
M.1 Introduction M-2

M.2 The Early Development of Computers (Chapter 1) M-2

M.3 The Development of Memory Hierarchy and Protection

(Chapter 2 and Appendix B) M-9

M.4 The Evolution of Instruction Sets (Appendices A, J, and K) M-17

M.5 The Development of Pipelining and Instruction-Level Parallelism

(Chapter 3 and Appendices C and H) M-27

M.6 The Development of SIMD Supercomputers, Vector Computers,

Multimedia SIMD Instruction Extensions, and Graphical

Processor Units (Chapter 4) M-45

M.7 The History of Multiprocessors and Parallel Processing

(Chapter 5 and Appendices F, G, and I) M-55

M.8 The Development of Clusters (Chapter 6) M-74

M.9 Historical Perspectives and References M-79

M.10 The History of Magnetic Storage, RAID, and I/O Buses (Appendix D) M-84

M

Historical Perspectives and

References
If … history … teaches us anything, it is that man in his quest for
knowledge and progress is determined and cannot be deterred.

John F. Kennedy
Address at Rice University (1962)

Those who cannot remember the past are condemned to repeat it.
George Santayana
The Life of Reason (1905), Vol. 2, Chapter 3

M-2 ■ Appendix M Historical Perspectives and References
M.1

M.2
Introduction

This appendix provides historical background on some of the key ideas presented
in the chapters. We may trace the development of an idea through a series of
machines or describe significant projects. If you are interested in examining the
initial development of an idea or machine or are interested in further reading,
references are provided at the end of each section.

SectionM.2 starts us off with the invention of the digital computer and corre-
sponds to Chapter 1. Section M.3, on memory hierarchy, corresponds to Chapter 2
and Appendix B. Section M.4, on instruction set architecture, covers Appendices
A, J, and K. Section M.5, on pipelining and instruction-level parallelism, corre-
sponds to Chapter 3 and Appendices C and H. Section M.6, on data-level paral-
lelism in vector, SIMD, and GPU architectures, corresponds to Chapter 4.
Section M.7, on multiprocessors and parallel programming, covers Chapter 5
and Appendices F, G, and I. Section M.8, on the development of clusters, covers

Chapter 6. Finally, Section M.9, on I/O, corresponds to Appendix D.
The Early Development of Computers (Chapter 1)

In this historical section, we discuss the early development of digital computers
and the development of performance measurement methodologies.

The First General-Purpose Electronic Computers

J. Presper Eckert and John Mauchly at the Moore School of the University of
Pennsylvania built the world’s first fully operational electronic general-purpose
computer. This machine, called ENIAC (Electronic Numerical Integrator and
Calculator), was funded by the U.S. Army and became operational during World
War II, but it was not publicly disclosed until 1946. ENIAC was used for comput-
ing artillery firing tables. The machine was enormous—100 feet long, 8½ feet
high, and several feet wide. Each of the 20 ten-digit registers was 2 feet long.
In total, there were 18,000 vacuum tubes.

Although the size was three orders of magnitude bigger than the size of the
average machines built today, it was more than five orders of magnitude slower,
with an add taking 200 microseconds. The ENIAC provided conditional jumps
and was programmable, which clearly distinguished it from earlier calculators.
Programming was done manually by plugging up cables and setting switches
and required from a half hour to a whole day. Data were provided on punched
cards. The ENIAC was limited primarily by a small amount of storage and tedious
programming.

In 1944, John von Neumann was attracted to the ENIAC project. The group
wanted to improve the way programs were entered and discussed storing programs
as numbers; von Neumann helped crystallize the ideas and wrote a memo propos-

ing a stored-program computer called EDVAC (Electronic Discrete Variable

M.2 The Early Development of Computers ■ M-3
Automatic Computer). Herman Goldstine distributed the memo and put von Neu-
mann’s name on it, much to the dismay of Eckert and Mauchly, whose names were
omitted. This memo has served as the basis for the commonly used term von
Neumann computer. Several early inventors in the computer field believe that this
term gives too much credit to von Neumann, who conceptualized and wrote up the
ideas, and too little to the engineers, Eckert and Mauchly, who worked on the
machines. Like most historians, your authors (winners of the 2000 IEEE von
Neumann Medal) believe that all three individuals played a key role in developing
the stored-program computer. Von Neumann’s role in writing up the ideas, in gen-
eralizing them, and in thinking about the programming aspects was critical in trans-
ferring the ideas to a wider audience.

In 1946, Maurice Wilkes of Cambridge University visited the Moore School
to attend the latter part of a series of lectures on developments in electronic com-
puters. When he returned to Cambridge, Wilkes decided to embark on a project
to build a stored-program computer named EDSAC (Electronic Delay Storage
Automatic Calculator). (The EDSAC used mercury delay lines for its memory;
hence, the phrase “delay storage” in its name.) The EDSAC became operational
in 1949 and was the world’s first full-scale, operational, stored-program computer
[Wilkes, Wheeler, and Gill 1951; Wilkes 1985, 1995]. (A small prototype called
the Mark I, which was built at the University of Manchester and ran in 1948, might
be called the first operational stored-program machine.) The EDSAC was an
accumulator-based architecture. This style of instruction set architecture remained
popular until the early 1970s. (Appendix A starts with a brief summary of the
EDSAC instruction set.)

In 1947, Mauchly took the time to help found the Association for Computing
Machinery. He served as the ACM’s first vice-president and second president.
That same year, Eckert and Mauchly applied for a patent on electronic computers.
The dean of the Moore School, by demanding that the patent be turned over to the
university, may have helped Eckert and Mauchly conclude that they should leave.
Their departure crippled the EDVAC project, which did not become operational
until 1952.

Goldstine left to join von Neumann at the Institute for Advanced Study at
Princeton in 1946. Together with Arthur Burks, they issued a report based on the
1944 memo [Burks, Goldstine, and von Neumann 1946]. The paper led to the
IAS machine built by Julian Bigelow at Princeton’s Institute for Advanced Study.
It had a total of 1024 40-bit words andwas roughly 10 times faster than ENIAC. The
group thought about uses for themachine, published a set of reports, and encouraged
visitors. These reports and visitors inspired the development of a number of new
computers, including the first IBM computer, the 701, which was based on the
IAS machine. The paper by Burks, Goldstine, and von Neumann was incredible
for the period. Reading it today, you would never guess this landmark paper was
writtenmore than 50 years ago, asmost of the architectural concepts seen inmodern
computers are discussed there (e.g., see the quote at the beginning of Chapter 2).

In the same time period as ENIAC, Howard Aiken was designing an electro-

mechanical computer called the Mark-I at Harvard. TheMark-I was built by a team

M-4 ■ Appendix M Historical Perspectives and References
of engineers from IBM. He followed the Mark-I with a relay machine, the Mark-II,
and a pair of vacuum tube machines, the Mark-III and Mark-IV. The Mark-III
and Mark-IV were built after the first stored-program machines. Because they
had separate memories for instructions and data, the machines were regarded as
reactionary by the advocates of stored-program computers. The term Harvard
architecture was coined to describe this type of machine. Though clearly different
from the original sense, this term is used today to apply to machines with a single
main memory but with separate instruction and data caches.

The Whirlwind project [Redmond and Smith 1980] began at MIT in 1947 and
was aimed at applications in real-time radar signal processing. Although it led to
several inventions, its overwhelming innovation was the creation of magnetic core
memory, the first reliable and inexpensive memory technology. Whirlwind had
2048 16-bit words of magnetic core. Magnetic cores served as the main memory

technology for nearly 30 years.
Important Special-Purpose Machines

DuringWorldWar II, major computing efforts in both Great Britain and the United
States focused on special-purpose code-breaking computers. The work in Great
Britainwas aimed at decryptingmessages encodedwith theGermanEnigma coding
machine. This work, which occurred at a location called Bletchley Park, led to two
important machines. The first, an electromechanical machine, conceived of byAlan
Turing, was called BOMB [see Good in Metropolis, Howlett, and Rota 1980]. The
second, much larger and electronic machine, conceived and designed by Newman
and Flowers, was calledCOLOSSUS [seeRandall inMetropolis, Howlett, andRota
1980]. These were highly specialized cryptanalysis machines, which played a vital
role in the war by providing the ability to read coded messages, especially those
sent to U-boats. The work at Bletchley Park was highly classified (indeed, some
of it is still classified), so its direct impact on the development of ENIAC, EDSAC,
and other computers is difficult to trace, but it certainly had an indirect effect in
advancing the technology and gaining understanding of the issues.

Similar work on special-purpose computers for cryptanalysis went on in the
United States. The most direct descendent of this effort was the company Engineer-
ing Research Associates (ERA) [see Thomash in Metropolis, Howlett, and Rota
1980], which was founded after the war to attempt to commercialize on the key
ideas. ERA built several machines that were sold to secret government agencies,
and it was eventually purchased by Sperry-Rand, which had earlier purchased the
Eckert Mauchly Computer Corporation.

Another early set of machines that deserves credit was a group of special-
purpose machines built by Konrad Zuse in Germany in the late 1930s and early
1940s [see Bauer and Zuse in Metropolis, Howlett, and Rota 1980]. In addition
to producing an operating machine, Zuse was the first to implement floating point,
which von Neumann claimed was unnecessary! His early machines used a

mechanical store that was smaller than other electromechanical solutions of the

M.2 The Early Development of Computers ■ M-5
time. His last machine was electromechanical but, because of the war, was never
completed.

An important early contributor to the development of electronic computers was
JohnAtanasoff, who built a small-scale electronic computer in the early 1940s [Ata-
nasoff 1940].Hismachine, designed at IowaStateUniversity,was a special-purpose
computer (called the ABC, for Atanasoff Berry Computer) that was never
completely operational. Mauchly briefly visited Atanasoff before he built ENIAC,
and several of Atanasoff’s ideas (e.g., using binary representation) likely influenced
Mauchly. The presence of the Atanasoff machine, delays in filing the ENIAC pat-
ents (the work was classified, and patents could not be filed until after the war), and
the distribution of von Neumann’s EDVAC paper were used to break the Eckert–
Mauchly patent [Larson 1973]. Though controversy still rages over Atanasoff’s
role, Eckert and Mauchly are usually given credit for building the first working,
general-purpose, electronic computer [Stern 1980]. Atanasoff, however, demon-
strated several important innovations included in later computers. Atanasoff
deservesmuch credit for hiswork, and hemight fairly be given credit for theworld’s
first special-purpose electronic computer and for possibly influencing Eckert and
Mauchly.

Commercial Developments

In December 1947, Eckert and Mauchly formed Eckert-Mauchly Computer
Corporation. Their first machine, the BINAC, was built for Northrop and was
shown in August 1949. After some financial difficulties, the Eckert-Mauchly Com-
puter Corporation was acquired by Remington-Rand, later called Sperry-Rand.
Sperry-Rand merged the Eckert-Mauchly acquisition, ERA, and its tabulating
business to form a dedicated computer division, called UNIVAC. UNIVAC deliv-
ered its first computer, the UNIVAC I, in June 1951. The UNIVAC I sold for
$250,000 and was the first successful commercial computer—48 systems were
built! Today, this early machine, along with many other fascinating pieces of com-
puter lore, can be seen at the Computer History Museum in Mountain View,
California. Other places where early computing systems can be visited include
the Deutsches Museum in Munich and the Smithsonian Institution in Washington,
D.C., as well as numerous online virtual museums.

IBM, which earlier had been in the punched card and office automation busi-
ness, didn’t start building computers until 1950. The first IBM computer, the IBM
701 based on von Neumann’s IAS machine, shipped in 1952 and eventually sold
19 units [see Hurd in Metropolis, Howlett, and Rota 1980]. In the early 1950s,
many people were pessimistic about the future of computers, believing that the
market and opportunities for these “highly specialized” machines were quite lim-
ited. Nonetheless, IBM quickly became the most successful computer company.
Their focus on reliability and customer- and market-driven strategies were key.
Although the 701 and 702 were modest successes, IBM’s follow-up machines,
the 650, 704, and 705 (delivered in 1954 and 1955) were significant successes,

each selling from 132 to 1800 computers.

M-6 ■ Appendix M Historical Perspectives and References
Several books describing the early days of computing have been written by the
pioneers [Goldstine 1972;Wilkes 1985, 1995], as well as Metropolis, Howlett, and
Rota [1980], which is a collection of recollections by early pioneers. There are
numerous independent histories, often built around the people involved [Slater
1987], as well as a journal, Annals of the History of Computing, devoted to the

history of computing.
Development of Quantitative Performance Measures:
Successes and Failures

In the earliest days of computing, designers set performance goals—ENIACwas to
be 1000 times faster than the Harvard Mark-I, and the IBM Stretch (7030) was to
be 100 times faster than the fastest machine in existence. What wasn’t clear,
though, was how this performance was to be measured. In looking back over
the years, it is a consistent theme that each generation of computers obsoletes
the performance evaluation techniques of the prior generation.

