physical address. The 80286 (center) used the contents of the segment register to select
a segment descriptor, which includes a 24-bit base address among other items. It is added to the 16-bit offset to form
the 24-bit physical address. The 80386 and successors (right) expand this base address in the segment descriptor to
32 bits and also add an optional paging layer below segmentation. A 32-bit linear address is first formed from the
segment and offset, and then this address is divided into two 10-bit fields and a 12-bit page offset. The first 10-bit field
selects the entry in the first-level page table, and then this entry is used in combination with the second 10-bit field to
access the second-level page table to select the upper 20 bits of the physical address. Prepending this 20-bit address
to the final 12-bit field gives the 32-bit physical address. Paging can be turned off, redefining the 32-bit linear address
as the physical address. Note that a “flat” 80x86 address space comes simply by loading the same value in all the
segment registers; that is, it
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The 80x86 integer operations can be divided into four major classes:

1. Data movement instructions, including move, push, and pop

2. Arithmetic and logic instructions, including logical operations, test, shifts, and
integer and decimal arithmetic operations

3. Control flow, including conditional branches and unconditional jumps, calls,
and returns

doesn’t matter which segment register is selected.
4. String instructions, including string move and string compare
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JE name

JMP name IP name

CALLF name, seg SP SP–2;M[SS:SP] IP+5;SP SP–2;

PUSH SI SP SP–2;M[SS:SP] SI

POP DI DI M[SS:SP];SP SP+2

ADD AX,#6765 AX AX+6765

SHL BX,1 BX BX1..15## 0

TEST DX,#42 Set CC flags with DX & 42

MOVSB M[ES:DI] 8M[DS:SI];DI DI+1;SI SI+1

MOVW BX,[DI+45] BX 16M[DS:DI+45]

M[SS:SP]  CS;IP name;CS seg; 

if equal(CC) {IP name};IP–128   name  IP+128

Figure K.33 Some typical 80x86 instructions and their functions. A list of frequent
operations appears in Figure K.34. We use the abbreviation SR:X to indicate the forma-
tion of an address with segment register SR and offset X. This effective address corre-
sponding to SR:X is (SR<<4)+X. The CALLF saves the IP of the next instruction and
the current CS on the stack.
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Figure K.33 shows some typical 80x86 instructions and their functions.
The data transfer, arithmetic, and logic instructions are unremarkable, except

that the arithmetic and logic instruction operations allow the destination to be either
a register or a memory location.

Control flow instructions must be able to address destinations in another seg-
ment. This is handled by having two types of control flow instructions: “near” for
intrasegment (within a segment) and “far” for intersegment (between segments)
transfers. In far jumps, which must be unconditional, two 16-bit quantities follow
the opcode in 16-bit mode. One of these is used as the instruction pointer,
while the other is loaded into CS and becomes the new code segment. In 32-
bit mode the first field is expanded to 32 bits to match the 32-bit program
counter (EIP).

Calls and returns work similarly—a far call pushes the return instruction
pointer and return segment on the stack and loads both the instruction pointer
and the code segment. A far return pops both the instruction pointer and the code
segment from the stack. Programmers or compiler writers must be sure to always
use the same type of call and return for a procedure—a near return does not work
with a far call, and vice versa.

String instructions are part of the 8080 ancestry of the 80x86 and are not
commonly executed in most programs.

Figure K.34 lists some of the integer 80x86 instructions. Many of the

instructions are available in both byte and word formats.
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Control Conditional and unconditional branches
JNZ, JZ Jump if condition to IP + 8-bit offset; JNE (for JNZ) and JE (for JZ) are alternative names
JMP, JMPF Unconditional jump—8- or 16-bit offset intrasegment (near) and intersegment (far) versions
CALL, CALLF Subroutine call—16-bit offset; return address pushed; near and far versions
RET, RETF Pops return address from stack and jumps to it; near and far versions
LOOP Loop branch—decrement CX; jump to IP + 8-bit displacement if CX ¦ 0
Data transfer Move data between registers or between register and memory
MOV Move between two registers or between register and memory
PUSH Push source operand on stack
POP Pop operand from stack top to a register
LES Load ES and one of the GPRs from memory
Arithmetic/logical Arithmetic and logical operations using the data registers and memory
ADD Add source to destination; register-memory format
SUB Subtract source from destination; register-memory format
CMP Compare source and destination; register-memory format
SHL Shift left
SHR Shift logical right
RCR Rotate right with carry as fill
CBW Convert byte in AL to word in AX
TEST Logical AND of source and destination sets flags
INC Increment destination; register-memory format
DEC Decrement destination; register-memory format
OR Logical OR; register-memory format
XOR Exclusive OR; register-memory format
String instructions Move between string operands; length given by a repeat prefix
MOVS Copies from string source to destination; may be repeated
LODS Loads a byte or word of a string into the A register

Figure K.34 Some typical operations on the 80x86.Many operations use register-memory format, where either the
source or the destination may be memory and the other may be a register or immediate operand.
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80x86 Floating-Point Operations

Intel provided a stack architecture with its floating-point instructions: loads push
numbers onto the stack, operations find operands in the top two elements of the
stacks, and stores can pop elements off the stack, just as the stack example in

Figure A.31 on page A-4 suggests.
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Intel supplemented this stack architecture with instructions and addressing
modes that allow the architecture to have some of the benefits of a register-memory
model. In addition to finding operands in the top two elements of the stack, one
operand can be inmemory or in one of the seven registers below the top of the stack.

This hybrid is still a restricted register-memory model, however, in that loads
always move data to the top of the stack while incrementing the top of stack pointer
and stores can only move the top of stack to memory. Intel uses the notation ST to
indicate the top of stack, andST(i) to represent the ith register below the top of stack.

One novel feature of this architecture is that the operands are wider in the reg-
ister stack than they are stored in memory, and all operations are performed at this
wide internal precision. Numbers are automatically converted to the internal 80-bit
format on a load and converted back to the appropriate size on a store. Memory
data can be 32-bit (single-precision) or 64-bit (double-precision) floating-point
numbers, called real by Intel. The register-memory version of these instructions
will then convert the memory operand to this Intel 80-bit format before performing
the operation. The data transfer instructions also will automatically convert 16- and
32-bit integers to reals, and vice versa, for integer loads and stores.

The 80x86 floating-point operations can be divided into four major classes:

1. Data movement instructions, including load, load constant, and store

2. Arithmetic instructions, including add, subtract, multiply, divide, square root,
and absolute value

3. Comparison, including instructions to send the result to the integer CPU so that
it can branch

4. Transcendental instructions, including sine, cosine, log, and exponentiation

Figure K.35 shows some of the 60 floating-point operations. We use the curly
brackets {} to show optional variations of the basic operations: {I} means there
is an integer version of the instruction, {P} means this variation will pop one
operand off the stack after the operation, and {R} means reverse the sense of
the operands in this operation.

Not all combinations are provided. Hence,

F{I}SUB{R}{P}

represents these instructions found in the 80x86:

FSUB

FISUB

FSUBR

FISUBR

FSUBP
FSUBRP
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F{I}LD mem/ST(i) F{I}ADD{P}mem/ST(i) F{I}COM{P}{P} FPATAN

F{I}ST{P} mem/ST(i) F{I}SUB{R}{P}mem/ST(i) F{I}UCOM{P}{P} F2XM1

SOCFFSTSW AX/memI}MUL{P}mem/ST(i){FIPDLF

NATPFF{I}DIV{R}{P}mem/ST(i) 1DLF

MERPFTRQSFZDLF

INSFSBAF

X2LYFFRNDINT

Figure K.35 The floating-point instructions of the 80x86. The first column shows the data transfer instructions,
which move data to memory or to one of the registers below the top of the stack. The last three operations push
constants on the stack: pi, 1.0, and 0.0. The second column contains the arithmetic operations described above. Note
that the last three operate only on the top of stack. The third column is the compare instructions. Since there are no
special floating-point branch instructions, the result of the compare must be transferred to the integer CPU via the
FSTSW instruction, either into the AX register or into memory, followed by an SAHF instruction to set the condition
codes. The floating-point comparison can then be tested using integer branch instructions. The final column gives the
higher-level floating-point operations.
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There are no pop or reverse pop versions of the integer subtract instructions.
Note that we get even more combinations when including the operand modes

for these operations. The floating-point add has these options, ignoring the integer
and pop versions of the instruction:
As mentioned earlier S

are no operands, to up
Both operands are in the in stack, and the result replaces the top of
FADD

stack.
One source operand is ith register below the top of stack, and the
FADD ST(i)

result replaces the top of stack.
One source operand is the top of stack, and the result replaces ith
FADD ST(i),ST

register below the top of stack.
One source operand is a 32-bit location in memory, and the result
FADD mem32

replaces the top of stack.
One source operand is a 64-bit location in memory, and the result
FADD mem64
replaces the top of stack.
SE2 presents a model of IEEE floating-point registers.
80x86 Instruction Encoding

Saving the worst for last, the encoding of instructions in the 8086 is complex, with
many different instruction formats. Instructions may vary from 1 byte, when there
to 6 bytes, when the instruction contains a 16-bit immediate
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and uses 16-bit displacement addressing. Prefix instructions increase 8086 instruc-
tion length beyond the obvious sizes.