The original measure of performance was time to perform an individual oper-
ation, such as addition. Since most instructions took the same execution time, the
timing of one gave insight into the others. As the execution times of instructions in
a machine becamemore diverse, however, the time for one operation was no longer
useful for comparisons. To take these differences into account, an instruction mix
was calculated by measuring the relative frequency of instructions in a computer
across many programs. The Gibson mix [Gibson 1970] was an early popular
instruction mix. Multiplying the time for each instruction times its weight in the
mix gave the user the average instruction execution time. (If measured in clock
cycles, average instruction execution time is the same as average cycles per instruc-
tion.) Since instruction sets were similar, this was a more accurate comparison than
add times. From average instruction execution time, then, it was only a small step
to MIPS (as we have seen, the one is the inverse of the other). MIPS had the virtue
of being easy for the layperson to understand.

As CPUs became more sophisticated and relied on memory hierarchies and
pipelining, there was no longer a single execution time per instruction; MIPS could
not be calculated from the mix and the manual. The next step was benchmarking
using kernels and synthetic programs. Curnow and Wichmann [1976] created the
Whetstone synthetic program by measuring scientific programs written in Algol
60. This program was converted to FORTRAN and was widely used to character-
ize scientific program performance. An effort with similar goals to Whetstone, the
Livermore FORTRAN Kernels, was made by McMahon [1986] and researchers at
Lawrence Livermore Laboratory in an attempt to establish a benchmark for super-
computers. These kernels, however, consisted of loops from real programs.

As it became clear that using MIPS to compare architectures with different
instruction sets would not work, a notion of relative MIPS was created. When
the VAX-11/780 was ready for announcement in 1977, DEC ran small benchmarks

that were also run on an IBM 370/158. IBMmarketing referred to the 370/158 as a

M.2 The Early Development of Computers ■ M-7
1 MIPS computer, and, because the programs ran at the same speed, DEC market-
ing called the VAX-11/780 a 1 MIPS computer. Relative MIPS for a machine M
was defined based on some reference machine as:

MIPSM ¼ PerformanceM
Performancereference

�MIPSreference

The popularity of the VAX-11/780made it a popular reference machine for relative
MIPS, especially since relative MIPS for a 1MIPS computer is easy to calculate: If
a machine was five times faster than the VAX-11/780, for that benchmark its rating
would be 5 relative MIPS. The 1 MIPS rating was unquestioned for 4 years, until
Joel Emer of DECmeasured the VAX-11/780 under a time-sharing load. He found
that the VAX-11/780 native MIPS rating was 0.5. Subsequent VAXes that ran 3
nativeMIPS for some benchmarks were therefore called 6MIPSmachines because
they ran six times faster than the VAX-11/780. By the early 1980s, the termMIPS
was almost universally used to mean relative MIPS.

The 1970s and 1980s marked the growth of the supercomputer industry, which
was defined by high performance on floating-point-intensive programs. Average
instruction time and MIPS were clearly inappropriate metrics for this industry,
hence the invention of MFLOPS (millions of floating-point operations per
second), which effectively measured the inverse of execution time for a bench-
mark. Unfortunately, customers quickly forget the program used for the rating,
andmarketing groups decided to start quoting peakMFLOPS in the supercomputer
performance wars.

SPEC (System Performance and Evaluation Cooperative) was founded in the
late 1980s to try to improve the state of benchmarking and make a more valid basis
for comparison. The group initially focused on workstations and servers in the
UNIXmarketplace, and these remain the primary focus of these benchmarks today.
The first release of SPEC benchmarks, now called SPEC89, was a substantial
improvement in the use of more realistic benchmarks. SPEC2006 still dominates

processor benchmarks almost two decades later.
References

Amdahl, G. M. [1967]. “Validity of the single processor approach to achieving
large scale computing capabilities,” Proc. AFIPS Spring Joint Computer Conf.,
April 18–20, 1967, Atlantic City, N.J., 483–485.

Atanasoff, J. V. [1940]. “Computing machine for the solution of large systems of
linear equations,” Internal Report, Iowa State University, Ames.

Azizi, O., Mahesri, A., Lee, B. C., Patel, S. J., & Horowitz, M. [2010]. Energy-
performance tradeoffs in processor architecture and circuit design: a marginal
cost analysis. Proc. International Symposium on Computer Architecture, 26-36.

Bell, C. G. [1984]. “The mini and micro industries,” IEEE Computer 17:10 (Octo-
ber), 14–30.

Bell, C. G., J. C. Mudge, and J. E. McNamara [1978]. A DEC View of Computer

Engineering, Digital Press, Bedford, Mass.

M-8 ■ Appendix M Historical Perspectives and References
Burks, A. W., H. H. Goldstine, and J. von Neumann [1946]. “Preliminary
discussion of the logical design of an electronic computing instrument,” Report
to the U.S. Army Ordnance Department, p. 1; also appears in Papers of John von
Neumann, W. Aspray and A. Burks, eds., MIT Press, Cambridge, Mass., and
Tomash Publishers, Los Angeles, Calif., 1987, 97–146.

Curnow, H. J., and B. A. Wichmann [1976]. “A synthetic benchmark,” The
Computer J. 19:1, 43–49.

Dally, William J., “High Performance Hardware for Machine Learning,” Cadence
Embedded Neural Network Summit, February 9, 2016. http://ip.cadence.
com/uploads/presentations/1000AM_Dally_Cadence_ENN.pdf

Flemming, P. J., and J. J. Wallace [1986]. “How not to lie with statistics: The cor-
rect way to summarize benchmarks results,” Communications of the ACM 29:3
(March), 218–221.

Fuller, S. H., and W. E. Burr [1977]. “Measurement and evaluation of alternative
computer architectures,” Computer 10:10 (October), 24–35.

Gibson, J. C. [1970]. “The Gibson mix,” Rep. TR. 00.2043, IBM Systems Devel-
opment Division, Poughkeepsie, N.Y. (research done in 1959).

Goldstine, H. H. [1972]. The Computer: From Pascal to von Neumann, Princeton
University Press, Princeton, N.J.

Gray, J., and C. van Ingen [2005]. Empirical Measurements of Disk Failure Rates
and Error Rates, MSR-TR-2005-166, Microsoft Research, Redmond, Wash.

Jain, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling, Wiley,
New York.

Kembel, R. [2000]. “Fibre Channel: A comprehensive introduction,” Internet
Week (April).

Larson, E. R. [1973]. “Findings of fact, conclusions of law, and order for judg-
ment,” File No. 4-67, Civ. 138,Honeywell v. Sperry-Rand and Illinois Scientific
Development, U.S. District Court for the State of Minnesota, Fourth Division
(October 19).

Lubeck, O., J. Moore, and R. Mendez [1985]. “A benchmark comparison of
three supercomputers: Fujitsu VP-200, Hitachi S810/20, and Cray X-MP/2,”
Computer 18:12 (December), 10–24.

Landstrom, B. [2014]. “The Cost Of Downtime,” http://www.interxion.com/blogs/
2014/07/the-cost-of-downtime/

McMahon, F. M. [1986]. The Livermore FORTRAN Kernels: A Computer Test of
Numerical Performance Range, Tech. Rep. UCRL-55745, Lawrence Livermore
National Laboratory, University of California, Livermore.

Metropolis, N., J. Howlett, and G. C. Rota, eds. [1980]. A History of Computing in
the Twentieth Century, Academic Press, New York.

Mukherjee S. S., C. Weaver, J. S. Emer, S. K. Reinhardt, and T. M. Austin [2003].
“Measuring architectural vulnerability factors,” IEEE Micro 23:6, 70–75.

Oliker, L., A. Canning, J. Carter, J. Shalf, and S. Ethier [2004]. “Scientific com-
putations on modern parallel vector systems,” Proc. ACM/IEEE Conf. on

Supercomputing, November 6–12, 2004, Pittsburgh, Penn., 10.

M.3

M.3 The Development of Memory Hierarchy and Protection ■ M-9
Patterson, D. [2004]. “Latency lags bandwidth,” Communications of the ACM
47:10 (October), 71–75.

Redmond, K. C., and T. M. Smith [1980]. Project Whirlwind—The History of a
Pioneer Computer, Digital Press, Boston.

Shurkin, J. [1984]. Engines of the Mind: A History of the Computer, W.W. Norton,
New York.

Slater, R. [1987]. Portraits in Silicon, MIT Press, Cambridge, Mass.
Smith, J. E. [1988]. “Characterizing computer performance with a single number,”

Communications of the ACM 31:10 (October), 1202–1206.
SPEC. [1989]. SPEC Benchmark Suite Release 1.0 (October 2).
SPEC. [1994]. SPEC Newsletter (June).
Stern, N. [1980]. “Who invented the first electronic digital computer?” Annals

of the History of Computing 2:4 (October), 375–376.
Touma, W. R. [1993]. The Dynamics of the Computer Industry: Modeling the

Supply of Workstations and Their Components, Kluwer Academic, Boston.
Weicker, R. P. [1984]. “Dhrystone: A synthetic systems programming bench-

mark,” Communications of the ACM 27:10 (October), 1013–1030.
Wilkes, M. V. [1985]. Memoirs of a Computer Pioneer, MIT Press,

Cambridge, Mass.
Wilkes, M. V. [1995]. Computing Perspectives, Morgan Kaufmann, San

Francisco.
Wilkes, M. V., D. J. Wheeler, and S. Gill [1951]. The Preparation of Programs
for an Electronic Digital Computer, Addison-Wesley, Cambridge, Mass.
The Development of Memory Hierarchy and Protection
(Chapter 2 and Appendix B)

Although the pioneers of computing knew of the need for a memory hierarchy and
coined the term, the automatic management of two levels was first proposed
by Kilburn et al. [1962]. It was demonstrated with the Atlas computer at the
University of Manchester. This computer appeared the year before the IBM 360
was announced. Although IBM planned for its introduction with the next genera-
tion (System/370), the operating system TSS was not up to the challenge in 1970.
Virtual memory was announced for the 370 family in 1972, and it was for this com-
puter that the term translation lookaside buffer was coined [Case and Padegs
1978]. The only computers today without virtual memory are a few supercom-
puters, embedded processors, and older personal computers.

Both the Atlas and the IBM 360 provided protection on pages, and the GE
645 was the first system to provide paged segmentation. The earlier Burroughs
computers provided virtual memory using segmentation, similar to the seg-
mented address scheme of the Intel 8086. The 80286, the first 80x86 to have
the protection mechanisms described in Appendix C, was inspired by the

Multics protection software that ran on the GE 645. Over time, computers

M-10 ■ Appendix M Historical Perspectives and References
evolved more elaborate mechanisms. The most elaborate mechanism was capa-
bilities, which attracted the greatest interest in the late 1970s and early 1980s
[Fabry 1974; Wulf, Levin, and Harbison 1981]. Wilkes [1982], one of the early
workers on capabilities, had this to say:

Anyone who has been concerned with an implementation of the type just
described [capability system], or has tried to explain one to others, is likely to feel
that complexity has got out of hand. It is particularly disappointing that the
attractive idea of capabilities being tickets that can be freely handed around
has become lost ….
Compared with a conventional computer system, there will inevitably be a cost

to be met in providing a system in which the domains of protection are small and
frequently changed. This cost will manifest itself in terms of additional hardware,
decreased runtime speed, and increased memory occupancy. It is at present an
open question whether, by adoption of the capability approach, the cost can
be reduced to reasonable proportions. [p. 112]

Today there is little interest in capabilities either from the operating systems or the
computer architecture communities, despite growing interest in protection and
security.

Bell and Strecker [1976] reflected on the PDP-11 and identified a small address
space as the only architectural mistake that is difficult to recover from. At the time
of the creation of PDP-11, core memories were increasing at a very slow rate. In
addition, competition from 100 other minicomputer companies meant that DEC
might not have a cost-competitive product if every address had to go through
the 16-bit data path twice, hence the architect’s decision to add only 4 more address
bits than found in the predecessor of the PDP-11.

The architects of the IBM 360 were aware of the importance of address size and
planned for the architecture to extend to 32 bits of address. Only 24 bits were used
in the IBM 360, however, because the low-end 360 models would have been even
slower with the larger addresses in 1964. Unfortunately, the architects didn’t reveal
their plans to the software people, and programmers who stored extra information
in the upper 8 “unused” address bits foiled the expansion effort. (Apple made a
similar mistake 20 years later with the 24-bit address in the Motorola 68000, which
required a procedure to later determine “32-bit clean” programs for the Macintosh
when later 68000s used the full 32-bit virtual address.) Virtually every computer
since then will check to make sure the unused bits stay unused and trap if the bits
have the wrong value.

As mentioned in the text, system virtual machines were pioneered at IBM as
part of its investigation into virtual memory. IBM’s first computer with virtual
memory was the IBM 360/67, introduced in 1967. IBM researchers wrote the
program CP-67 that created the illusion of several independent 360 computers.
They then wrote an interactive, single-user operating system called CMS that
ran on these virtual machines. CP-67 led to the product VM/370, and today
IBM sells z/VM for its mainframe computers [Meyer and Seawright 1970;

Van Vleck 2005].

M.3 The Development of Memory Hierarchy and Protection ■ M-11
A few years after the Atlas paper, Wilkes published the first paper describing
the concept of a cache [1965]:

The use is discussed of a fast core memory of, say, 32,000 words as slave to a
slower core memory of, say, one million words in such a way that in practical cases
the effective access time is nearer that of the fast memory than that of the slow
memory. [p. 270]

This two-page paper describes a direct-mapped cache. Although this is the first
publication on caches, the first implementation was probably a direct-mapped
instruction cache built at the University of Cambridge. It was based on tunnel diode
memory, the fastest form of memory available at the time. Wilkes stated that G.
Scarott suggested the idea of a cache memory.

Subsequent to that publication, IBM started a project that led to the first com-
mercial computer with a cache, the IBM 360/85 [Liptay 1968]. Gibson [1967]
described how to measure program behavior as memory traffic as well as miss rate
and showed how the miss rate varies between programs. Using a sample of 20 pro-
grams (each with 3 million references!), Gibson also relied on average memory
access time to compare systems with and without caches. This precedent is more
than 40 years old, and yet many used miss rates until the early 1990s.

Conti, Gibson, and Pitkowsky [1968] described the resulting performance of
the 360/85. The 360/91 outperforms the 360/85 on only 3 of the 11 programs
in the paper, even though the 360/85 has a slower clock cycle time (80 ns versus
60 ns), less memory interleaving (4 versus 16), and a slower main memory (1.04
microsecond versus 0.75microsecond). This paper was also the first to use the term
cache.

Others soon expanded the cache literature. Strecker [1976] published the first
comparative cache design paper examining caches for the PDP-11. Smith [1982]
later published a thorough survey paper that used the terms spatial locality and
temporal locality; this paper has served as a reference for many computer
designers.

Although most studies relied on simulations, Clark [1983] used a hardware
monitor to record cache misses of the VAX-11/780 over several days. Clark
and Emer [1985] later compared simulations and hardware measurements for
translations.

Hill [1987] proposed the three C’s used in Appendix B to explain cache
misses. Jouppi [1998] retrospectively said that Hill’s three C’s model led directly
to his invention of the victim cache to take advantage of faster direct-mapped
caches and yet avoid most of the cost of conflict misses. Sugumar and Abraham
[1993] argued that the baseline cache for the three C’s model should use
optimal replacement; this would eliminate the anomalies of least recently used
(LRU)-based miss classification and allow conflict misses to be broken down into
those caused by mapping and those caused by a nonoptimal replacement
algorithm.

One of the first papers on nonblocking caches was by Kroft [1981]. Kroft

[1998] later explained that he was the first to design a computer with a cache at

M-12 ■ Appendix M Historical Perspectives and References
Control Data Corporation, and when using old concepts for newmechanisms he hit
upon the idea of allowing his two-ported cache to continue to service other
accesses on a miss.

Baer andWang [1988] did one of the first examinations of the multilevel inclu-
sion property. Wang, Baer, and Levy [1989] then produced an early paper on per-
formance evaluation of multilevel caches. Later, Jouppi and Wilton [1994]
proposed multilevel exclusion for multilevel caches on chip.

In addition to victim caches, Jouppi [1990] also examined prefetching via
streaming buffers. His work was extended by Farkas, Jouppi, and Chow [1995]
to streaming buffers that work well with nonblocking loads and speculative exe-
cution for in-order processors, and later Farkas et al. [1997] showed that, while out-
of-order processors can tolerate unpredictable latency better, they still benefit.
They also refined memory bandwidth demands of stream buffers.

Proceedings of the Symposium on Architectural Support for Compilers and
Operating Systems (ASPLOS) and the International Computer Architecture Sym-
posium (ISCA) from the 1990s are filled with papers on caches. (In fact, some
wags claimed ISCA really stood for the International Cache Architecture
Symposium.)

Chapter 2 relies on the measurements of SPEC2000 benchmarks collected by
Cantin and Hill [2001]. There are several other papers used in Chapter 2 that
are cited in the captions of the figures that use the data: Agarwal and Pudar
[1993]; Barroso, Gharachorloo, and Bugnion [1998]; Farkas and Jouppi [1994];
Jouppi [1990]; Lam, Rothberg, and Wolf [1991]; Lebeck and Wood [1994];
McCalpin [2005]; Mowry, Lam, and Gupta [1992]; and Torrellas, Gupta, and

Hennessy [1992].
References

Agarwal, A. [1987]. “Analysis of Cache Performance for Operating Systems and
Multiprogramming,” Ph.D. thesis, Tech. Rep. No. CSL-TR-87-332, Stanford
University, Palo Alto, Calif.

Agarwal, A., and S. D. Pudar [1993]. “Column-associative caches: A technique for
reducing the miss rate of direct-mapped caches,” 20th Annual Int’l. Symposium
on Computer Architecture (ISCA), May 16–19, 1993, San Diego, Calif.
(Computer Architecture News 21:2 (May), 179–190).

Baer, J.-L., and W.-H. Wang [1988]. “On the inclusion property for multi-level
cache hierarchies,” Proc. 15th Annual Int’l. Symposium on Computer Architec-
ture (ISCA), May 30–June 2, 1988, Honolulu, Hawaii, 73–80.

Barham, P., B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, and R. Neugebauer
[2003]. “Xen and the art of virtualization,” Proc. of the 19th ACM Symposium on
Operating Systems Principles, October 19–22, 2003, Bolton Landing, N.Y.

Barroso, L. A., K. Gharachorloo, and E. Bugnion [1998]. “Memory system char-
acterization of commercial workloads,” Proc. 25th Annual Int’l. Symposium on

Computer Architecture (ISCA), July 3–14, 1998, Barcelona, Spain, 3–14.

M.3 The Development of Memory Hierarchy and Protection ■ M-13
Bell, C. G., and W. D. Strecker [1976]. “Computer structures: What have we
learned from the PDP-11?” Proc. Third Annual Int’l. Symposium on Computer
Architecture (ISCA), January 19–21, 1976, Tampa, Fla., 1–14.

Bhandarkar, D. P. [1995]. Alpha Architecture Implementations, Digital Press,
Newton, Mass.

Borg, A., R. E. Kessler, and D. W. Wall [1990]. “Generation and analysis of very
long address traces,” Proc. 17th Annual Int’l. Symposium on Computer Archi-
tecture (ISCA), May 28–31, 1990, Seattle, Wash., 270–279.

Cantin, J. F., and M. D. Hill [2001]. “Cache performance for selected SPEC
CPU2000 benchmarks,” http://www.cs.wisc.edu/multifacet/misc/
spec2000cache-data/.

Cantin, J., and M. Hill [2003]. “Cache performance for SPEC CPU2000 bench-
marks, version 3.0,” http://www.cs.wisc.edu/multifacet/misc/spec2000cache-
data/index.html.

Case, R. P., and A. Padegs [1978]. “The architecture of the IBM System/370,”
Communications of the ACM 21:1, 73–96. Also appears in D. P. Siewiorek,
C. G. Bell, and A. Newell, Computer Structures: Principles and Examples,
McGraw-Hill, New York, 1982, 830–855.

Clark, B., T. Deshane, E. Dow, S. Evanchik, M. Finlayson, J. Herne, and J. Neefe
Matthews [2004]. “Xen and the art of repeated research,” Proc. USENIX Annual
Technical Conf., June 27–July 2, 2004, Boston, 1135–1144.

Clark, D. W. [1983]. “Cache performance of the VAX-11/780,” ACM Trans. on
Computer Systems 1:1, 24–37.

Clark, D. W., and J. S. Emer [1985]. “Performance of the VAX-11/780 translation
buffer: Simulation and measurement,” ACM Trans. on Computer Systems 3:1
(February), 31–62.

Compaq Computer Corporation. [1999]. Compiler Writer’s Guide for the Alpha
21264, Order Number EC-RJ66A-TE, June.

Conti, C., D. H. Gibson, and S. H. Pitkowsky [1968]. “Structural aspects of the
System/360 Model 85. Part I. General organization,” IBM Systems J. 7:1, 2–14.

Crawford, J., and P. Gelsinger [1988]. Programming the 80386, Sybex,
Alameda, Calif.

Cvetanovic, Z., and R. E. Kessler [2000]. “Performance analysis of the
Alpha 21264-based Compaq ES40 system,” Proc. 27th Annual Int’l. Sympo-
sium on Computer Architecture (ISCA), June 10–14, 2000, Vancouver, Canada,
192–202.

Fabry, R. S. [1974]. “Capability based addressing,” Communications of the ACM
17:7 (July), 403–412.

Farkas, K. I., P. Chow, N. P. Jouppi, and Z. Vranesic [1997]. “Memory-system
design considerations for dynamically-scheduled processors,” Proc. 24th
Annual Int’l. Symposium on Computer Architecture (ISCA), June 2–4, 1997,
Denver, Colo., 133–143.

Farkas, K. I., and N. P. Jouppi [1994]. “Complexity/performance trade-offs with
non-blocking loads,” Proc. 21st Annual Int’l. Symposium on Computer Archi-

tecture (ISCA), April 18–21, 1994, Chicago.

M-14 ■ Appendix M Historical Perspectives and References
Farkas, K. I., N. P. Jouppi, and P. Chow [1995]. “How useful are non-blocking
loads, stream buffers and speculative execution in multiple issue processors?”
Proc. First IEEE Symposium on High-Performance Computer Architecture,
January 22–25, 1995, Raleigh, N.C., 78–89.

Gao, Q. S. [1993]. “The Chinese remainder theorem and the prime memory
system,” 20th Annual Int’l. Symposium on Computer Architecture (ISCA),
May 16–19, 1993, San Diego, Calif. (Computer Architecture News 21:2
(May), 337–340).

Gee, J. D., M. D. Hill, D. N. Pnevmatikatos, and A. J. Smith [1993]. “Cache per-
formance of the SPEC92 benchmark suite,” IEEE Micro 13:4 (August), 17–27.

Gibson, D. H. [1967]. “Considerations in block-oriented systems design,” AFIPS
Conf. Proc. 30, 75–80.

Handy, J. [1993]. The Cache Memory Book, Academic Press, Boston.
Heald, R., K. Aingaran, C. Amir, M. Ang, M. Boland, A. Das, P. Dixit, G. Goulds-

berry, J. Hart, T. Horel, W.-J. Hsu, J. Kaku, C. Kim, S. Kim, F. Klass, H. Kwan,
R. Lo, H. McIntyre, A. Mehta, D. Murata, S. Nguyen, Y.-P. Pai, S. Patel, K.
Shin, K. Tam, S. Vishwanthaiah, J. Wu, G. Yee, and H. You [2000]. “Imple-
mentation of third-generation SPARC V9 64-b microprocessor,” ISSCC Digest
of Technical Papers, 412–413 and slide supplement.

Hill, M. D. [1987]. “Aspects of Cache Memory and Instruction Buffer Perfor-
mance,” Ph.D. thesis, Tech. Rep. UCB/CSD 87/381, Computer Science Divi-
sion, University of California, Berkeley.

Hill, M. D. [1988]. “A case for direct mapped caches,” Computer 21:12 (Decem-
ber), 25–40.

Horel, T., and G. Lauterbach [1999]. “UltraSPARC-III: Designing third-
generation 64-bit performance,” IEEE Micro 19:3 (May–June), 73–85.

Hughes, C. J., P. Kaul, S. V. Adve, R. Jain, C. Park, and J. Srinivasan [2001].
“Variability in the execution of multimedia applications and implications for
architecture,” Proc. 28th Annual Int’l. Symposium on Computer Architecture
(ISCA), June 30–July 4, 2001, Goteborg, Sweden, 254–265.

IEEE. [2005]. “Intel virtualization technology, computer,” IEEE Computer Society
38:5 (May), 48–56.

Jouppi, N. P. [1990]. “Improving direct-mapped cache performance by the addi-
tion of a small fully-associative cache and prefetch buffers,” Proc. 17th Annual
Int’l. Symposium on Computer Architecture (ISCA), May 28–31, 1990, Seattle,
Wash., 364–373.

Jouppi, N. P. [1998]. “Retrospective: Improving direct-mapped cache performance
by the addition of a small fully-associative cache and prefetch buffers,” in
G. S. Sohi, ed., 25 Years of the International Symposia on Computer Architec-
ture (Selected Papers), ACM, New York, 71–73.

Jouppi, N. P., and S. J. E. Wilton [1994]. “Trade-offs in two-level on-chip cach-
ing,” Proc. 21st Annual Int’l. Symposium on Computer Architecture (ISCA),
April 18–21, 1994, Chicago, 34–45.

Kessler, R. E. [1999]. “The Alpha 21264 microprocessor,” IEEE Micro 19:2

(March/April), 24–36.

M.3 The Development of Memory Hierarchy and Protection ■ M-15
Kilburn, T., D. B. G. Edwards, M. J. Lanigan, and F. H. Sumner [1962]. “One-level
storage system,” IRE Trans. on Electronic Computers EC-11 (April) 223–235.
Also appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer
Structures: Principles and Examples, McGraw-Hill, NewYork, 1982, 135–148.

Kroft, D. [1981]. “Lockup-free instruction fetch/prefetch cache organization,”
Proc. Eighth Annual Int’l. Symposium on Computer Architecture (ISCA),
May 12–14, 1981, Minneapolis, Minn., 81–87.

Kroft, D. [1998]. “Retrospective: Lockup-free instruction fetch/prefetch cache
organization,” in G. S. Sohi, ed., 25 Years of the International Symposia on
Computer Architecture (Selected Papers), ACM, New York, 20–21.