The 80386 additions expand the instruction size even further, as Figure K.36
shows. Both the displacement and immediate fields can be 32 bits long, two more
prefixes are possible, the opcode can be 16 bits long, and the scaled indexmode spec-
ifier adds another 8 bits. The maximum possible 80386 instruction is 17 bytes long.

Figure K.37 shows the instruction format for several of the example instruc-
tions in Figure K.33. The opcode byte usually contains a bit saying whether the
operand is a byte wide or the larger size, 16 bits or 32 bits depending on the mode.
For some instructions, the opcode may include the addressing mode and the reg-
ister; this is true in many instructions that have the form register
 register op immediate. Other instructions use a “postbyte” or extra
opcode byte, labeled “mod, reg, r/m” in Figure K.36, which contains the addres-
sing mode information. This postbyte is used for many of the instructions that
address memory. The based with scaled index uses a second postbyte, labeled
“sc, index, base” in Figure K.36.

The floating-point instructions are encoded in the escape opcode of the 8086

and the postbyte address specifier. The memory operations reserve 2 bits to decide

Seg. override

Opcode

mod, reg, r/m

Disp8

Disp16

Disp24

Imm8

Imm16

Disp32

Imm24

Imm32

Opcode ext.

sc, index, base

Addr. override

Size override

Prefixes

Address
specifiers

Displacement

Immediate

Opcode

Repeat

Lock

Figure K.36 The instruction format of the 8086 (black type) and the extensions for
the 80386 (shaded type). Every field is optional except the opcode.



JE

a.  JE PC + displacement

rebmun tnemgeSFLLAC Offset

b.  CALLF

c.  MOV  BX, [DI + 45]

PUSH

d.  PUSH SI

ADD w

e.  ADD AX, #6765

SHL
r-r

postbytev/w

f.  SHL BX, 1

g.  TEST DX, #42

Reg

4 4 8

6 8 8

61618

2

5 3

4 1 613

Constant

6 2 8

7 1 8 8

Condition Displacement

tnemecalpsiDw/dVOM
r-m

postbyte

TEST Postbyte Immediatew

Reg

Figure K.37 Typical 8086 instruction formats. The encoding of the postbyte is shown
in Figure K.38.Many instructions contain the 1-bit field w, which says whether the oper-
ation is a byte or a word. Fields of the form v/w or d/w are a d-field or v-field followed by
the w-field. The d-field in MOV is used in instructions that may move to or frommemory
and shows the direction of the move. The field v in the SHL instruction indicates a
variable-length shift; variable-length shifts use a register to hold the shift count. The
ADD instruction shows a typical optimized short encoding usable only when the first
operand is AX. Overall instructions may vary from 1 to 6 bytes in length.
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whether the operand is a 32- or 64-bit real or a 16- or 32-bit integer. Those same 2
bits are used in versions that do not access memory to decide whether the stack
should be popped after the operation and whether the top of stack or a lower reg-
ister should get the result.

Alas, you cannot separate the restrictions on registers from the encoding of the
addressing modes in the 80x86. Hence, Figures K.38 and K.39 show the encoding

of the two postbyte address specifiers for both 16- and 32-bit mode.



w = 1 mod = 0 mod = 1 mod = 2

reg w = 0 16b 32b r/m 16b 32b 16b 32b 16b 32b mod = 3 

0 A L A X EAX 0

1 CL CX ECX 1

2 D L D X EDX 2

3 BL BX EBX 3

4 A H SP ESP 4 SI+disp16 (sib)+disp8 "

5 CH BP EBP 5 DI+disp8 EBP+disp8 DI+disp16 "

6 D H SI ESI 6 BP+disp8 ESI+disp8 "

7 BH D I EDI 7

a

addr=BX+SI

addr=BX+DI

addr=BP+SI

addr=BP+SI

addr=SI

ddr=DI

addr=disp16

addr=BX

=ED X

=EBX

=(si)b

=disp32

=ESI

=ED I BX+disp8 EDI+disp8

SI+disp8

BP+disp16

BX+disp16

(sib)+disp32

EBP+disp32

ESI+disp32

EDI+disp32 "

same same same same same

=ECX

=EAX

addr  as  addr  as  addr as addr as as

mod= 0 mod= 0 mod= 0 mod= 0 reg

+ disp 8 + disp 8 + disp1 6 + disp3 2 field

Figure K.38 The encoding of the first address specifier of the 80x86,mod, reg, r/m. The first four columns show the
encoding of the 3-bit reg field, which depends on the w bit from the opcode and whether the machine is in 16- or 32-
bit mode. The remaining columns explain the mod and r/m fields. The meaning of the 3-bit r/m field depends on the
value in the 2-bit mod field and the address size. Basically, the registers used in the address calculation are listed in the
sixth and seventh columns, under mod¼ 0, with mod¼ 1 adding an 8-bit displacement and mod¼ 2 adding a 16- or
32-bit displacement, depending on the address mode. The exceptions are r/m¼ 6whenmod¼ 1 or mod¼ 2 in 16-bit
mode selects BP plus the displacement; r/m¼ 5 when mod¼ 1 or mod¼ 2 in 32-bit mode selects EBP plus displace-
ment; and r/m ¼ 4 in 32-bit mode when mod ¦3 (sib) means use the scaled index mode shown in Figure K.39. When
mod ¼ 3, the r/m field indicates a register, using the same encoding as the reg field combined with the w bit.

esaBxednI

XAEXAE0
XCEXCE1
XDEXDE2
XBEXBE3
PSExednioN4

23psid,0=domfIPBE5
If mod ¦ 0, EBP

ISEISE6
IDEIDE7

Figure K.39 Based plus scaled index mode address specifier found in the 80386. This
mode is indicated by the (sib) notation in Figure K.38. Note that this mode expands the
list of registers to be used in other modes: Register indirect using ESP comes from Scale
¼ 0, Index ¼ 4, and Base ¼ 4, and base displacement with EBP comes from Scale ¼ 0,
Index ¼ 5, and mod ¼ 0. The two-bit scale field is used in this formula of the effective
address: Base register + 2Scale � Index register.
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Putting It All Together: Measurements
of Instruction Set Usage

In this section, we present detailed measurements for the 80x86 and then compare
the measurements to MIPS for the same programs. To facilitate comparisons
among dynamic instruction set measurements, we use a subset of the SPEC92 pro-
grams. The 80x86 results were taken in 1994 using the Sun Solaris FORTRAN and
C compilers V2.0 and executed in 32-bit mode. These compilers were comparable
in quality to the compilers used for MIPS.

Remember that these measurements depend on the benchmarks chosen and the
compiler technology used. Although we feel that the measurements in this section
are reasonably indicative of the usage of these architectures, other programs may
behave differently from any of the benchmarks here, and different compilers may
yield different results. In doing a real instruction set study, the architect would want
to have a much larger set of benchmarks, spanning as wide an application range as
possible, and consider the operating system and its usage of the instruction set.
Single-user benchmarks like those measured here do not necessarily behave in
the same fashion as the operating system.

We start with an evaluation of the features of the 80x86 in isolation, and later
compare instruction counts with those of DLX.

Measurements of 80x86 Operand Addressing

We start with addressing modes. Figure K.40 shows the distribution of the operand
types in the 80x86. These measurements cover the “second” operand of the oper-
ation; for example,

mov EAX, [45]

counts as a single memory operand. If the types of the first operand were counted,
the percentage of register usage would increase by about a factor of 1.5.

The 80x86 memory operands are divided into their respective addressing

modes in Figure K.41. Probably the biggest surprise is the popularity of the

Integer average FP average

%54retsige
%61etaidemm

%22
%6
%27%93yrome

igure K.40 Operand type distribution for the average of five SPECint92 programs
ompress, eqntott, espresso, gcc, li) and the average of five SPECfp92 programs
oduc, ear, hydro2d, mdljdp2, su2cor).



Addressing mode Integer average FP average

%31tceridniretsigeR
%13.psidtib-8+esaB
%9.psidtib-23+esaB
%0dexednI
%0.psidtib-8+dexednidesaB
%0.psidtib-23+dexednidesaB
%22dexednidelacs+esaB

Base + scaled indexed + 8-bit disp. 0%
Base + scaled indexed + 32-bit disp. 4%

%3
%51
%52
%0
%0
%1
%7

8%
4%
%73%02tceridtib-23

Figure K.41 Operand addressing mode distribution by program. This chart does not
include addressing modes used by branches or control instructions.
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addressing modes added by the 80386, the last four rows of the figure. They
account for about half of all the memory accesses. Another surprise is the popu-
larity of direct addressing. On most other machines, the equivalent of the direct
addressing mode is rare. Perhaps the segmented address space of the 80x86 makes
direct addressing more useful, since the address is relative to a base address from
the segment register.