Kunimatsu, A., N. Ide, T. Sato, Y. Endo, H. Murakami, T. Kamei, M. Hirano, F.
Ishihara, H. Tago, M. Oka, A. Ohba, T. Yutaka, T. Okada, and M. Suzuoki
[2000]. “Vector unit architecture for emotion synthesis,” IEEE Micro 20:2
(March–April), 40–47.

Lam, M. S., E. E. Rothberg, and M. E. Wolf [1991]. “The cache performance
and optimizations of blocked algorithms,” Proc. Fourth Int’l. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), April 8–11, 1991, Santa Clara, Calif. (SIGPLAN Notices 26:4
(April), 63–74).

Lebeck, A. R., and D. A. Wood [1994]. “Cache profiling and the SPEC bench-
marks: A case study,” Computer 27:10 (October), 15–26.

Liptay, J. S. [1968]. “Structural aspects of the System/360 Model 85. Part II. The
cache,” IBM Systems J. 7:1, 15–21.

Luk, C.-K., and T. CMowry [1999]. “Automatic compiler-inserted prefetching for
pointer-based applications,” IEEE Trans. on Computers, 48:2 (February), 134–
141.

McCalpin, J. D. [2005]. “STREAM: Sustainable Memory Bandwidth in High Per-
formance Computers,” www.cs.virginia.edu/stream/.

McFarling, S. [1989]. “Program optimization for instruction caches,” Proc. Third
Int’l. Conf. on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), April 3–6, 1989, Boston, 183–191.

Menon, A., J. Renato Santos, Y. Turner, G. Janakiraman, and W. Zwaenepoel
[2005]. “Diagnosing performance overheads in the xen virtual machine environ-
ment,” Proc. First ACM/USENIX Int’l. Conf. on Virtual Execution Environ-
ments, June 11–12, 2005, Chicago, 13–23.

Meyer, R. A., and L. H. Seawright [1970]. “A virtual machine time sharing sys-
tem,” IBM Systems J. 9:3, 199–218.

Mowry, T. C., S. Lam, and A. Gupta [1992]. “Design and evaluation of a compiler
algorithm for prefetching,” Proc. Fifth Int’l. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October 12–15,
1992, Boston (SIGPLAN Notices 27:9 (September), 62–73).

Oka, M., and M. Suzuoki [1999]. “Designing and programming the emotion
engine,” IEEE Micro 19:6 (November–December), 20–28.

Pabst, T. [2000]. “Performance Showdown at 133 MHz FSB—The Best Platform

for Coppermine,” www6.tomshardware.com/mainboard/00q1/000302/.

M-16 ■ Appendix M Historical Perspectives and References
Palacharla, S., and R. E. Kessler [1994]. “Evaluating stream buffers as a secondary
cache replacement,” Proc. 21st Annual Int’l. Symposium on Computer Architec-
ture (ISCA), April 18–21, 1994, Chicago, 24–33.

Przybylski, S. A. [1990]. Cache Design: A Performance-Directed Approach,
Morgan Kaufmann, San Francisco.

Przybylski, S. A., M. Horowitz, and J. L. Hennessy [1988]. “Performance trade-
offs in cache design,” Proc. 15th Annual Int’l. Symposium on Computer Archi-
tecture (ISCA), May 30–June 2, 1988, Honolulu, Hawaii, 290–298.

Reinman, G., and N. P. Jouppi. [1999]. “Extensions to CACTI.”
Robin, J., and C. Irvine [2000]. “Analysis of the Intel Pentium’s ability to support a

secure virtual machine monitor,” Proc. USENIX Security Symposium, August
14–17, 2000, Denver, Colo.

Saavedra-Barrera, R. H. [1992]. “CPU Performance Evaluation and Execution
Time Prediction Using Narrow Spectrum Benchmarking,” Ph.D. dissertation,
University of California, Berkeley.

Samples, A. D., and P. N. Hilfinger [1988]. Code Reorganization for Instruction
Caches, Tech. Rep. UCB/CSD 88/447, University of California, Berkeley.

Sites, R. L. (ed.) [1992]. Alpha Architecture Reference Manual, Digital Press,
Burlington, Mass.

Skadron, K., and D. W. Clark [1997]. “Design issues and tradeoffs for write
buffers,” Proc. Third Int’l. Symposium on High-Performance Computer Archi-
tecture, February 1–5, 1997, San Antonio, Tex., 144–155.

Smith, A. J. [1982]. “Cache memories,” Computing Surveys 14:3 (September),
473–530.

Smith, J. E., and J. R. Goodman [1983]. “A study of instruction cache organiza-
tions and replacement policies,” Proc. 10th Annual Int’l. Symposium on
Computer Architecture (ISCA), June 5–7, 1982, Stockholm, Sweden, 132–137.

Stokes, J. [2000]. “Sound and Vision: A Technical Overview of the Emotion
Engine,” http://arstechnica.com/hardware/reviews/2000/02/ee.ars.

Strecker, W. D. [1976]. “Cache memories for the PDP-11?” Proc. Third Annual
Int’l. Symposium on Computer Architecture (ISCA), January 19–21, 1976,
Tampa, Fla., 155–158.

Sugumar, R. A., and S. G. Abraham [1993]. “Efficient simulation of caches under
optimal replacement with applications to miss characterization,” Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems,
May 17–21, 1993, Santa Clara, Calif., 24–35.

Tarjan, D., S. Thoziyoor, and N. Jouppi [2006]. CACTI 4.0. Technical Report
HPL-2006-86, HP Laboratories.

Torrellas, J., A. Gupta, and J. Hennessy [1992]. “Characterizing the caching and
synchronization performance of a multiprocessor operating system,” Proc. Fifth
Int’l. Conf. on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), October 12–15, 1992, Boston (SIGPLAN Notices 27:9
(September), 162–174).

Van Vleck, T. [2005]. “The IBM 360/67 and CP/CMS,” http://www.multicians.

org/thvv/360-67.html.

M.4

M.4 The Evolution of Instruction Sets ■ M-17
Wang, W.-H., J.-L. Baer, and H. M. Levy [1989]. “Organization and performance
of a two-level virtual-real cache hierarchy,” Proc. 16th Annual Int’l. Symposium
on Computer Architecture (ISCA), May 28–June 1, 1989, Jerusalem, 140–148.

Wilkes, M. [1965]. “Slave memories and dynamic storage allocation,” IEEE
Trans. Electronic Computers EC-14:2 (April), 270–271.

Wilkes, M. V. [1982]. “Hardware support for memory protection: Capability
implementations,” Proc. Symposium on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), March 1–3, 1982, Palo
Alto, Calif., 107–116.

Wulf,W. A., R. Levin, and S. P. Harbison [1981].Hydra/C.mmp: An Experimental

Computer System, McGraw-Hill, New York.
The Evolution of Instruction Sets (Appendices A, J, and K)

One’s eyebrows should rise whenever a future architecture is developed with a
stack- or register-oriented instruction set.

Meyers [1978, p. 20]

The earliest computers, including the UNIVAC I, the EDSAC, and the IAS
computers, were accumulator-based computers. The simplicity of this type of
computer made it the natural choice when hardware resources were very con-
strained. The first general-purpose register computer was the Pegasus, built by
Ferranti, Ltd., in 1956. The Pegasus had eight general-purpose registers, with
R0 always being zero. Block transfers loaded the eight registers from the drum
memory.

Stack Architectures

In 1963, Burroughs delivered the B5000. The B5000 was perhaps the first com-
puter to seriously consider software and hardware-software trade-offs. Barton
and the designers at Burroughs made the B5000 a stack architecture (as described
in Barton [1961]). Designed to support high-level languages such as ALGOL, this
stack architecture used an operating system (MCP) written in a high-level lan-
guage. The B5000 was also the first computer from a U.S. manufacturer to support
virtual memory. The B6500, introduced in 1968 (and discussed in Hauck and Dent
[1968]), added hardware-managed activation records. In both the B5000 and
B6500, the top two elements of the stack were kept in the processor and the rest
of the stack was kept in memory. The stack architecture yielded good code density,
but only provided two high-speed storage locations. The authors of both the orig-
inal IBM 360 paper [Amdahl, Blaauw, and Brooks 1964] and the original PDP-11
paper [Bell et al. 1970] argued against the stack organization. They cited three

major points in their arguments against stacks:

M-18 ■ Appendix M Historical Perspectives and References
■ Performance is derived from fast registers, not the way they are used.

■ The stack organization is too limiting and requires many swap and copy
operations.

■ The stack has a bottom, and when placed in slower memory there is a
performance loss.

Stack-based hardware fell out of favor in the late 1970s and, except for the Intel
80x86 floating-point architecture, essentially disappeared; for example, except for
the 80x86, none of the computers listed in the SPEC report uses a stack.

In the 1990s, however, stack architectures received a shot in the arm with the
success of the Java Virtual Machine (JVM). The JVM is a software interpreter for
an intermediate language produced by Java compilers, called Java bytecodes
[Lindholm and Yellin 1999]. The purpose of the interpreter is to provide software
compatibility across many platforms, with the hope of “write once, run every-
where.” Although the slowdown is about a factor of 10 due to interpretation, there
are times when compatibility is more important than performance, such as when
downloading a Java “applet” into an Internet browser.

Although a few have proposed hardware to directly execute the JVM instruc-
tions (see McGhan and O’Connor [1998]), thus far none of these proposals has
been significant commercially. The hope instead is that just-in-time (JIT) Java
compilers—which compile during runtime to the native instruction set of the
computer running the Java program—will overcome the performance penalty
of interpretation. The popularity of Java has also led to compilers that compile
directly into the native hardware instruction sets, bypassing the illusion of the
Java bytecodes.

Computer Architecture Defined

IBM coined the term computer architecture in the early 1960s. Amdahl, Blaauw,
and Brooks [1964] used the term to refer to the programmer-visible portion of the
IBM 360 instruction set. They believed that a family of computers of the same
architecture should be able to run the same software. Although this idea may seem
obvious to us today, it was quite novel at that time. IBM, although it was the lead-
ing company in the industry, had five different architectures before the 360; thus,
the notion of a company standardizing on a single architecture was a radical one.
The 360 designers hoped that defining a common architecture would bring six
different divisions of IBM together. Their definition of architecture was

… the structure of a computer that a machine language programmer must
understand to write a correct (timing independent) program for that machine.

The termmachine language programmermeant that compatibility would hold,
even in machine language, while timing independent allowed different implemen-
tations. This architecture blazed the path for binary compatibility, which others

have followed.

M.4 The Evolution of Instruction Sets ■ M-19
The IBM 360 was the first computer to sell in large quantities with both byte
addressing using 8-bit bytes and general-purpose registers. The 360 also had
register-memory and limited memory-memory instructions. Appendix K summa-
rizes this instruction set.

In 1964, Control Data delivered the first supercomputer, the CDC 6600. As
Thornton [1964] discussed, he, Cray, and the other 6600 designers were among
the first to explore pipelining in depth. The 6600 was the first general-purpose,
load-store computer. In the 1960s, the designers of the 6600 realized the need
to simplify architecture for the sake of efficient pipelining. Microprocessor and
minicomputer designers largely neglected this interaction between architectural

simplicity and implementation during the 1970s, but it returned in the 1980s.
High-Level Language Computer Architecture

In the late 1960s and early 1970s, people realized that software costs were growing
faster than hardware costs. McKeeman [1967] argued that compilers and operating
systems were getting too big and too complex and taking too long to develop.
Because of inferior compilers and the memory limitations of computers, most
systems programs at the time were still written in assembly language. Many
researchers proposed alleviating the software crisis by creating more powerful,
software-oriented architectures. Tanenbaum [1978] studied the properties of
high-level languages. Like other researchers, he found that most programs are sim-
ple. He argued that architectures should be designed with this in mind and that they
should optimize for program size and ease of compilation. Tanenbaum proposed a
stack computer with frequency-encoded instruction formats to accomplish these
goals; however, as we have observed, program size does not translate directly
to cost-performance, and stack computers faded out shortly after this work.

Strecker’s article [1978] discusses how he and the other architects at DEC
responded to this by designing the VAX architecture. The VAX was designed
to simplify compilation of high-level languages. Compiler writers had complained
about the lack of complete orthogonality in the PDP-11. The VAX architecture
was designed to be highly orthogonal and to allow the mapping of a high-level
language statement into a single VAX instruction. Additionally, the VAX
designers tried to optimize code size because compiled programs were often too
large for available memories. Appendix K summarizes this instruction set.

The VAX-11/780 was the first computer announced in the VAX series. It is
one of the most successful—and most heavily studied—computers ever built.
The cornerstone of DEC’s strategy was a single architecture, VAX, running a sin-
gle operating system, VMS. This strategy worked well for over 10 years. The large
number of papers reporting instruction mixes, implementation measurements, and
analysis of the VAX makes it an ideal case study [Clark and Levy 1982; Wiecek
1982]. Bhandarkar and Clark [1991] gave a quantitative analysis of the disadvan-
tages of the VAX versus a RISC computer, essentially a technical explanation for

the demise of the VAX.

M-20 ■ Appendix M Historical Perspectives and References
While the VAXwas being designed, a more radical approach, called high-level
language computer architecture (HLLCA), was being advocated in the research
community. This movement aimed to eliminate the gap between high-level lan-
guages and computer hardware—what Gagliardi [1973] called the “semantic
gap”—by bringing the hardware “up to” the level of the programming language.
Meyers [1982] provided a good summary of the arguments and a history of high-
level language computer architecture projects. HLLCA never had a significant
commercial impact. The increase in memory size on computers eliminated the code
size problems arising from high-level languages and enabled operating systems to
be written in high-level languages. The combination of simpler architectures
together with software offered greater performance and more flexibility at lower

cost and lower complexity.
Reduced Instruction Set Computers

In the early 1980s, the direction of computer architecture began to swing away from
providing high-level hardware support for languages. Ditzel and Patterson [1980]
analyzed the difficulties encountered by the high-level language architectures
and argued that the answer lay in simpler architectures. In another paper [Patterson
and Ditzel 1980], these authors first discussed the idea of Reduced Instruction Set
Computers (RISCs) and presented the argument for simpler architectures. Clark and
Strecker [1980], who were VAX architects, rebutted their proposal.

The simple load-store computers such as MIPS are commonly called RISC
architectures. The roots of RISC architectures go back to computers like the
6600, where Thornton, Cray, and others recognized the importance of instruction
set simplicity in building a fast computer. Cray continued his tradition of keeping
computers simple in the CRAY-1. Commercial RISCs are built primarily on the
work of three research projects: the Berkeley RISC processor, the IBM 801,
and the Stanford MIPS processor. These architectures have attracted enormous
industrial interest because of claims of a performance advantage of anywhere from
two to five times over other computers using the same technology.

Begun in 1975, the IBM project was the first to start but was the last to become
public. The IBM computer was designed as a 24-bit ECL minicomputer, while the
university projects were both MOS-based, 32-bit microprocessors. John Cocke is
considered the father of the 801 design. He received both the Eckert–Mauchly and
Turing awards in recognition of his contribution. Radin [1982] described the high-
lights of the 801 architecture. The 801 was an experimental project that was never
designed to be a product. In fact, to keep down costs and complexity, the computer
was built with only 24-bit registers.

In 1980, Patterson and his colleagues at Berkeley began the project that was to
give this architectural approach its name (see Patterson and Ditzel [1980]). They
built two computers called RISC-I and RISC-II. Because the IBM project was not
widely known or discussed, the role played by the Berkeley group in promoting the

RISC approach was critical to acceptance of the technology. They also built one of

M.4 The Evolution of Instruction Sets ■ M-21
the first instruction caches to support hybrid-format RISCs (see Patterson et al.
[1983]). It supported 16-bit and 32-bit instructions in memory but 32 bits in the
cache. The Berkeley group went on to build RISC computers targeted toward
Smalltalk, described by Ungar et al. [1984], and LISP, described by Taylor
et al. [1986].

In 1981, Hennessy and his colleagues at Stanford published a description of the
Stanford MIPS computer. Efficient pipelining and compiler-assisted scheduling of
the pipeline were both important aspects of the original MIPS design. MIPS stood
for Microprocessor without Interlocked Pipeline Stages, reflecting the lack of
hardware to stall the pipeline, as the compiler would handle dependencies.

These early RISC computers—the 801, RISC-II, and MIPS—had much in
common. Both university projects were interested in designing a simple computer
that could be built in VLSI within the university environment. All three computers
used a simple load-store architecture and fixed-format 32-bit instructions, and
emphasized efficient pipelining. Patterson [1985] described the three computers
and the basic design principles that have come to characterize what a RISC com-
puter is, and Hennessy [1984] provided another view of the same ideas, as well as
other issues in VLSI processor design.

In 1985, Hennessy published an explanation of the RISC performance advan-
tage and traced its roots to a substantially lower CPI—under 2 for a RISC processor
and over 10 for a VAX-11/780 (though not with identical workloads). A paper by
Emer and Clark [1984] characterizing VAX-11/780 performance was instrumental
in helping the RISC researchers understand the source of the performance advan-
tage seen by their computers.

Since the university projects finished up, in the 1983–1984 time frame, the
technology has been widely embraced by industry. Many manufacturers of the
early computers (those made before 1986) claimed that their products were RISC
computers. These claims, however, were often born more of marketing ambition
than of engineering reality.

In 1986, the computer industry began to announce processors based on the tech-
nology explored by the three RISC research projects. Moussouris et al. [1986]
described the MIPS R2000 integer processor, while Kane’s book [1986] provides
a complete description of the architecture. Hewlett-Packard converted their existing
minicomputer line to RISC architectures; Lee [1989] described the HP Precision
Architecture. IBM never directly turned the 801 into a product. Instead, the ideas
were adopted for a new, low-end architecture that was incorporated in the IBM
RT-PC and described in a collection of papers [Waters 1986]. In 1990, IBM
announced a new RISC architecture (the RS 6000), which is the first superscalar
RISC processor. In 1987, Sun Microsystems began delivering computers based
on the SPARCarchitecture, a derivative of theBerkeleyRISC-II processor; SPARC
is described in Garner et al. [1988]. The PowerPC joined the forces of Apple, IBM,
and Motorola. Appendix K summarizes several RISC architectures.

To help resolve the RISC versus traditional design debate, designers of VAX
processors later performed a quantitative comparison of VAX and a RISC proces-

sor for implementations with comparable organizations. Their choices were the

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
at

r
sp

ice

MIPS/VAX

Figure M.1 Ratio of MIPS M
SPEC89 programs. On avera
the VAX is almost six times t
Bhandarkar and Clark [1991]

M-22 ■ Appendix M Historical Perspectives and References
VAX 8700 and the MIPSM2000. The differing goals for VAX andMIPS have led
to very different architectures. The VAX goals, simple compilers and code density,
led to powerful addressing modes, powerful instructions, efficient instruction
encoding, and few registers. The MIPS goals were high performance via pipelin-
ing, ease of hardware implementation, and compatibility with highly optimizing
compilers. These goals led to simple instructions, simple addressing modes,
fixed-length instruction formats, and a large number of registers.

Figure M.1 shows the ratio of the number of instructions executed, the ratio of
CPIs, and the ratio of performance measured in clock cycles. Since the organiza-
tions were similar, clock cycle times were assumed to be the same. MIPS executes
about twice as many instructions as the VAX, while the CPI for the VAX is about
six times larger than that for the MIPS. Hence, the MIPS M2000 has almost
three times the performance of the VAX 8700. Furthermore, much less hardware
is needed to build the MIPS processor than the VAX processor. This cost-
performance gap is the reason why the company that used to make the VAX intro-
duced a MIPS-based product and then has dropped the VAX completely and
switched to Alpha, which is quite similar to MIPS. Bell and Strecker [1998]
summarized the debate inside the company. Today, DEC, once the second largest
computer company and the major success of the minicomputer industry, exists

only as remnants within HP and Intel.

li

eq
nt

ot
t

es
pr

es
so

do
du

c

to
m

ca
tv

fp
pp

p

na
sa

7ix

Performance
ratio

Instructions
executed ratio

CPI ratio

SPEC89 benchmarks

2000 to VAX 8700 in instructions executed and performance in clock cycles using
ge, MIPS executes a little over twice as many instructions as the VAX, but the CPI for
he MIPS CPI, yielding almost a threefold performance advantage. (Based on data from
.)

M.4 The Evolution of Instruction Sets ■ M-23
Looking back, only one Complex Instruction Set Computer (CISC) instruction
set survived the RISC/CISC debate, and that one had binary compatibility with PC
software. The volume of chips is so high in the PC industry that there is a sufficient
revenue stream to pay the extra design costs—and sufficient resources due to
Moore’s law—to build microprocessors that translate from CISC to RISC inter-
nally. Whatever loss in efficiency occurred (due to longer pipeline stages and big-
ger die size to accommodate translation on the chip) was overcome by the
enormous volume and the ability to dedicate IC processing lines specifically to this
product.

Interestingly, Intel also concluded that the future of the 80x86 line was doubt-
ful. They created the IA-64 architecture to support 64-bit addressing and to
move to a RISC-style instruction set. The embodiment of the IA-64 (see Huck
et al. [2000]) architecture in the Itanium-1 and Itanium-2 has been a mixed suc-
cess. Although high performance has been achieved for floating-point applica-
tions, the integer performance was never impressive. In addition, the Itanium
implementations have been large in transistor count and die size and power
hungry. The complexity of the IA-64 instruction set, standing at least in partial
conflict with the RISC philosophy, no doubt contributed to this area and power
inefficiency.

AMD decided instead to just stretch the architecture from a 32-bit address to a
64-bit address, much as Intel had done when the 80386 stretched it from a 16-bit
address to a 32-bit address. Intel later followed AMD’s example. In the end, the
tremendous marketplace advantage of the 80x86 presence was too much even

for Intel, the owner of this legacy, to overcome!
References

Alexander, W. G., and D. B. Wortman [1975]. “Static and dynamic characteristics
of XPL programs,” IEEE Computer 8:11 (November), 41–46.

Amdahl, G. M., G. A. Blaauw, and F. P. Brooks, Jr. [1964]. “Architecture of the
IBM System 360,” IBM J. Research and Development 8:2 (April), 87–101.

Barton, R. S. [1961]. “A new approach to the functional design of a computer,”
Proc. Western Joint Computer Conf., May 9–11, 1961, Los Angeles, Calif.,
393–396.

Bell, G., R. Cady, H. McFarland, B. DeLagi, J. O’Laughlin, R. Noonan, and W.
Wulf [1970]. “A new architecture for mini-computers: The DEC PDP-11,”
Proc. AFIPS SJCC, May 5–7, 1970, Atlantic City, N.J., 657–675.

Bell, G., and W. D. Strecker [1998]. “Computer structures: What have we learned
from the PDP-11?” in G. S. Sohi, ed., 25 Years of the International Symposia on
Computer Architecture (Selected Papers), ACM, New York, 138–151.

Bhandarkar, D. P. [1995]. Alpha Architecture and Implementations, Digital Press,
Newton, Mass.

Bhandarkar, D., and D. W. Clark [1991]. “Performance from architecture: Com-

paring a RISC and a CISC with similar hardware organizations,” Proc. Fourth

M-24 ■ Appendix M Historical Perspectives and References
Int’l. Conf. on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), April 8–11, 1991, Palo Alto, Calif., 310–319.

Bier, J. [1997]. “The evolution of DSP processors,” paper presented at University
of California, Berkeley, November 14.

Boddie, J. R. [2000]. “History of DSPs,” www.lucent.com/micro/dsp/dsphist.html.
Case, R. P., and A. Padegs [1978]. “The architecture of the IBM System/370,”

Communications of the ACM 21:1, 73–96.
Chow, F. C. [1983]. “A Portable Machine-Independent Global Optimizer—

Design and Measurements,” Ph.D. thesis, Stanford University, Palo Alto, Calif.
Clark, D., and H. Levy [1982]. “Measurement and analysis of instruction set use in

the VAX-11/780,” Proc. Ninth Annual Int’l. Symposium on Computer Architec-
ture (ISCA), April 26–29, 1982, Austin, Tex., 9–17.

Clark, D., and W. D. Strecker [1980]. “Comments on ‘the case for the
reduced instruction set computer,’” Computer Architecture News 8:6 (October),
34–38.

Crawford, J., and P. Gelsinger [1988]. Programming the 80386, Sybex Books,
Alameda, Calif.

Darcy, J. D., and D. Gay [1996]. “FLECKmarks: Measuring floating point
performance using a full IEEE compliant arithmetic benchmark,” CS 252 class
project, University of California, Berkeley (see http://www.sonic.net/�jddarcy/
Research/fleckmrk.pdf).

Digital Semiconductor. [1996]. Alpha Architecture Handbook, Version 3, Digital
Press, Maynard, Mass.

Ditzel, D. R., and D. A. Patterson [1980]. “Retrospective on high-level language
computer architecture,” Proc. Seventh Annual Int’l. Symposium on Computer
Architecture (ISCA), May 6–8, 1980, La Baule, France, 97–104.

Emer, J. S., and D. W. Clark [1984]. “A characterization of processor performance
in the VAX-11/780,” Proc. 11th Annual Int’l. Symposium on Computer Archi-
tecture (ISCA), June 5–7, 1984, Ann Arbor, Mich., 301–310.

Furber, S. B. [2000]. ARM system-on-chip architecture. Addison-Wesley,
Boston, Mass.

Gagliardi, U. O. [1973]. “Report of workshop 4—software-related advances in
computer hardware,” Proc. Symposium on the High Cost of Software, Septem-
ber 17–19, 1973, Monterey, Calif., 99–120.

Game, M., and A. Booker [1999]. “CodePack code compression for PowerPC pro-
cessors,” MicroNews, 5:1.

Garner, R., A. Agarwal, F. Briggs, E. Brown, D. Hough, B. Joy, S. Kleiman, S.
Muchnick, M. Namjoo, D. Patterson, J. Pendleton, and R. Tuck [1988]. “Scal-
able processor architecture (SPARC),” Proc. IEEE COMPCON, February 29–
March 4, 1988, San Francisco, 278–283.

Hauck, E. A., and B. A. Dent [1968]. “Burroughs’ B6500/B7500 stack mecha-
nism,” Proc. AFIPS SJCC, April 30–May 2, 1968, Atlantic City, N.J., 245–251.

Hennessy, J. [1984]. “VLSI processor architecture,” IEEE Trans. on ComputersC-

33:11 (December), 1221–1246.