These addressing modes largely determine the size of the Intel instructions.
Figure K.42 shows the distribution of instruction sizes. The average number of
bytes per instruction for integer programs is 2.8, with a standard deviation of
1.5, and 4.1 with a standard deviation of 1.9 for floating-point programs. The dif-
ference in length arises partly from the differences in the addressing modes: Integer
programs rely more on the shorter register indirect and 8-bit displacement addres-
sing modes, while floating-point programs more frequently use the 80386 addres-
sing modes with the longer 32-bit displacements.

Given that the floating-point instructions have aspects of both stacks and reg-
isters, how are they used? Figure K.43 shows that, at least for the compilers used in
this measurement, the stack model of execution is rarely followed. (See Section L.3
for a historical explanation of this observation.)

Finally, Figures K.44 and K.45 show the instruction mixes for 10 SPEC92
programs.

Comparative Operation Measurements

Figures K.46 and K.47 show the number of instructions executed for each of the 10

programs on the 80x86 and the ratio of instruction execution compared with that



doduc ear hydro2d mdljdp2 su2cor FP average

Stack (2nd operand ST (1
Register (2nd operand ST(i), i 

)) 1.1% 0.0% 0.0% 0.2% 0.6% 0.4%
> 1) 17.3% 63.4% 14.2% 7.1% 30.7% 26.5%

%1.37%7.86%7.29%8.58%6.63%6.18yromeM

Option

Figure K.43 The percentage of instructions for the floating-point operations (add, sub, mul, div) that use each of
the three options for specifying a floating-point operand on the 80x86. The three options are (1) the strict stack
model of implicit operands on the stack, (2) register version naming an explicit operand that is not one of the top two
elements of the stack, and (3) memory operand.
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Figure K.42 Averages of the histograms of 80x86 instruction lengths for five SPE-
Cint92 programs and for five SPECfp92 programs, all running in 32-bit mode.
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for DLX: Numbers less than 1.0 mean that the 80x86 executes fewer instructions
than DLX. The instruction count is surprisingly close to DLX for many integer
programs, as you would expect a load-store instruction set architecture like
DLX to execute more instructions than a register-memory architecture like the

80x86. The floating-point programs always have higher counts for the 80x86,



Instruction doduc ear hydro2d mdljdp2 su2cor FP average

%02%6.72%6.72%0.81%5.6%9.8daoL
%8%8.7%8.7%5.11%1.3%4.21erotS
%01%8.8%8.8%6.41%6.6%4.5ddA
%3%4.2%4.2%3.3%4.2%0.1buS

Mul 0%
Div 0%

%2%0.1%0.1%8.0%1.5%8.1erapmoC
Mov reg-reg 3.2% 0.1% 1.8% 2.3% 2.3% 2%

%0%5.1%4.0mmidaoL
Cond. branch 5.4% 8.2% 5.1% 2.7% 2.7% 5%
Uncond branch 0.8% 0.4% 1.3% 0.3% 0.3% 1%

%0%1.0%1.0%6.1%5.0llaC
%0%1.0%1.0%6.1%5.0tceridnipmj,nruteR
%2%5.2%5.2%5.4%1.1tfihS

AND 0.8% 0.8% 0.7% 1.3% 1.3% 1%
OR %0%1.0%1.0%1.0
Other (XOR, not, . . .) 0%

%41%6.21%6.21%1.9%5.22%1.41PFdaoL
%7%6.6%6.6%1.4%4.11%6.8PFerotS
%5%6.6%6.6%4.1%1.6%8.5PFddA
%3%9.2%9.2%1.3%7.2%2.2PFbuS
%9%0.21%0.21%1.4%0.8%9.8PFluM
%0%2.0%2.0%8.0%1.2PFviD

Compare FP 9.4% 6.9% 10.8% 0.5% 0.5% 5%
Mov reg-reg FP 2.5% 0.8% 0.3% 0.8% 0.8% 1%
Other (abs, sqrt, . . .) 3.9% 3.8% 4.1% 0.8% 0.8% 2%

Figure K.44 80x86 instruction mix for five SPECfp92 programs.
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presumably due to the lack of floating-point registers and the use of a stack
architecture.

Another question is the total amount of data traffic for the 80x86 versus DLX,
since the 80x86 can specify memory operands as part of operations while DLX
can only access via loads and stores. Figures K.46 and K.47 also show the data

reads, data writes, and data read-modify-writes for these 10 programs. The total



Instruction compress eqntott espresso gcc (cc1) li Int. average

%22%3.32%9.42%9.12%5.81%8.02daoL
%21%7.81%6.61%3.8%2.3%8.31erotS
%8%1.6%6.7%51.8%8.8%3.01ddA
%5%6.3%9.2%5.3%6.01%0.7buS
%0%1.0luM

Div 0%
Compare 8.2% 27.7% 15.3% 13.5% 7.7% 16%
Mov reg-reg 7.9% 0.6% 5.0% 4.2% 7.8% 4%

%0%4.0%6.0%2.0%5.0mmidaoL
Cond. branch 15.5% 28.6% 18.9% 17.4% 15.4% 20%
Uncond. branch 1.2% 0.2% 0.9% 2.2% 2.2% 1%

%1%2.3%5.1%7.0%4.0%5.0llaC
Return, jmp indirect 0.5% 0.4% 0.7% 1.5% 3.2% 1%

%1%7.1%5.2%8.3tfihS
AND 8.4% 1.0% 8.7% 4.5% 8.4% 6%
OR %1%4.0%4.0%7.2%6.0
Other (XOR %1%1.0%2.2%9.0)...,ton,
Load FP 0%
Store FP 0%
Add FP 0%
Sub FP 0%
Mul FP 0%
Div FP 0%
Compare FP 0%
Mov reg-reg FP 0%
Other (abs, sqrt, . . .) 0%

Figure K.45 80x86 instruction mix for five SPECint92 programs.
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accesses ratio to DLX of each memory access type is shown in the bottom
rows, with the read-modify-write counting as one read and one write. The
80x86 performs about two to four times as many data accesses as DLX for
floating-point programs, and 1.25 times as many for integer programs. Finally,
Figure K.48 shows the percentage of instructions in each category for 80x86

and DLX.



compress eqntott espresso gcc (cc1) li Int. avg.

Instructions executed on 80x86 (millions) 2226 1203 2216 3770 5020
Instructions executed ratio to DLX 0.61 1.74 0.85 0.96 0.98 1.03
Data reads on 80x86 (millions) 589 229 622 1079 1459
Data writes on 80x86 (millions) 311 39 191 661 981
Data read-modify-writes on 80x86 (millions) 26 1 129 48 48
Total data reads on 80x86 (millions) 615 230 751 1127 1507

01.149.052.183.190.158.0XLDotoitardaerataD
Total data writes on 80x86 (millions) 338 40 319 709 1029

51.302.152.193.262.976.1XLDotoitaretirwataD
Total data accesses on 80x86 (millions) 953 269 1070 1836 2536

32.130.152.185.152.130.1XLDotoitarsseccaataD

Figure K.46 Instructions executed and data accesses on 80x86 and ratios compared to DLX for five SPECint92
programs.

doduc ear hydro2d mdljdp2 su2cor FP average

Instructions executed on 80x86 (millions) 1223 15,220 13,342 6197 6197
Instructions executed ratio to DLX 1.19 1.19 2.53 2.09 1.62 1.73
Data reads on 80x86 (millions) 515 6007 5501 3696 3643
Data writes on 80x86 (millions) 260 2205 2085 892 892
Data read-modify-writes on 80x86 (millions) 1 0 189 124 124
Total data reads on 80x86 (millions) 517 6007 5690 3820 3767

15.319.377.484.463.240.2XLDotoitardaerataD
Total data writes on 80x86 (millions) 261 2205 2274 1015 1015

3XLDotoitaretirwataD .68 33.25 38.74 16.74 9.35 20.35
Total data accesses on 80x86 (millions) 778 8212 7965 4835 4782

53.474.437.599.541.304.2XLDotoitarsseccaataD

Figure K.47 Instructions executed and data accesses for five SPECfp92 programs on 80x86 and ratio to DLX.
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Concluding Remarks

Beauty is in the eye of the beholder.

Old Adage

As we have seen, “orthogonal” is not a term found in the Intel architectural dictio-
nary. To fully understand which registers and which addressing modes are avail-
able, you need to see the encoding of all addressing modes and sometimes the

encoding of the instructions.



K.4

Integer average FP average

Category x86 DLX x86 DLX

Total data transfer 34% 36% 28% 2%
Total integer arithmetic 34% 31% 16% 12%
Total control 24% 20% 6% 10%
Total logical 8% 13% 3% 2%
Total FP data transfer 0% 0% 22% 33%
Total FP arithmetic 0% 0% 25% 41%

Figure K.48 Percentage of instructions executed by category for 80x86 and DLX for
the averages of five SPECint92 and SPECfp92 programs of Figures K.46 and K.47.
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Some argue that the inelegance of the 80x86 instruction set is unavoidable, the
price that must be paid for rampant success by any architecture. We reject that
notion. Obviously, no successful architecture can jettison features that were added
in previous implementations, and over time some features may be seen as unde-
sirable. The awkwardness of the 80x86 began at its core with the 8086 instruction
set and was exacerbated by the architecturally inconsistent expansions of the 8087,
80286, and 80386.