M.4 The Evolution of Instruction Sets ■ M-25
Hennessy, J. [1985]. “VLSI RISC processors,” VLSI Systems Design 6:10 (Octo-
ber), 22–32.

Hennessy, J., N. Jouppi, F. Baskett, and J. Gill [1981]. “MIPS: A VLSI processor
architecture,” in CMU Conference on VLSI Systems and Computations, Com-
puter Science Press, Rockville, Md.

Hewlett-Packard. [1994]. PA-RISC 2.0 Architecture Reference Manual, 3rd ed.,
Hewlett-Packard, Palo Alto, Calif.

Hitachi. [1997]. SuperH RISC Engine SH7700 Series Programming Manual, Hita-
chi, Santa Clara, Calif.

Huck, J. et al. [2000]. “Introducing the IA-64 Architecture” IEEE Micro, 20:5,
(September–October), 12–23.

IBM. [1994]. The PowerPC Architecture, Morgan Kaufmann, San Francisco.
Intel. [2001]. “Using MMX instructions to convert RGB to YUV color conver-

sion,” cedar.intel.com/cgi-bin/ids.dll/content/content.jsp?cntKey¼Legacy::
irtm_AP548_9996&cntType¼IDS_EDITORIAL.

Kahan, J. [1990]. “On the advantage of the 8087’s stack,” unpublished course
notes, Computer Science Division, University of California, Berkeley.

Kane, G. [1986]. MIPS R2000 RISC Architecture, Prentice Hall, Englewood
Cliffs, N.J.

Kane, G. [1996]. PA-RISC 2.0 Architecture, Prentice Hall, Upper Saddle River, N.J.
Kane, G., and J. Heinrich [1992]. MIPS RISC Architecture, Prentice Hall, Engle-

wood Cliffs, N.J.
Kissell, K. D. [1997]. “MIPS16: High-density for the embedded market,” Proc.

Real Time Systems ’97, June 15, 1997, Las Vegas, Nev.
Kozyrakis, C. [2000]. “Vector IRAM: A media-oriented vector processor with

embedded DRAM,” paper presented at Hot Chips 12, August 13–15, 2000, Palo
Alto, Calif, 13–15.

Lee, R. [1989]. “Precision architecture,” Computer 22:1 (January), 78–91.
Levy, H., and R. Eckhouse [1989].Computer Programming and Architecture: The

VAX, Digital Press, Boston.
Lindholm, T., and F. Yellin [1999]. The Java Virtual Machine Specification, 2nd

ed., Addison-Wesley, Reading, Mass.
Lunde, A. [1977]. “Empirical evaluation of some features of instruction set proces-

sor architecture,” Communications of the ACM 20:3 (March), 143–152.
Magenheimer, D. J., L. Peters, K. W. Pettis, and D. Zuras [1988]. “Integer multi-

plication and division on the HP precision architecture,” IEEE Trans. on Com-
puters 37:8, 980–990.

McGhan, H., and M. O’Connor [1998]. “PicoJava: A direct execution engine for
Java bytecode,” Computer 31:10 (October), 22–30.

McKeeman, W. M. [1967]. “Language directed computer design,” Proc. AFIPS
Fall Joint Computer Conf., November 14–16, 1967, Washington, D.C., 413–
417.

Meyers, G. J. [1978]. “The evaluation of expressions in a storage-to-storage archi-

tecture,” Computer Architecture News 7:3 (October), 20–23.

M-26 ■ Appendix M Historical Perspectives and References
Meyers, G. J. [1982]. Advances in Computer Architecture, 2nd ed., Wiley,
New York.

MIPS. [1997]. MIPS16 Application Specific Extension Product Description.
Mitsubishi. [1996]. Mitsubishi 32-Bit Single Chip Microcomputer M32R Family

Software Manual, Mitsubishi, Cypress, Calif.
Morse, S., B. Ravenal, S. Mazor, and W. Pohlman [1980]. “Intel microproces-

sors—8080 to 8086,” Computer 13:10 (October).
Moussouris, J., L. Crudele, D. Freitas, C. Hansen, E. Hudson, S. Przybylski, T.

Riordan, and C. Rowen [1986]. “A CMOS RISC processor with integrated
system functions,” Proc. IEEE COMPCON, March 3–6, 1986, San
Francisco, 191.

Muchnick, S. S. [1988]. “Optimizing compilers for SPARC,” Sun Technology 1:3
(Summer), 64–77.

Palmer, J., and S. Morse [1984]. The 8087 Primer, John Wiley & Sons, New
York, 93.

Patterson, D. [1985]. “Reduced instruction set computers,”Communications of the
ACM 28:1 (January), 8–21.

Patterson, D. A., and D. R. Ditzel [1980]. “The case for the reduced instruction set
computer,” Computer Architecture News 8:6 (October), 25–33.

Patterson, D. A., P. Garrison,M. Hill, D. Lioupis, C. Nyberg, T. Sippel, and K. Van
Dyke [1983]. “Architecture of a VLSI instruction cache for a RISC,” 10th
Annual Int’l. Conf. on Computer Architecture Conf. Proc., June 13–16,
1983, Stockholm, Sweden, 108–116.

Radin, G. [1982]. “The 801 minicomputer,” Proc. Symposium Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), March 1–
3, 1982, Palo Alto, Calif., 39–47.

Riemens, A., K. A. Vissers, R. J. Schutten, F. W. Sijstermans, G. J. Hekstra, and G.
D. La Hei [1999]. “Trimedia CPU64 application domain and benchmark suite,”
Proc. IEEE Int’l. Conf. on Computer Design: VLSI in Computers and
Processors (ICCD’99), October 10–13, 1999, Austin, Tex., 580–585.

Ropers, A., H. W. Lollman, and J. Wellhausen [1999]. DSPstone: Texas Instru-
ments TMS320C54x, Tech. Rep. Nr. IB 315 1999/9-ISS-Version 0.9, Aachen
University of Technology, Aaachen, Germany (www.ert.rwth-aachen.de/
Projekte/Tools/coal/dspstone_c54x/index.html).

Shustek, L. J. [1978]. “Analysis and Performance of Computer Instruction Sets,”
Ph.D. dissertation, Stanford University, Palo Alto, Calif.

Silicon Graphics. [1996]. MIPS V Instruction Set (see http://www.sgi.com/MIPS/
arch/ISA5/#MIPSV_indx).

Sites, R. L., and R. Witek, eds. [1995]. Alpha Architecture Reference Manual, 2nd
ed., Digital Press, Newton, Mass.

Strauss, W. [1998]. “DSP Strategies 2002,” www.usadata.com/market_research/
spr_05/spr_r127-005.htm.

Strecker, W. D. [1978]. “VAX-11/780: A virtual address extension of the PDP-11
family,” Proc. AFIPS National Computer Conf., June 5–8, 1978, Anaheim,

Calif., 47, 967–980.

M.5

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-27
Sun Microsystems. [1989]. The SPARC Architectural Manual, Version 8, Part No.
800-1399-09, Sun Microsystems, Santa Clara, Calif.

Tanenbaum, A. S. [1978]. “Implications of structured programming for machine
architecture,” Communications of the ACM 21:3 (March), 237–246.

Taylor, G., P. Hilfinger, J. Larus, D. Patterson, and B. Zorn [1986]. “Evaluation of
the SPUR LISP architecture,” Proc. 13th Annual Int’l. Symposium on Computer
Architecture (ISCA), June 2–5, 1986, Tokyo.

Texas Instruments [2000]. “History of innovation: 1980s,” www.ti.com/corp/docs/
company/history/1980s.shtml.

Thornton, J. E. [1964]. “Parallel operation in Control Data 6600,”Proc. AFIPS Fall
Joint Computer Conf., Part II, October 27–29, 1964, San Francisco, 26, 33–40.

Ungar, D., R. Blau, P. Foley, D. Samples, and D. Patterson [1984]. “Architecture
of SOAR: Smalltalk on a RISC,” Proc. 11th Annual Int’l. Symposium on
Computer Architecture (ISCA), June 5–7, 1984, Ann Arbor, Mich., 188–197.

van Eijndhoven, J. T. J., F. W. Sijstermans, K. A. Vissers, E. J. D. Pol, M. I. A.
Tromp, P. Struik, R. H. J. Bloks, P. van der Wolf, A. D. Pimentel, and H. P. E.
Vranken [1999]. “Trimedia CPU64 architecture,” Proc. IEEE Int’l. Conf. on
Computer Design: VLSI in Computers and Processors (ICCD’99), October
10–13, 1999, Austin, Tex., 586–592.

Wakerly, J. [1989]. Microcomputer Architecture and Programming, Wiley,
New York.

Waters, F. (ed.) [1986]. IBM RT Personal Computer Technology, SA 23-1057,
IBM, Austin, Tex.

Weaver, D. L., and T. Germond [1994]. The SPARC Architectural Manual,
Version 9,

Prentice Hall, Englewood Cliffs, N.J.
Weiss, S., and J. E. Smith [1994]. Power and PowerPC, Morgan Kaufmann,

San Francisco.
Wiecek, C. [1982]. “A case study of the VAX 11 instruction set usage for compiler

execution,” Proc. Symposium on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), March 1–3, 1982, Palo Alto, Calif.,
177–184.

Wulf, W. [1981]. “Compilers and computer architecture,” Computer 14:7 (July),

41–47.
The Development of Pipelining and Instruction-Level
Parallelism (Chapter 3 and Appendices C and H)

Early Pipelined CPUs

The first general-purpose pipelined processor is considered to be Stretch, the IBM
7030. Stretch followed the IBM 704 and had a goal of being 100 times faster than

the 704. The goal was a stretch from the state of the art at that time, hence the

M-28 ■ Appendix M Historical Perspectives and References
nickname.The planwas to obtain a factor of 1.6 fromoverlapping fetch, decode, and
execute, using a four-stage pipeline. Bloch [1959] and Bucholtz [1962] described
the design and engineering trade-offs, including the use of ALU bypasses.

A series of general pipelining descriptions that appeared in the late 1970s and
early 1980s provided most of the terminology and described most of the basic tech-
niques used in simple pipelines. These surveys includeKeller [1975],Ramamoorthy
and Li [1977], and Chen [1980], as well as Kogge [1981], whose book is devoted
entirely to pipelining. Davidson and his colleagues [1971, 1975] developed the
concept of pipeline reservation tables as a design methodology for multicycle pipe-
lines with feedback (also described in Kogge [1981]). Many designers use a varia-
tion of these concepts, in either designing pipelines or in creating software to
schedule them.

The RISC processors were originally designed with ease of implementation
and pipelining in mind. Several of the early RISC papers, published in the early
1980s, attempt to quantify the performance advantages of the simplification in
instruction set. The best analysis, however, is a comparison of a VAX and a MIPS
implementation published by Bhandarkar and Clark in 1991, 10 years after the first
published RISC papers (see Figure M.1). After 10 years of arguments about the
implementation benefits of RISC, this paper convinced even the most skeptical
designers of the advantages of a RISC instruction set architecture.

J. E. Smith and his colleagues have written a number of papers examining
instruction issue, exception handling, and pipeline depth for high-speed scalar
CPUs. Kunkel and Smith [1986] evaluated the impact of pipeline overhead and
dependences on the choice of optimal pipeline depth; they also provided an excel-
lent discussion of latch design and its impact on pipelining. Smith and Pleszkun
[1988] evaluated a variety of techniques for preserving precise exceptions. Weiss
and Smith [1984] evaluated a variety of hardware pipeline scheduling and instruc-
tion issue techniques.

The MIPS R4000 was one of the first deeply pipelined microprocessors and is
described by Killian [1991] and by Heinrich [1993]. The initial Alpha implemen-
tation (the 21064) has a similar instruction set and similar integer pipeline struc-

ture, with more pipelining in the floating-point unit.
The Introduction of Dynamic Scheduling

In 1964, CDC delivered the first CDC 6600. The CDC 6600 was unique in many
ways. In addition to introducing scoreboarding, the CDC 6600 was the first pro-
cessor to make extensive use of multiple functional units. It also had peripheral
processors that used multithreading. The interaction between pipelining and
instruction set design was understood, and a simple, load-store instruction set
was used to promote pipelining. The CDC 6600 also used an advanced packaging
technology. Thornton [1964] described the pipeline and I/O processor architecture,
including the concept of out-of-order instruction execution. Thornton’s book

[1970] provides an excellent description of the entire processor, from technology

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-29
to architecture, and includes a foreword by Cray. (Unfortunately, this book is
currently out of print.) The CDC 6600 also has an instruction scheduler for the
FORTRAN compilers, described by Thorlin [1967].

The IBM 360 Model 91: A Landmark Computer

The IBM 360/91 introduced many new concepts, including tagging of data, reg-
ister renaming, dynamic detection of memory hazards, and generalized forward-
ing. Tomasulo’s algorithm is described in his 1967 paper. Anderson, Sparacio,
and Tomasulo [1967] described other aspects of the processor, including the
use of branch prediction. Many of the ideas in the 360/91 faded from use for nearly
25 years before being broadly resurrected in the 1990s. Unfortunately, the 360/91
was not successful, and only a handful were sold. The complexity of the design
made it late to the market and allowed the Model 85, which was the first IBM
processor with a cache, to outperform the 91.