A counterexample is the IBM 360/370 architecture, which is much older than
the 80x86. It dominates the mainframe market just as the 80x86 dominates the PC
market. Due undoubtedly to a better base and more compatible enhancements, this
instruction set makes much more sense than the 80x86 more than 30 years after its
first implementation.

For better or worse, Intel had a 16-bit microprocessor years before its compet-
itors’more elegant architectures, and this head start led to the selection of the 8086
as the CPU for the IBM PC. What it lacks in style is made up in quantity, making
the 80x86 beautiful from the right perspective.

The saving grace of the 80x86 is that its architectural components are not too
difficult to implement, as Intel has demonstrated by rapidly improving perfor-
mance of integer programs since 1978. High floating-point performance is a larger

challenge in this architecture.
The VAX Architecture

VAX: the most successful minicomputer design in industry history . . . the VAX was
probably the hacker’s favorite machine . . . . Especially noted for its large,
assembler-programmer-friendly instruction set—an asset that became a liability
after the RISC revolution.

Eric Raymond

The New Hacker’s Dictionary (1991)
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Introduction

To enhance your understanding of instruction set architectures, we chose the VAX as
the representative Complex Instruction Set Computer (CISC) because it is so differ-
ent fromMIPS and yet still easy to understand. By seeing two such divergent styles,
we are confident that you will be able to learn other instruction sets on your own.

At the time the VAX was designed, the prevailing philosophy was to create
instruction sets that were close to programming languages in order to simplify
compilers. For example, because programming languages had loops, instruction
sets should have loop instructions. As VAX architect William Strecker said
(“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,” AFIPS
Proc., National Computer Conference, 1978):
in t
A major goal of the VAX-11 instruction set was to provide for effective compiler
generated code. Four decisions helped to realize this goal: 1) A very regular and
consistent treatment of operators . . . . 2) An avoidance of instructions unlikely
to be generated by a compiler . . . . 3) Inclusions of several forms of common
operators . . . . 4) Replacement of common instruction sequences with single
instructions . . . . Examples include procedure calling, multiway branching, loop

control, and array subscript calculation.

Recall that DRAMs of the mid-1970s contained less than 1/1000th the capacity
of today’s DRAMs, so code space was also critical. Hence, another prevailing phi-
losophy was to minimize code size, which is de-emphasized in fixed-length
instruction sets like MIPS. For example, MIPS address fields always use 16 bits,
even when the address is very small. In contrast, the VAX allows instructions to be
a variable number of bytes, so there is little wasted space in address fields.

Whole books have been written just about the VAX, so this VAX extension
cannot be exhaustive. Hence, the following sections describe only a few of its
addressing modes and instructions. To show the VAX instructions in action, later
sections show VAX assembly code for two C procedures. The general style will be
to contrast these instructions with theMIPS code that you are already familiar with.

The differing goals for VAX andMIPS have led to very different architectures.
The VAX goals, simple compilers and code density, led to the powerful addressing
modes, powerful instructions, and efficient instruction encoding. The MIPS goals
were high performance via pipelining, ease of hardware implementation, and com-
patibility with highly optimizing compilers. The MIPS goals led to simple instruc-
tions, simple addressing modes, fixed-length instruction formats, and a large
number of registers.

VAX Operands and Addressing Modes

The VAX is a 32-bit architecture, with 32-bit-wide addresses and 32-bit-wide reg-
isters. Yet, the VAX supports many other data sizes and types, as Figure K.49
shows. Unfortunately, VAX uses the name “word” to refer to 16-bit quantities;
his text, a word means 32 bits. Figure K.49 shows the conversion between



Bits Data type MIPS name VAX name

08 Integer Byte Byte
16 Integer Half word Word
32 Integer Word Long word
32 Floating point Single precision F_floating
64 Integer Double word Quad word
64 Floating point Double precision D_floating or G_floating
8n Character string Character Character 

Figure K.49 VAX data types, their lengths, and names. The first letter of the VAX type
(b, w, l, f, q, d, g, c) is often used to complete an instruction name. Examples of move
instructions include movb, movw, movl, movf, movq, movd, movg, and movc3.
Each move instruction transfers an operand of the data type indicated by the letter
following mov.
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the MIPS data type names and the VAX names. Be careful when reading about
VAX instructions, as they refer to the names of the VAX data types.

The VAX provides sixteen 32-bit registers. The VAX assembler uses the
notation r0, r1, . . . , r15 to refer to these registers, and we will stick to that
notation. Alas, 4 of these 16 registers are effectively claimed by the instruction set
architecture. For example, r14 is the stack pointer (sp) and r15 is the program
counter (pc). Hence, r15 cannot be used as a general-purpose register, and using
r14 is very difficult because it interferes with instructions that manipulate the
stack. The other dedicated registers are r12, used as the argument pointer (ap),
and r13, used as the frame pointer (fp); their purpose will become clear later.
(Like MIPS, the VAX assembler accepts either the register number or the register
name.)

VAX addressing modes include those discussed in Appendix A, which has all
the MIPS addressing modes: register, displacement, immediate, and PC-relative.
Moreover, all these modes can be used for jump addresses or for data addresses.

But that’s not all the addressing modes. To reduce code size, the VAX has three
lengths of addresses for displacement addressing: 8-bit, 16-bit, and 32-bit
addresses called, respectively, byte displacement, word displacement, and long
displacement addressing. Thus, an address can be not only as small as possible
but also as large as necessary; large addresses need not be split, so there is no equiv-
alent to the MIPS lui instruction (see Figure A.24 on page A-37).

Those are still not all the VAX addressing modes. Several have a deferred
option, meaning that the object addressed is only the address of the real object,
requiring another memory access to get the operand. This addressing mode is
called indirect addressing in other machines. Thus, register deferred, autoincre-
ment deferred, and byte/word/long displacement deferred are other addressing

modes to choose from. For example, using the notation of the VAX assembler,



Addressing mode
name Sy

Literal #v
v#etaidemmI

nrretsigeR
Register deferred (r
Byte/word/long 
displacement

D

Byte/word/long 
displacement deferred

@

Indexed (scaled) B

Autoincrement (r
Autodecrement – 
Autoincrement deferred @

Figure K.50 Definition and
plus the length of any displac
the remaining 6 bits encode t
Note that the length of an im
the value of the immediate. T
32-bit add.
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r1 means the operand is register 1 and (r1) means the operand is the location in
memory pointed to by r1.

There is yet another addressing mode. Indexed addressing automatically con-
verts the value in an index operand to the proper byte address to add to the rest of
the address. For a 32-bit word, we needed to multiply the index of a 4-byte quantity
by 4 before adding it to a base address. Indexed addressing, called scaled addres-
sing on some computers, automatically multiplies the index of a 4-byte quantity by
4 as part of the address calculation.

To cope with such a plethora of addressing options, the VAX architecture
separates the specification of the addressing mode from the specification of
the operation. Hence, the opcode supplies the operation and the number of oper-
ands, and each operand has its own addressing mode specifier. Figure K.50
shows the name, assembler notation, example, meaning, and length of the address
specifier.

The VAX style of addressing means that an operation doesn’t know where its
operands come from; a VAX add instruction can have three operands in registers,
three operands in memory, or any combination of registers and memory

operands.

ntax Example Meaning
Length of address
specifier in bytes

alue #–1 )eulavdengistib-6(11–
ehtfohtgnel+1001001#eula

immediate
13r3r

n) (r3) Memory[r3] 1
isplacement (rn) 100(r3) Memory[r3 + 100] 1 + length of the

displacement
displacement (rn) @100(r3) Memory[Memory [r3 + 100]] 1 + length of the

displacement
ase mode [rx] (r3)[r4] Memory[r3 + r4 d]

(where d is data size in bytes)
1 + length of base 
addressing mode

n)+ (r3)+ Memory[r3]; r3 = r3 + d 1
(rn) –(r3) r3 = r3 – d; Memory[r3] 1
(rn)+ @(r3)+ Memory[Memory[r3]]; r3 = r3 + d 1

length of the VAX operand specifiers. The length of each addressing mode is 1 byte
ement or immediate field needed by themode. Literal mode uses a special 2-bit tag and
he constant value. If the constant is too big, it must use the immediate addressingmode.
mediate operand is dictated by the length of the data type indicated in the opcode, not
he symbol d in the last four modes represents the length of the data in bytes; d is 4 for
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Answer
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How long is the following instruction?

addl3 r1,737(r2),(r3)[r4]

The name addl3 means a 32-bit add instruction with three operands. Assume the

length of the VAX opcode is 1 byte.

The first operand specifier—r1—indicates register addressing and is 1 byte long.
The second operand specifier—737(r2)—indicates displacement addressing
and has two parts: The first part is a byte that specifies the word displacement
addressing mode and base register (r2); the second part is the 2-byte-long dis-
placement (737). The third operand specifier—(r3)[r4]—also has two parts:
The first byte specifies register deferred addressing mode ((r3)), and the second
byte specifies the Index register and the use of indexed addressing ([r4]). Thus, the

total length of the instruction is 1 + (1) + (1 + 2) + (1 + 1) ¼ 7 bytes.
In this example instruction, we show the VAX destination operand on the left and
the source operands on the right, just as we show MIPS code. The VAX assembler
actually expects operands in the opposite order, but we felt it would be less con-
fusing to keep the destination on the left for both machines. Obviously, left or right

orientation is arbitrary; the only requirement is consistency.
Because the PC is 1 of the 16 registers that can be selected in a VAX addressing
mode, 4 of the 22 VAX addressing modes are synthesized from other addressing
modes. Using the PC as the chosen register in each case, immediate addressing is
really autoincrement, PC-relative is displacement, absolute is autoincrement
deferred, and relative deferred is displacement deferred.