Branch-Prediction Schemes

The 2-bit dynamic hardware branch-prediction scheme was described by J. E.
Smith [1981]. Ditzel and McLellan [1987] described a novel branch-target buffer
for CRISP, which implements branch folding. The correlating predictor we exam-
ine was described by Pan, So, and Rameh [1992]. Yeh and Patt [1992, 1993] gen-
eralized the correlation idea and described multilevel predictors that use branch
histories for each branch, similar to the local history predictor used in the
21264. McFarling’s tournament prediction scheme, which he refers to as a com-
bined predictor, is described in his 1993 technical report. There are a variety of
more recent papers on branch prediction based on variations in the multilevel
and correlating predictor ideas. Kaeli and Emma [1991] described return address
prediction, and Evers et al. [1998] provided an in-depth analysis of multilevel pre-
dictors. The data shown in Chapter 3 are from Skadron et al. [1999]. There are
several schemes for prediction that may offer some additional benefit beyond tour-
nament predictors. Eden and Mudge [1998] and Jimenez and Lin [2002] have
described such approaches.

The Development of Multiple-Issue Processors

IBM did pioneering work on multiple issue. In the 1960s, a project called ACS was
underway inCalifornia. It includedmultiple-issue concepts, a proposal for dynamic
scheduling (although with a simpler mechanism than Tomasulo’s scheme, which
used backup registers), and fetching down both branch paths. The project originally
started as a newarchitecture to followStretch and surpass theCDC6600/6800.ACS
started in New York but was moved to California, later changed to be S/360 com-
patible, and eventually canceled. John Cocke was one of the intellectual forces

behind the team that included a number of IBM veterans and younger contributors,

M-30 ■ Appendix M Historical Perspectives and References
many of whom went on to other important roles in IBM and elsewhere: Jack Ber-
tram, Ed Sussenguth, Gene Amdahl, Herb Schorr, Fran Allen, Lynn Conway,
and Phil Dauber, among others. While the compiler team published many of their
ideas and had great influence outside IBM, the architecture ideas were not widely
disseminated at that time. The most complete accessible documentation of this
important project is atwww.cs.clemson.edu/�mark/acs.html, which includes inter-
views with the ACS veterans and pointers to other sources. Sussenguth [1999] is a
good overview of ACS.

Most of the early multiple-issue processors that actually reached the market
followed an LIW or VLIW design approach. Charlesworth [1981] reported on
the Floating Point Systems AP-120B, one of the first wide-instruction processors
containing multiple operations per instruction. Floating Point Systems applied the
concept of software pipelining both in a compiler and by handwriting assembly
language libraries to use the processor efficiently. Because the processor was an
attached processor, many of the difficulties of implementing multiple issue in
general-purpose processors (for example, virtual memory and exception handling)
could be ignored.

One of the interesting approaches used in early VLIW processors, such as the
AP-120B and i860, was the idea of a pipeline organization that requires operations
to be “pushed through” a functional unit and the results to be caught at the end of the
pipeline. In such processors, operations advance only when another operation
pushes them from behind (in sequence). Furthermore, an instruction specifies the
destination for an instruction issued earlier that will be pushed out of the pipeline
when this new operation is pushed in. Such an approach has the advantage that it
does not specify a result destination when an operation first issues but only when
the result register is actually written. This separation eliminates the need to detect
write after write (WAW) and write after read (WAR) hazards in the hardware.
The disadvantage is that it increases code size since no-ops may be needed to push
results out when there is a dependence on an operation that is still in the pipeline and
no other operations of that type are immediately needed. Instead of the “push-and-
catch” approach used in these two processors, almost all designers have chosen to
use self-draining pipelines that specify the destination in the issuing instruction and
in which an issued instruction will complete without further action. The advantages
in code density and simplifications in code generation seem to outweigh the advan-
tages of the more unusual structure.

Several research projects introduced some form of multiple issue in the mid-
1980s. For example, the Stanford MIPS processor had the ability to place two
operations in a single instruction, although this capability was dropped in com-
mercial variants of the architecture, primarily for performance reasons. Along
with his colleagues at Yale, Fisher [1983] proposed creating a processor with
a very wide instruction (512 bits) and named this type of processor a VLIW.
Code was generated for the processor using trace scheduling, which Fisher
[1981] had developed originally for generating horizontal microcode. The imple-
mentation of trace scheduling for the Yale processor is described by Fisher et al.

[1984] and by Ellis [1986].

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-31
Although IBM canceled ACS, active research in the area continued in the
1980s. More than 10 years after ACS was canceled, John Cocke made a new
proposal for a superscalar processor that dynamically made issue decisions; he
and Tilak Agerwala described the key ideas in several talks in the mid-1980s
and coined the term superscalar. He called the design America; it is described
by Agerwala and Cocke [1987]. The IBM Power1 architecture (the RS/6000 line)
is based on these ideas (see Bakoglu et al. [1989]).

J. E. Smith [1984] and his colleagues at Wisconsin proposed the decoupled
approach that included multiple issue with limited dynamic pipeline scheduling.
A key feature of this processor is the use of queues to maintain order among a class
of instructions (such as memory references) while allowing it to slip behind or
ahead of another class of instructions. The Astronautics ZS-1 described by Smith
et al. [1987] embodies this approach with queues to connect the load-store unit and
the operation units. The Power2 design uses queues in a similar fashion. J. E. Smith
[1989] also described the advantages of dynamic scheduling and compared that
approach to static scheduling.

The concept of speculation has its roots in the original 360/91, which per-
formed a very limited form of speculation. The approach used in recent processors
combines the dynamic scheduling techniques of the 360/91 with a buffer to allow
in-order commit. Smith and Pleszkun [1988] explored the use of buffering to
maintain precise interrupts and described the concept of a reorder buffer. Sohi
[1990] described adding renaming and dynamic scheduling, making it possible
to use the mechanism for speculation. Patt and his colleagues were early propo-
nents of aggressive reordering and speculation. They focused on checkpoint and
restart mechanisms and pioneered an approach called HPSm, which is also an
extension of Tomasulo’s algorithm [Hwu and Patt 1986].

The use of speculation as a technique in multiple-issue processors was evalu-
ated by Smith, Johnson, and Horowitz [1989] using the reorder buffer technique;
their goal was to study available ILP in nonscientific code using speculation and
multiple issue. In a subsequent book, Johnson [1990] described the design of a
speculative superscalar processor. Johnson later led the AMD K-5 design, one
of the first speculative superscalars.

In parallel with the superscalar developments, commercial interest in VLIW
approaches also increased. The Multiflow processor (see Colwell et al. [1987])
was based on the concepts developed at Yale, although many important refine-
ments were made to increase the practicality of the approach. Among these was
a control-lable store buffer that provided support for a form of speculation.
Although more than 100 Multiflow processors were sold, a variety of problems,
including the difficulties of introducing a new instruction set from a small company
and competition from commercial RISC microprocessors that changed the
economics in the mini-computer market, led to the failure of Multiflow as a
company.

Around the same time as Multiflow, Cydrome was founded to build a VLIW-
style processor (see Rau et al. [1989]), which was also unsuccessful commercially.

Dehnert, Hsu, and Bratt [1989] explained the architecture and performance of the

M-32 ■ Appendix M Historical Perspectives and References
Cydrome Cydra 5, a processor with a wide-instruction word that provides dynamic
register renaming and additional support for software pipelining. The Cydra 5 is a
unique blend of hardware and software, including conditional instructions and
register rotation, aimed at extracting ILP. Cydrome relied on more hardware than
the Multiflow processor and achieved competitive performance primarily on
vector-style codes. In the end, Cydrome suffered from problems similar to those
of Multiflow and was not a commercial success. Both Multiflow and Cydrome,
although unsuccessful as commercial entities, produced a number of people with
extensive experience in exploiting ILP as well as advanced compiler technology;
many of those people have gone on to incorporate their experience and the pieces
of the technology in newer processors. Fisher and Rau [1993] edited a comprehen-
sive collection of papers covering the hardware and software of these two impor-
tant processors.

Rau had also developed a scheduling technique called polycyclic scheduling,
which is a basis for most software-pipelining schemes (see Rau, Glaeser, and
Picard [1982]). Rau’s work built on earlier work by Davidson and his colleagues
on the design of optimal hardware schedulers for pipelined processors. Other his-
torical LIW processors have included the Apollo DN 10000 and the Intel i860, both

of which could dual-issue FP and integer operations.
Compiler Technology and Hardware Support for Scheduling

Loop-level parallelism and dependence analysis were developed primarily by D.
Kuck and his colleagues at the University of Illinois in the 1970s. They also coined
the commonly used terminology of antidependence and output dependence and
developed several standard dependence tests, including the GCD and Banerjee
tests. The latter test was named after Uptal Banerjee and comes in a variety of fla-
vors. Recent work on dependence analysis has focused on using a variety of exact
tests ending with a linear programming algorithm called Fourier–Motzkin. D.
Maydan and W. Pugh both showed that the sequences of exact tests were a prac-
tical solution.

In the area of uncovering and scheduling ILP, much of the early work was con-
nected to the development of VLIW processors, described earlier. Lam [1988]
developed algorithms for software pipelining and evaluated their use on Warp,
a wide-instruction-word processor designed for special-purpose applications.
Weiss and Smith [1987] compared software pipelining versus loop unrolling as
techniques for scheduling code on a pipelined processor. Rau [1994] developed
modulo scheduling to deal with the issues of software-pipelining loops and simul-
taneously handling register allocation.

Support for speculative code scheduling was explored in a variety of contexts,
including several processors that provided a mode in which exceptions were
ignored, allowing more aggressive scheduling of loads (e.g., the MIPS TFP pro-
cessor [Hsu 1994]). Several groups explored ideas for more aggressive hardware

support for speculative code scheduling. For example, Smith, Horowitz, and Lam

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-33
[1992] created a concept called boosting that contains a hardware facility for sup-
porting speculation but provides a checking and recovery mechanism, similar to
those in IA-64 and Crusoe. The sentinel scheduling idea, which is also similar
to the speculate-and-check approach used in both Crusoe and the IA-64 architec-
tures, was developed jointly by researchers at the University of Illinois and HP
Laboratories (see Mahlke et al. [1992]).

In the early 1990s, Wen-Mei Hwu and his colleagues at the University of Illi-
nois developed a compiler framework, called IMPACT (see Chang et al. [1991]),
for exploring the interaction between multiple-issue architectures and compiler
technology. This project led to several important ideas, including superblock
scheduling (see Hwu et al. [1993]), extensive use of profiling for guiding a variety
of optimizations (e.g., procedure inlining), and the use of a special buffer (similar
to the ALAT or program-controlled store buffer) for compile-aided memory con-
flict detection (see Gallagher et al. [1994]). They also explored the performance
trade-offs between partial and full support for predication in Mahlke et al. [1995].

The early RISC processors all had delayed branches, a scheme inspired from
microprogramming, and several studies on compile time branch prediction were
inspired by delayed branch mechanisms. McFarling and Hennessy [1986] did a
quantitative comparison of a variety of compile time and runtime branch-
prediction schemes. Fisher and Freudenberger [1992] evaluated a range of compile
time branch-prediction schemes using the metric of distance between mispredic-
tions. Ball and Larus [1993] and Calder et al. [1997] described static prediction

schemes using collected program behavior.
EPIC and the IA-64 Development

The roots of the EPIC approach lie in earlier attempts to build LIW and VLIW
machines—especially those at Cydrome and Multiflow—and in a long history
of compiler work that continued after these companies failed at HP, the University
of Illinois, and elsewhere. Insights gained from that work led designers at HP to
propose a VLIW-style, 64-bit architecture to follow the HP PA RISC architecture.
Intel was looking for a new architecture to replace the x86 (now called IA-32)
architecture and to provide 64-bit capability. In 1995, they formed a partnership
to design a new architecture, IA-64 (see Huck et al. [2000]), and build processors
based on it. Itanium (see Sharangpani and Arora [2000]) is the first such processor.
In 2002, Intel introduced the second-generation IA-64 design, the Itanium 2

(see McNairy and Soltis [2003] and McCormick and Knies [2002]).
Studies of ILP and Ideas to Increase ILP

A series of early papers, including Tjaden and Flynn [1970] and Riseman and
Foster [1972], concluded that only small amounts of parallelism could be available
at the instruction level without investing an enormous amount of hardware. These

papers dampened the appeal of multiple instruction issue for more than 10 years.

M-34 ■ Appendix M Historical Perspectives and References
Nicolau and Fisher [1984] published a paper based on their work with trace sched-
uling and asserted the presence of large amounts of potential ILP in scientific
programs.

Since then there have been many studies of the available ILP. Such studies
have been criticized because they presume some level of both hardware support
and compiler technology. Nonetheless, the studies are useful to set expectations
as well as to understand the sources of the limitations. Wall has participated in sev-
eral such studies, including Jouppi and Wall [1989] and Wall [1991, 1993].
Although the early studies were criticized as being conservative (e.g., they didn’t
include speculation), the last study is by far the most ambitious study of ILP to date
and the basis for the data in Section 3.10. Sohi and Vajapeyam [1989] provided
measurements of available parallelism for wide-instruction-word processors.
Smith, Johnson, and Horowitz [1989] also used a speculative superscalar processor
to study ILP limits. At the time of their study, they anticipated that the processor
they specified was an upper bound on reasonable designs. Recent and upcoming
processors, however, are likely to be at least as ambitious as their processor.
Skadron et al. [1999] examined the performance trade-offs and limitations in a
processor comparable to the most aggressive processors in 2005, concluding that
the larger window sizes will not make sense without significant improvements on
branch prediction for integer programs.