Encoding VAX Instructions

Given the independence of the operations and addressing modes, the encoding of
instructions is quite different from MIPS.

VAX instructions begin with a single byte opcode containing the operation and
the number of operands. The operands follow the opcode. Each operand begins
with a single byte, called the address specifier, that describes the addressing mode
for that operand. For a simple addressing mode, such as register addressing, this
byte specifies the register number as well as the mode (see the rightmost column
in Figure K.50). In other cases, this initial byte can be followed by many more
bytes to specify the rest of the address information.

As a specific example, let’s show the encoding of the add instruction from the
example on page K-24:

addl3 r1,737(r2),(r3)[r4]

Assume that this instruction starts at location 201.
Figure K.51 shows the encoding. Note that the operands are stored in memory
in opposite order to the assembly code above. The execution of VAX instructions



Byte address Contents at each byte Machine code

1c3lddagniniatnocedocpO102 hex

44]4r[rofreificepsedomxednI202 hex

203 Register indirect mode specifier for (r3) 63hex

204 Word displacement mode specifier using r2 as base c2hex

1e737tnatsnoctib-61ehT502 hex

20602 hex

151rrofreificepsedomretsigeR702 hex

Figure K.51 The encoding of the VAX instruction addl3 r1,737(r2),(r3)[r4], assuming
it starts at address 201. To satisfy your curiosity, the right column shows the actual VAX
encoding in hexadecimal notation. Note that the 16-bit constant 737ten takes 2 bytes.
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begins with fetching the source operands, so it makes sense for them to come first.
Order is not important in fixed-length instructions like MIPS, since the source and
destination operands are easily found within a 32-bit word.

The first byte, at location 201, is the opcode. The next byte, at location 202, is a
specifier for the index mode using register r4. Like many of the other specifiers,
the left 4 bits of the specifier give the mode and the right 4 bits give the register
used in that mode. Since addl3 is a 4-byte operation, r4 will be multiplied by 4
and added to whatever address is specified next. In this case it is register deferred
addressing using register r3. Thus, bytes 202 and 203 combined define the third
operand in the assembly code.

The following byte, at address 204, is a specifier for word displacement addres-
sing using register r2 as the base register. This specifier tells the VAX that the fol-
lowing two bytes, locations 205 and 206, contain a 16-bit address to be added to r2.

The final byte of the instruction gives the destination operand, and this specifier
selects register addressing using register r1.

Such variability in addressing means that a single VAX operation can have
many different lengths; for example, an integer add varies from 3 bytes to 19 bytes.
VAX implementations must decode the first operand before they can find the sec-
ond, and so implementors are strongly tempted to take 1 clock cycle to decode each
operand; thus, this sophisticated instruction set architecture can result in higher
clock cycles per instruction, even when using simple addresses.

VAX Operations

In keeping with its philosophy, the VAX has a large number of operations as well
as a large number of addressing modes. We review a few here to give the flavor of
the machine.

Given the power of the addressing modes, the VAX move instruction performs
several operations found in other machines. It transfers data between any two

addressable locations and subsumes load, store, register-register moves, and
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memory-memory moves as special cases. The first letter of the VAX data type (b,
w, l, f, q, d, g, c in Figure K.49) is appended to the acronym mov to determine the
size of the data. One special move, called move address, moves the 32-bit address
of the operand rather than the data. It uses the acronym mova.

The arithmetic operations of MIPS are also found in the VAX, with two major
differences. First, the type of the data is attached to the name. Thus, addb, addw,
and addl operate on 8-bit, 16-bit, and 32-bit data in memory or registers, respec-
tively; MIPS has a single add instruction that operates only on the full 32-bit reg-
ister. The second difference is that to reduce code size the add instruction specifies
the number of unique operands; MIPS always specifies three even if one operand is
redundant. For example, the MIPS instruction

add $1, $1, $2

takes 32 bits like all MIPS instructions, but the VAX instruction

addl2 r1, r2

uses r1 for both the destination and a source, taking just 24 bits: 8 bits for the
opcode and 8 bits each for the two register specifiers.

Number of Operations

Now we can show how VAX instruction names are formed:

operationð Þ datatypeð Þ 2
3

� �

The operation add works with data types byte, word, long, float, and double and
comes in versions for either 2 or 3 unique operands, so the following instructions

are all foun VAX
d in the
 :
addb2
 addw2
 addl2
 addf2
 addd2

addb3 addw3 addl3 addf3 addd3

Accounting for all addressing modes (but ignoring register numbers and immediate
values) and limiting to just byte, word, and long, there are more than 30,000 ver-
sions of integer add in the VAX; MIPS has just 4!

Another reason for the large number of VAX instructions is the instructions
that either replace sequences of instructions or take fewer bytes to represent a sin-
gle instruction. Here are four such examples (* means the data type):

VAX operation Example Meaning

clr* clrl r3 r3 = 0

inc* incl r3 r3 = r3+1

dec* decl r3 r3 = r3 −1

push* pushl r3 sp = sp −4; Memory[sp] = r3;
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The push instruction in the last row is exactly the same as using the move instruc-
tion with autodecrement addressing on the stack pointer:

movl – (sp), r3

Brevity is the advantage of pushl: It is 1 byte shorter since sp is implied.

Branches, Jumps, and Procedure Calls

The VAX branch instructions are related to the arithmetic instructions because the
branch instructions rely on condition codes. Condition codes are set as a side effect
of an operation, and they indicate whether the result is positive, negative, or zero or
if an overflow occurred. Most instructions set the VAX condition codes according
to their result; instructions without results, such as branches, do not. The VAX con-
dition codes are N (Negative), Z (Zero), V (oVerflow), and C (Carry). There is also
a compare instruction cmp* just to set the condition codes for a subsequent branch.

The VAX branch instructions include all conditions. Popular branch instruc-
tions include beql(=), bneq( 6¼), blss(<), bleq(�), bgtr(>),
and bgeq(�), which do just what you would expect. There are also unconditional
branches whose name is determined by the size of the PC-relative offset. Thus,
brb (branch byte) has an 8-bit displacement, and brw (branch word) has a 16-
bit displacement.

The final major category we cover here is the procedure call and return instruc-
tions. Unlike the MIPS architecture, these elaborate instructions can take dozens of
clock cycles to execute. The next two sections show how they work, but we need to
explain the purpose of the pointers associated with the stack manipulated by calls
and ret. The stack pointer, sp, is just like the stack pointer inMIPS; it points to the
top of the stack. The argument pointer, ap, points to the base of the list of arguments
or parameters in memory that are passed to the procedure. The frame pointer, fp,
points to the base of the local variables of the procedure that are kept in memory (the
stack frame). The VAX call and return instructions manipulate these pointers to
maintain the stack in proper condition across procedure calls and to provide conve-
nient base registers to use when accessing memory operands. As we shall see, call
and return also save and restore the general-purpose registers as well as the program
counter. Figure K.52 gives a further sampling of the VAX instruction set.

An Example to Put It All Together: swap

To see programming in VAX assembly language, we translate two C procedures,
swap and sort. The C code for swap is reproduced in Figure K.53. The next
section covers sort.

We describe the swap procedure in three general steps of assembly language
programming:

1. Allocate registers to program variables.

2. Produce code for the body of the procedure.
3. Preserve registers across the procedure invocation.



gninaemnoitcurtsnIelpmaxEepytnoitcurtsnI

n byte, half-word, word, or double-word operands; * is data type
mov* Move between two operands

or word, extending it with zeros
an operand; data type is last

on integer or logical bytes, half words (16 bits), words (32 bits); * is data 
type 

 size of data type
sehcnarblanoitidnocnudnalanoitidnoClortnoC
 branch not equal

l, branch greater than or equal

nd; branch if result second operand
 case selector

ents on stack (see “A Longer 
Example: sort” on page K-33)

RTRAN-style parameter list
return address (like MIPS jal)

Data transfers Move data betwee

Arithmetic/logical Operations 

Procedure Call/return from procedure

Floating point Floating-point operations on D, F, G, and H formats
format floating numbers
n D-format floating numbers

on F-format floating point
e of coefficients in F format

snoitarepolaicepSrehtO
 redundancy check

movzb* Move a byte to a half word 
mova* Move the 32-bit address of 
push* Push operand onto stack

add*_ Add with 2 or 3 operands
cmp* Compare and set condition codes
tst* Compare to zero and set condition codes
ash* Arithmetic shift
clr* Clear
cvtb* Sign-extend byte to

beql, bneq Branch equal,
bleq, bgeq Branch less than or equa
brb, brw Unconditional branch with an 8-bit or 16-bit address
jmp Jump using any addressing mode to specify target
aobleq Add one to opera
case_ Jump based on

calls Call procedure with argum

callg Call procedure with FO
jsb Jump to subroutine, saving 
ret Return from procedure call

addd_ Add double-precision D-
subd_ Subtract double-precisio
mulf_ Multiply single-precisi
polyf Evaluate a polynomial using tabl

crc Calculate cyclic
insque Insert a queue entry into a queue

Figure K.52 Classes of VAX instructions with examples. The asterisk stands for multiple data types: b, w, l, d, f, g, h,
and q. The underline, as in addd_, means there are 2-operand (addd2) and 3-operand (addd3) forms of this
instruction.
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swap(int v[], int k)
{
   int temp;
   temp = v[k];
   v[k] = v[k + 1];
   v[k + 1] = temp;
}

Figure K.53 A C procedure that swaps two locations in memory. This procedure will
be used in the sorting example in the next section.
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The VAX code for these procedures is based on code produced by the VMS C
compiler using optimization.

Register Allocation for swap

In contrast to MIPS, VAX parameters are normally allocated to memory, so this
step of assembly language programming is more properly called “variable alloca-
tion.” The standard VAX convention on parameter passing is to use the stack. The
two parameters, v[] and k, can be accessed using register ap, the argument
pointer: The address 4(ap) corresponds to v[] and 8(ap) corresponds to k.
Remember that with byte addressing the address of sequential 4-byte words differs
by 4. The only other variable is temp, which we associate with register r3.

Code for the Body of the Procedure swap

The remaining lines of C code in swap are

temp = v[k];

v[k] = v[k + 1];

v[k + 1] = temp;

Since this program uses v[] and k several times, to make the programs run faster
the VAX compiler first moves both parameters into registers:

movl r2, 4(ap) ;r2 = v[]

movl r1, 8(ap) ;r1 = k

Note that we follow the VAX convention of using a semicolon to start a comment;
the MIPS comment symbol # represents a constant operand in VAX assembly

language.
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The VAX has indexed addressing, so we can use index k without converting it
to a byte address. The VAX code is then straightforward:

movl r3, (r2)[r1] ;r3 (temp) = v[k]

addl3 r0, #1,8(ap) ;r0 = k + 1

movl (r2)[r1],(r2)[r0] ;v[k] = v[r0] (v[k + 1])

movl (r2)[r0],r3 ;v[k + 1] = r3 (temp)

Unlike the MIPS code, which is basically two loads and two stores, the key VAX
code is one memory-to-register move, one memory-to-memory move, and one
register-to-memory move. Note that the addl3 instruction shows the flexibility
of the VAX addressing modes: It adds the constant 1 to a memory operand and
places the result in a register.

Now we have allocated storage and written the code to perform the operations
of the procedure. The only missing item is the code that preserves registers across
the routine that calls swap.

Preserving Registers across Procedure Invocation of swap

The VAX has a pair of instructions that preserve registers, calls and ret. This
example shows how they work.

The VAX C compiler uses a form of callee convention. Examining the code
above, we see that the values in registers r0, r1, r2, and r3 must be saved
so that they can later be restored. The calls instruction expects a 16-bit mask
at the beginning of the procedure to determine which registers are saved: if bit i
is set in the mask, then register i is saved on the stack by the calls instruction.
In addition, calls saves this mask on the stack to allow the return instruction
(ret) to restore the proper registers. Thus, the calls executed by the caller does
the saving, but the callee sets the call mask to indicate what should be saved.

One of the operands for calls gives the number of parameters being passed,
so that calls can adjust the pointers associated with the stack: the argument
pointer (ap), frame pointer (fp), and stack pointer (sp). Of course, calls also
saves the program counter so that the procedure can return!

Thus, to preserve these four registers for swap, we just add the mask at the
beginning of the procedure, letting the calls instruction in the caller do all the work:

.word m̂<r0,r1,r2,r3> ;set bits in mask for 0,1,2,3

This directive tells the assembler to place a 16-bit constant with the proper bits set
to save registers r0 through r3.

The return instruction undoes the work of calls. When finished, ret sets the
stack pointer from the current frame pointer to pop everything calls placed on
the stack. Along the way, it restores the register values saved by calls, including

those marked by the mask and old values of the fp, ap, and pc.
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To complete the procedure swap, we just add one instruction:

ret ;restore registers and return

The Full Procedure swap

We are now ready for the whole routine. Figure K.54 identifies each block of code
with its purpose in the procedure, with theMIPS code on the left and the VAX code
on the right. This example shows the advantage of the scaled indexed addressing
and the sophisticated call and return instructions of the VAX in reducing the num-
ber of lines of code. The 17 lines of MIPS assembly code became 8 lines of VAX
assembly code. It also shows that passing parameters in memory results in extra
memory accesses.

Keep in mind that the number of instructions executed is not the same as per-
formance; the fallacy on page K-38 makes this point.

Note that VAX software follows a convention of treating registers r0 and r1
as temporaries that are not saved across a procedure call, so the VMS C compiler
does include registers r0 and r1 in the register saving mask. Also, the C compiler
should have used r1 instead of 8(ap) in the addl3 instruction; such examples

inspire computer architects to try to write compilers!

MIPS versus VAX

Saving register

Procedure body

Restoring registers

swap: addi $29,$29, –12
sw  $2, 0($29)
sw $15, 4($29)
sw $16, 8($29)

swap: .word ^m<r0,r1,r2,r3>

muli $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

movl r2, 4(a)
movl r1, 8(a) 
movl r3, (r2)[r1]
addl3 r0, #1,8(ap)
movl (r2)[r1],(r2)[r0]
movl (r2)[r0],r3

lw  $2, 0($29)
lw $15, 4($29)
lw $16, 8($29)
addi $29,$29, 12

Procedure return
ret$31jr

Figure K.54 MIPS versus VAX assembly code of the procedure swap in Figure K.53
on page K-30.
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A Longer Example: sort

We show the longer example of the sort procedure. Figure K.55 shows the C ver-
sion of the program. Once again we present this procedure in several steps, con-
cluding with a side-by-side comparison to MIPS code.

Register Allocation for sort

The two parameters of the procedure sort, v and n, are found in the stack in loca-
tions 4(ap) and 8(ap), respectively. The two local variables are assigned to regis-
ters: i to r6 and j to r4. Because the two parameters are referenced frequently in the
code, the VMS C compiler copies the address of these parameters into registers
upon entering the procedure:

moval r7,8(ap) ;move address of n into r7

moval r5,4(ap) ;move address of v into r5

It would seem that moving the value of the operand to a register would be more
useful than its address, but once again we bow to the decision of the VMS C com-
piler. Apparently the compiler cannot be sure that v and n don’t overlap in memory.

Code for the Body of the sort Procedure

The procedure body consists of two nested for loops and a call to swap, which
includes parameters. Let’s unwrap the code from the outside to the middle.

The Outer Loop

The first translation step is the first for loop:

for (i = 0; i < n; i = i + 1) {

Recall that the C for statement has three parts: initialization, loop test, and iteration
increment. It takes just one instruction to initialize i to 0, the first part of the for
statement:
clrl r6 ;i = 0

sort (int v[], int n)
{
int i, j;
for (i = 0; i < n; i = i + 1) {
for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1)
{ swap(v,j);

}
}

}

Figure K.55 A C procedure that performs a bubble sort on the array v.
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It also takes just one instruction to increment i, the last part of the for:

incl r6 ;i = i + 1

The loop should be exited if i < n is false, or said another way, exit the loop if
i � n. This test takes two instructions:

for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)
bgeq exit1 ;go to exit1 if r6 � mem[r7] (i � n)

Note that cmpl sets the condition codes for use by the conditional branch
instruction bgeq.

The bottom of the loop just jumps back to the loop test:

brb for1tst ;branch to test of outer loop
exit1:

The skeleton code of the first for loop is then

clrl r6 ;i = 0
for1tst: cmpl r6,(r7) ;compare r6 and memory[r7] (i:n)

bgeq exit1 ;go to exit1 if r6� mem[r7] (i� n)
...
(body of first for loop)
...

incl r6 ;i = i + 1
brb for1tst ;branch to test of outer loop

exit1:

The Inner Loop
The second for loop is

for (j = i – 1; j >= 0 && v[j] > v[j + 1]; j = j – 1) {

The initialization portion of this loop is again one instruction:

subl3 r4,r6,#1 ;j = i – 1

The decrement of j is also one instruction:

decl r4 ;j = j – 1

The loop test has two parts. We exit the loop if either condition fails, so the first test
must exit the loop if it fails (j < 0):

for2tst:blss exit2 ;go to exit2 if r4< 0 (j< 0)

Notice that there is no explicit comparison. The lack of comparison is a benefit of
condition codes, with the conditions being set as a side effect of the prior instruc-
tion. This branch skips over the second condition test.

The second test exits ifv[j]>v[j+1] is false, or exits ifv[j]�v[j+1].
First we load v and put j + 1 into registers:

movl r3,(r5) ;r3 = Memory[r5] (r3 = v)

addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
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Register indirect addressing is used to get the operand pointed to by r5.
Once again the index addressing mode means we can use indices without con-

verting to the byte address, so the two instructions for v[j] � v[j + 1] are

cmpl (r3)[r4],(r3)[r2] ;v[r4] : v[r2] (v[j]:v[j + 1])
bleq exit2 ;go to exit2 if v[j] � v[j + 1]

The bottom of the loop jumps back to the full loop test:

brb for2tst # jump to test of inner loop

Combining the pieces, the second for loop looks like this:
subl3 r4,r6, #1 ;j = i – 1

for2tst: blss exit2 ;go to exit2 if r4 < 0 (j < 0)
movl r3,(r5) ;r3 = Memory[r5] (r3 = v)
addl3 r2,r4,#1 ;r2 = r4 + 1 (r2 = j + 1)
cmpl (r3)[r4],(r3)[r2];v[r4] : v[r2]
bleq exit2 ;go to exit2 if v[j] ð [j+1]

...
(body of second for loop) ...

decl r4 ;j = j – 1
brb for2tst ;jump to test of inner loop

exit2:

Notice that the instruction blss (at the top of the loop) is testing the condition
codes based on the new value of r4 (j), set either by the subl3 before entering
the loop or by the decl at the bottom of the loop.

The Procedure Call
The next step is the body of the second for loop:

swap(v,j);

Calling swap is easy enough:

calls #2,swap

The constant 2 indicates the number of parameters pushed on the stack.

Passing Parameters
The C compiler passes variables on the stack, so we pass the parameters to swap
with these two instructions:

pushl (r5) ;first swap parameter is v
pushl r4 ;second swap parameter is j

Register indirect addressing is used to get the operand of the first instruction.

Preserving Registers across Procedure Invocation of sort

The only remaining code is the saving and restoring of registers using the callee
save convention. This procedure uses registers r2 through r7, so we add a mask

with those bits set:
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.word m̂<r2,r3,r4,r5,r6,r7>; set mask for registers 2-7

Since ret will undo all the operations, we just tack it on the end of the procedure.

The Full Procedure sort

Now we put all the pieces together in Figure K.56. To make the code easier to fol-
low, once again we identify each block of code with its purpose in the procedure
and list the MIPS and VAX code side by side. In this example, 11 lines of the sort
procedure in C become the 44 lines in the MIPS assembly language and 20 lines in
VAX assembly language. The biggest VAX advantages are in register saving and
restoring and indexed addressing.

Fallacies and Pitfalls

The ability to simplify means to eliminate the unnecessary so that the necessary
may speak.

Hans Hoffman
Search for the Real (1967)
It is possible to design a flawless architecture.

All architecture design involves trade-offs made in the context of a set of hardware
and software technologies. Over time those technologies are likely to change, and
decisions that may have been correct at one time later look like mistakes. For exam-
ple, in 1975 the VAX designers overemphasized the importance of code size effi-
ciency and underestimated how important ease of decoding and pipelining would
be 10 years later. And, almost all architectures eventually succumb to the lack of
sufficient address space. Avoiding these problems in the long run, however, would

probably mean compromising the efficiency of the architecture in the short run.

An architecture with flaws cannot be successful.

The IBM 360 is often criticized in the literature—the branches are not PC-relative,
and the address is too small in displacement addressing. Yet, the machine has been
an enormous success because it correctly handled several new problems. First, the
architecture has a large amount of address space. Second, it is byte addressed and
handles bytes well. Third, it is a general-purpose register machine. Finally, it is sim-
ple enough to be efficiently implemented across a wide performance and cost range.

The Intel 8086 provides an evenmore dramatic example. The 8086 architecture
is the only widespread architecture in existence today that is not truly a general-
purpose register machine. Furthermore, the segmented address space of the
8086 causes major problems for both programmers and compiler writers. Never-
theless, the 8086 architecture—because of its selection as the microprocessor in the

IBM PC—has been enormously successful.



MIPS versus VAX

Saving registers
sort: addi $29,$29, –36

sw $15, 0($29)
sw $16, 4($29)
sw $17, 8($29)
sw $18,12($29)
sw $19,16($29)
sw $20,20($29)
sw $24,24($29)
sw $25,28($29)
sw $31,32($29)

sort: .word ^m<r2,r3,r4,r5,r6,r7>

Procedure body
Move parameters move $18, $4

move $20, $5
moval r7,8(ap)
moval r5,4(ap)

Outer loop add $19, $0, $0
for1tst: slt $8, $19, $20

beq $8, $0, exit1

clrl r6
for1tst: cmpl r6,(r7)

bgeq exit1

$17, $19, –1addipoolrennI
for2tst: slti $8, $17, 0

bne $8, $0, exit2
muli $15, $17, 4
add $16, $18, $15
lw $24, 0($16)
lw $25, 4($16)
slt $8, $25, $24
beq $8, $0, exit2

for2tst:
subl3 r4,r6,#1

blss exit2
movl r3,(r5)

addl3 r2,r4,#1 
cmpl (r3)[r4],(r3)[r2]
bleq exit2

Pass parameters
and call

move $4, $18
move $5, $17
jal swap

pushl (r5)
pushl  r4
calls #2,swap

poolrennI

Outer loop exit2: addi $19, $19, 1

$17, $17, –1addi
j for2tst

decl r4
brb for2tst

j for1tst
exit2: incl r6

brb for1tst

Restoring registers
exit1: lw $15,0($29)

lw $16, 4($29)
lw $17, 8($29)
lw $18,12($29)
lw $19,16($29)
lw $20,20($29)
lw $24,24($29)
lw $25,28($29)
lw $31,32($29)
addi $29,$29, 36

Procedure return
retexit1:$31jr

Figure K.56 MIPS32 versus VAX assembly version of procedure sort in Figure K.55 on page K-33.
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Figure K.57 Ratio of MIPS M2000 to VAX 8700 in instructions executed and perfor-
mance in clock cycles using SPEC89 programs. On average, MIPS executes a little over
twice as many instructions as the VAX, but the CPI for the VAX is almost six times the
MIPS CPI, yielding almost a threefold performance advantage. (Based on data from “Per-
formance from Architecture: Comparing a RISC and CISC with Similar Hardware Orga-
nization,” by D. Bhandarkar and D. Clark, in Proc. Symp. Architectural Support for
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Fallacy
 The architecture that executes fewer instructions is faster.

Designers of VAX machines performed a quantitative comparison of VAX and
MIPS for implementations with comparable organizations, the VAX 8700 and
the MIPS M2000. Figure K.57 shows the ratio of the number of instructions exe-
cuted and the ratio of performance measured in clock cycles. MIPS executes about
twice as many instructions as the VAX while the MIPS M2000 has almost three
times the performance of the VAX 8700.

Concluding Remarks

The Virtual Address eXtension of the PDP-11 architecture … provides a virtual
address of about 4.3 gigabytes which, even given the rapid improvement of mem-
ory technology, should be adequate far into the future.

William Strecker

“VAX-11/780—A Virtual Address Extension to the PDP-11 Family,”
AFIPS Proc., National Computer Conference (1978)

We have seen that instruction sets can vary quite dramatically, both in how they
access operands and in the operations that can be performed by a single instruction.
Figure K.58 compares instruction usage for both architectures for two programs;

Programming Languages and Operating Systems IV, 1991.)
even very different architectures behave similarly in their use of instruction classes.



Program Machine Branch
Arithmetic/

 logical
Data 

transfer
Floating

point Totals

gcc VAX 30% 40% 19% 89%
MIPS 24% 35% 27% 86%

spice VAX 18% 23% 15% 23% 79%
MIPS 04% 29% 35% 15% 83%

Figure K.58 The frequency of instruction distribution for two programs on VAX
and MIPS.
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A product of its time, the VAX emphasis on code density and complex oper-
ations and addressing modes conflicts with the current emphasis on easy decoding,
simple operations and addressing modes, and pipelined performance.

With more than 600,000 sold, the VAX architecture has had a very successful
run. In 1991, DEC made the transition from VAX to Alpha.

Orthogonality is key to the VAX architecture; the opcode is independent of the
addressing modes, which are independent of the data types and even the number of
unique operands. Thus, a few hundred operations expand to hundreds of thousands of
instructionswhenaccounting for thedata types, operandcounts, andaddressingmodes.
Exercises

K.1 [3] <K.4> The following VAX instruction decrements the location pointed to be

register r5:

decl (r5)
What is the single MIPS instruction, or if it cannot be represented in a single
instruction, the shortest sequence of MIPS instructions, that performs the same

operation? What are the lengths of the instructions on each machine?

K.2 [5]<K.4> This exercise is the same as Exercise K.1, except this VAX instruction

clears a location using autoincrement deferred addressing:
clrl @(r5)+

K.3 [5]<K.4> This exercise is the same as Exercise K.1, except this VAX instruction
adds 1 to register r5, placing the sum back in register r5, compares the sum to reg-

ister r6, and then branches to L1 if r5 < r6:
aoblss r6, r5, L1 # r5 = r5 + 1; if (r5 < r6) goto L1.

K.4 [5]<K.4> Show the single VAX instruction, or minimal sequence of instructions,

for this C statement:

a = b + 100;

Assume a corresponds to register r3 and b corresponds to register r4.

K.5 [10] <K.4> Show the single VAX instruction, or minimal sequence of instruc-

tions, for this C statement:

x[i + 1] = x[i] + c;
Assume c corresponds to register r3, i to register r4, and x is an array of 32-bit

words beginning at memory location 4,000,000ten.
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K.5
 The IBM 360/370 Architecture for Mainframe Computers

Introduction

The term “computer architecture” was coined by IBM in 1964 for use with the IBM
360. Amdahl, Blaauw, and Brooks [1964] used the term to refer to the programmer-
visible portion of the instruction set. They believed that a family of machines of the
same architecture should be able to run the same software. Although this idea may
seem obvious to us today, it was quite novel at the time. IBM, even though it was the
leading company in the industry, had five different architectures before the 360.Thus,
the notion of a company standardizing on a single architecture was a radical one. The
360 designers hoped that six different divisions of IBM could be brought together by
defining a common architecture. Their definition of architecture was
arch
… the structure of a computer that a machine language programmer must

understand to write a correct (timing independent) program for that machine.

The term “machine language programmer” meant that compatibility would
hold, even in assembly language, while “timing independent” allowed different
implementations.

The IBM 360 was introduced in 1964 with six models and a 25:1 performance
ratio. Amdahl, Blaauw, and Brooks [1964] discussed the architecture of the IBM
360 and the concept of permitting multiple object-code-compatible implementa-
tions. The notion of an instruction set architecture as we understand it today
was the most important aspect of the 360. The architecture also introduced several
important innovations, now in wide use:

1. 32-bit architecture

2. Byte-addressable memory with 8-bit bytes

3. 8-, 16-, 32-, and 64-bit data sizes

4. 32-bit single-precision and 64-bit double-precision floating-point data

In 1971, IBMshipped the first System/370 (models 155 and 165),which included
a number of significant extensions of the 360, as discussed by Case and Padegs
[1978], who also discussed the early history of System/360. Themost important addi-
tion was virtual memory, though virtual memory 370 s did not ship until 1972, when
a virtual memory operating systemwas ready. By 1978, the high-end 370was several
hundred times faster than the low-end 360 s shipped 10 years earlier. In 1984, the 24-
bit addressingmodel built into the IBM360 needed to be abandoned, and the 370-XA
(eXtended Architecture) was introduced. While old 24-bit programs could be sup-
ported without change, several instructions could not function in the same manner
when extended to a 32-bit addressing model (31-bit addresses supported) because
they would not produce 31-bit addresses. Converting the operating system, which
was written mostly in assembly language, was no doubt the biggest task.

Several studies of the IBM 360 and instruction measurement have been made.
Shustek’s thesis [1978] is the best known and most complete study of the 360/370
itecture. He made several observations about instruction set complexity that
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were not fully appreciated until some years later. Another important study of the
360 is the Toronto study by Alexander and Wortman [1975] done on an IBM 360
using 19 XPL programs.

System/360 Instruction Set

The 360 instruction set is shown in the following tables, organized by instruction
type and format. System/370 contains 15 additional user instructions.

Integer/Logical and Floating-Point R-R Instructions

The * indicates the instruction is floating point, and may be either D (double pre-
cision) or E (single precision).

noitpircseDnoitcurtsnI

retsigerlacigolddAALR

retsigerddAAR

noitiddaPFA*R

retsigerlacigolerapmoCCLR

retsigererapmoCCR

erapmocPFC*R

retsigerediviDDR

edividPFD*R

evlahPFH*R

retsigertnemelpmocdaoLLCR

tnemelpmocdaoLLC*R

retsigerevitagendaoLLNR

evitagendaoLLN*R

retsigerevitisopdaoLLPR

evitisopdaoLLP*R

retsigerdaoLLR

retsigerPFdaoLL*R

retsigertsetdnadaoLLTR

retsigerPFtsetdnadaoLLT*R

retsigerylpitluMMR

ylpitlumPFM*R

retsigerdnANR

retsigerrOOR

ltcartbuSSLR ogical register
retsigertcartbuSSR

noitcartbusPFS*R

retsigerroevisulcxEXR
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Branches and Status Setting R-R Instructions

These are R-R format instructions that either branch or set some system status; sev-
eral of them are privileged and legal only in supervisor mode.

noitpircseDnoitcurtsnI

BALR Branch and link
BCTR Branch on count
BCR Branch/condition
ISK Insert key
SPM Set program mask
SSK Set storage key
SVC Supervisor call

Branches/Logical and Floating-Point Instructions—RX Format

These are all RX format instructions. The symbol “+” means either a word oper-
ation (and then stands for nothing) or H (meaning half word); for example, A+
stands for the two opcodes A and AH. The “*” represents D or E, standing for
double- or single-precision floating point.

noitpircseDnoitcurtsnI

A+ Add
A* FP add
AL Add logical
C+ Compare
C* FP compare
CL Compare logical

ediviDD

D* FP divide
L+ Load
L* Load FP register
M+ Multiply
M* FP multiply

dnAN

rOO

S+ Subtract
S* FP subtract
SL Subtract logical
ST+ Store
ST* Store FP register

roevisulcxEX
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Branches and Special Loads and Stores—RX Format

noitpircseDnoitcurtsnI

knil dna hcnarBBAL

noitidnoc hcnarBBC

tnuoc no hcnarBBCT

yranib-trevnoCCVB

lamiced-trevnoCCVD

etucexEEX

retcarahc tresnIIC

sserdda daoLLA

retcarahc erotSSTC

RS and SI Format Instructions

These are the RS and SI format instructions. The symbol “*” may be A (arith-
metic) or L (logical).

noitpircseDnoitcurtsnI

hgih/hcnarBBXH

lauqe-wol/hcnarBBXLE

igol erapmoCCLI cal immediate
O/I tlaHHIO

WSP daoLLPSW

elpitlum daoLLM

etaidemmi evoMMVI

etaidemmi dnANI

etaidemmi rOOI

tcerid daeRRDD

O/I tratSSIO

L/A tfel tfihSSL*

L/A elbuod tfel tfihSSLD*

L/A thgir tfihSSR*

L/A elbuod thgir tfihSSRD*

ksam metsys teSSSM

elpitlum erotSSTM

lennahc tseTTCH

O/I tseTTIO

ksam rednu tseTTM

tes-dna-tseTTS

tcerid etirWWRD

etaidemmi ro evisulcxEXI
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SS Format Instructions

These are add decimal or string instructions.

noitpircseDnoitcurtsnI

dekcapddAAP

srahclacigolerapmoCCLC

dekcaperapmoCCP

dekcapediviDDP

tidEED

kramdnatidEEDMK

dekcapylpitluMMP

retcarahcevoMMVC

ciremunevoMMVN

tesffohtiwevoMMVO

enozevoMMVZ

sretcarahcdnANC

sretcarahcrOOC

r → decimal)etcarahC(kcaPPACK

dekcaptcartbuSSP

etalsnarTTR

tsetdnaetalsnarTTRT

kcapnUUNPK

sretcarahcroevisulcxEXC

dekcapddadnaoreZZAP

360 Detailed Measurements
Figure K.59 shows the frequency of instruction usage for four IBM 360 programs.



Instruction PLIC FORTGO PLIGO COBOLGO Average

%61%61%5%31%23lortnoC
%51%41%5%31%82BC, BCR
%1%2%3BAL, BALR

%01%12%71%3A, AR
%3%7%3SR
%2%3%6SLL
%2%1%1%8LA
%2%7CLI

NI 7% 2%
%3%0%4%4%5C
%2%3%1%3TM
%1%2MH

Arithmetic/logical 29% 35% 29% 9% 26%

%33%02%65%04%71refsnartataD
%91%91%82%32%7L, LR
%5%1%61%2MVI
%3%7%3ST
%2%2%7LD
%2%2%7STD
%1%3LPDR
%1%3LH
%1%2IC
%0%1LTR
%2%7tniopgnitaolF
%1%3AD
%1%3MDR
%11%04%4gnirts,lamiceD
%3%7%4MVC

AP 11% 3%
ZAP 9% 2%
CVD 5% 1%
MP 3% 1%
CLC 3% 1%
CP 2% 1%
ED 1% 0%

%88%58%09%59%28latoT

Figure K.59 Distribution of instruction execution frequencies for the four 360 programs. All instructions with a fre-
quency of execution greater than 1.5% are included. Immediate instructions, which operate on only a single byte, are
included in the section that characterized their operation, rather than with the long character-string versions of the
same operation. By comparison, the average frequencies for the major instruction classes of the VAX are 23% (con-
trol), 28% (arithmetic), 29% (data transfer), 7% (floating point), and 9% (decimal). Once again, a 1% entry in the aver-
age column can occur because of entries in the constituent columns. These programs are a compiler for the
programming language PL-I and runtime systems for the programming languages FORTRAN, PL/I, and Cobol.
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K.6
 Historical Perspective and References

Section L.4 (available online) features a discussion on the evolution of instruction

sets and includes references for further reading and exploration of related topics.
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