Lam and Wilson [1992] looked at the limitations imposed by speculation and
showed that additional gains are possible by allowing processors to speculate in
multiple directions, which requires more than one PC. (Such schemes cannot
exceed what perfect speculation accomplishes, but they help close the gap between
realistic prediction schemes and perfect prediction.) Wall’s 1993 study includes a

limited evaluation of this approach (up to eight branches are explored).
Going Beyond the Data Flow Limit

One other approach that has been explored in the literature is the use of value pre-
diction. Value prediction can allow speculation based on data values. There have
been a number of studies of the use of value prediction. Lipasti and Shen published
two papers in 1996 evaluating the concept of value prediction and its potential
impact on ILP exploitation. Calder, Reinman, and Tullsen [1999] explored the idea
of selective value prediction. Sodani and Sohi [1997] approached the same prob-
lem from the viewpoint of reusing the values produced by instructions. Moshovos
et al. [1997] showed that deciding when to speculate on values, by tracking
whether such speculation has been accurate in the past, is important to achieving
performance gains with value speculation.Moshovos and Sohi [1997] and Chrysos
and Emer [1998] focused on predicting memory dependences and using this infor-
mation to eliminate the dependence through memory. González and González
[1998], Babbay and Mendelson [1998], and Calder, Reinman, and Tullsen
[1999] are more recent studies of the use of value prediction. This area is currently

highly active, with new results being published in every conference.

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-35
Recent Advanced Microprocessors

Theyears 1994 and 1995 saw the announcement ofwide superscalar processors (three
ormore issues per clock) by everymajor processor vendor: Intel PentiumPro andPen-
tium II (these processors share the same core pipeline architecture, described by Col-
well andSteck[1995]);AMDK-5,K-6, andAthlon;SunUltraSPARC(seeLauterbach
andHorel [1999]);Alpha21164 (seeEdmondson et al. [1995]) and21264 (seeKessler
[1999]);MIPSR10000 andR12000 (seeYeager [1996]); PowerPC603, 604, and 620
(see Diep, Nelson, and Shen [1995]); and HP 8000 (Kumar [1997]). The latter part of
thedecade (1996–2000) sawsecondgenerationsofmanyof theseprocessors (Pentium
III, AMDAthlon, andAlpha 21264, among others). The second generation, although
similar in issue rate, could sustain a lower CPI and provided much higher clock rates.
All included dynamic scheduling, and they almost universally supported speculation.
In practice, many factors, including the implementation technology, thememory hier-
archy, the skill of the designers, and the type of applications benchmarked, all play a
role in determining which approach is best.

The period from2000 to 2005was dominated by three trends among superscalar
processors: the introduction of higher clock rates achieved through deeper pipelin-
ing (e.g., in the Pentium 4; seeHinton et al. [2001]), the introduction ofmultithread-
ing by IBM in the Power 4 and by Intel in the Pentium 4Extreme, and the beginning
of themovement tomulticore by IBM in thePower 4,AMDinOpteron (seeKeltcher
et al. [2003]), and most recently by Intel (see Douglas [2005]).

Multithreading and Simultaneous Multithreading

The concept of multithreading dates back to one of the earliest transistorized com-
puters, the TX-2. TX-2 is also famous for being the computer on which Ivan Suth-
erland created Sketchpad, the first computer graphics system. TX-2 was built at
MIT’s Lincoln Laboratory and became operational in 1959. It used multiple
threads to support fast context switching to handle I/O functions. Clark [1957]
described the basic architecture, and Forgie [1957] described the I/O architecture.
Multithreading was also used in the CDC 6600, where a fine-grained multithread-
ing scheme with interleaved scheduling among threads was used as the architecture
of the I/O processors. The HEP processor, a pipelined multiprocessor designed by
Denelcor and shipped in 1982, used fine-grained multithreading to hide the pipe-
line latency as well as to hide the latency to a large memory shared among all the
processors. Because the HEP had no cache, this hiding of memory latency was
critical. Burton Smith, one of the primary architects, described the HEP architec-
ture in a 1978 paper, and Jordan [1983] published a performance evaluation. The
TERA processor extends the multithreading ideas and is described by Alverson
et al. in a 1992 paper. The Niagara multithreading approach is similar to those
of the HEP and TERA systems, although Niagara employs caches reducing the
need for thread-based latency hiding.

In the late 1980s and early 1990s, researchers explored the concept of coarse-

grained multithreading (also called block multithreading) as a way to tolerate

M-36 ■ Appendix M Historical Perspectives and References
latency, especially in multiprocessor environments. The SPARCLE processor in
the Alewife system used such a scheme, switching threads whenever a highlatency
exceptional event, such as a long cache miss, occurred. Agarwal et al. described
SPARCLE in a 1993 paper. The IBM Pulsar processor uses similar ideas.

By the early 1990s, several research groups had arrived at two key insights.
First, they realized that fine-grained multithreading was needed to get the max-
imum performance benefit, since in a coarse-grained approach, the overhead of
thread switching and thread start-up (e.g., filling the pipeline from the new
thread) negated much of the performance advantage (see Laudon, Gupta, and
Horowitz [1994]). Second, several groups realized that to effectively use large
numbers of functional units would require both ILP and thread-level parallelism
(TLP). These insights led to several architectures that used combinations of multi-
threading and multiple issue. Wolfe and Shen [1991] described an architecture
called XIMD that statically interleaves threads scheduled for a VLIW processor.
Hirata et al. [1992] described a proposed processor for media use that combines a
static superscalar pipeline with support for multithreading; they reported speed-
ups from combining both forms of parallelism. Keckler and Dally [1992] com-
bined static scheduling of ILP and dynamic scheduling of threads for a processor
with multiple functional units. The question of how to balance the allocation of
functional units between ILP and TLP and how to schedule the two forms of par-
allelism remained open.

When it became clear in the mid-1990s that dynamically scheduled supersca-
lars would be delivered shortly, several research groups proposed using the
dynamic scheduling capability to mix instructions from several threads on the
fly. Yamamoto et al. [1994] appear to have published the first such proposal,
though the simulation results for their multithreaded superscalar architecture use
simplistic assumptions. This work was quickly followed by Tullsen, Eggers,
and Levy [1995], who provided the first realistic simulation assessment and coined
the term simultaneous multithreading. Subsequent work by the same group
together with industrial coauthors addressed many of the open questions about
SMT. For example, Tullsen et al. [1996] addressed questions about the challenges
of scheduling ILP versus TLP. Lo et al. [1997] provided an extensive discussion of
the SMT concept and an evaluation of its performance potential, and Lo et. al.
[1998] evaluated database performance on an SMT processor. Tuck and Tullsen
[2003] reviewed the performance of SMT on the Pentium 4.

The IBM Power4 introduced multithreading (see Tendler et al. [2002]), while
the Power5 used simultaneous multithreading. Mathis et al. [2005] explored
the performance of SMT in the Power5, while Sinharoy et al. [2005] described
the system architecture.

References

Agarwal, A., J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung, G. D’Souza, and M.
Parkin [1993]. “Sparcle: An evolutionary processor design for large-scale mul-

tiprocessors,” IEEE Micro 13 (June), 48–61.

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-37
Agerwala, T., and J. Cocke [1987]. High Performance Reduced Instruction Set
Processors, Tech. Rep. RC12434, IBM Thomas Watson Research Center,
Yorktown Heights, N.Y.

Alverson, G., R. Alverson, D. Callahan, B. Koblenz, A. Porterfield, and B. Smith
[1992]. “Exploiting heterogeneous parallelism on a multithreaded multiproces-
sor,” Proc. ACM/IEEE Conf. on Supercomputing, November 16–20, 1992,
Minneapolis, Minn., 188–197.

Anderson, D. W., F. J. Sparacio, and R. M. Tomasulo [1967]. “The IBM 360
Model 91: Processor philosophy and instruction handling,” IBM J. Research
and Development 11:1 (January), 8–24.

Austin, T. M., and G. Sohi [1992]. “Dynamic dependency analysis of ordinary pro-
grams,” Proc. 19th Annual Int’l. Symposium on Computer Architecture (ISCA),
May 19–21, 1992, Gold Coast, Australia, 342–351.

Babbay, F., and A. Mendelson [1998]. “Using value prediction to increase the
power of speculative execution hardware,” ACM Trans. on Computer Systems
16:3 (August), 234–270.

Bakoglu, H. B., G. F. Grohoski, L. E. Thatcher, J. A. Kaeli, C. R. Moore, D. P.
Tattle, W. E. Male, W. R. Hardell, D. A. Hicks, M. Nguyen Phu, R. K. Montoye,
W. T. Glover, and S. Dhawan [1989]. “IBM second-generation RISC processor
organization,” Proc. IEEE Int’l. Conf. on Computer Design, October, Rye
Brook, N.Y., 138–142.

Ball, T., and J. Larus [1993]. “Branch prediction for free,” Proc. ACM SIG-
PLAN’93 Conference on Programming Language Design and Implementation
(PLDI), June 23–25, 1993, Albuquerque, N.M., 300–313.

Bhandarkar, D., and D. W. Clark [1991]. “Performance from architecture: Com-
paring a RISC and a CISC with similar hardware organizations,” Proc. Fourth
Int’l. Conf. on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), April 8–11, 1991, Palo Alto, Calif., 310–319.

Bhandarkar, D., and J. Ding [1997]. “Performance characterization of the Pentium
Pro processor,” Proc. Third Int’l. Symposium on High Performance Computer
Architecture, February 1–5, 1997, San Antonio, Tex., 288–297.

Bloch, E. [1959]. “The engineering design of the Stretch computer,” Proc. Eastern
Joint Computer Conf., December 1–3, 1959, Boston, Mass., 48–59.

Bucholtz,W. [1962]. Planning a Computer System: Project Stretch, McGraw-Hill,
New York.

Calder, B., D. Grunwald, M. Jones, D. Lindsay, J. Martin, M. Mozer, and B. Zorn
[1997]. “Evidence-based static branch prediction using machine learning,”
ACM Trans. Program. Lang. Syst. 19:1, 188–222.

Calder, B., G. Reinman, and D. M. Tullsen [1999]. “Selective value prediction,”
Proc. 26th Annual Int’l. Symposium on Computer Architecture (ISCA),
May 2–4, 1999, Atlanta, Ga.

Chang, P. P., S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu [1991].
“IMPACT: An architectural framework for multiple-instruction-issue
processors,” Proc. 18th Annual Int’l. Symposium on Computer Architecture

(ISCA), May 27–30, 1991, Toronto, Canada, 266–275.

M-38 ■ Appendix M Historical Perspectives and References
Charlesworth, A. E. [1981]. “An approach to scientific array processing: The archi-
tecture design of the AP-120B/FPS-164 family,” Computer 14:9 (September),
18–27.

Chen, T. C. [1980]. “Overlap and parallel processing,” in Introduction to Com-
puter Architecture, H. Stone, ed., Science Research Associates, Chicago,
427–486.

Chrysos, G. Z., and J. S. Emer [1998]. “Memory dependence prediction using store
sets,” Proc. 25th Annual Int’l. Symposium on Computer Architecture (ISCA),
July 3–14, 1998, Barcelona, Spain, 142–153.

Clark, D. W. [1987]. “Pipelining and performance in the VAX 8800 processor,”
Proc. Second Int’l. Conf. on Architectural Support for Programming Languages
andOperating Systems (ASPLOS), October 5–8, 1987, PaloAlto, Calif., 173–177.

Clark, W. A. [1957]. “The Lincoln TX-2 computer development,” Proc. Western
Joint Computer Conference, February 26–28, 1957, Los Angeles, 143–145.

Colwell, R. P., and R. Steck [1995]. “A 0.6 μm BiCMOS processor with dynamic
execution.” Proc. of IEEE Int’l. Symposium on Solid State Circuits (ISSCC),
February 15–17, 1995, San Francisco, 176–177.

Colwell, R. P., R. P. Nix, J. J. O’Donnell, D. B. Papworth, and P. K. Rodman
[1987]. “A VLIW architecture for a trace scheduling compiler,” Proc. Second
Int’l. Conf. on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), October 5–8, 1987, Palo Alto, Calif., 180–192.

Cvetanovic, Z., and R. E. Kessler [2000]. “Performance analysis of the Alpha
21264-based Compaq ES40 system,” 27th Annual Int’l. Symposium on Com-
puter Architecture (ISCA), June 10–14, 2000, Vancouver, Canada, 192–202.

Davidson, E. S. [1971]. “The design and control of pipelined function generators,”
Proc. IEEE Conf. on Systems, Networks, and Computers, January 19–21, 1971,
Oaxtepec, Mexico, 19–21.

Davidson, E. S., A. T. Thomas, L. E. Shar, and J. H. Patel [1975]. “Effective con-
trol for pipelined processors,” Proc. IEEE COMPCON, February 25–27, 1975,
San Francisco, 181–184.

Dehnert, J. C., P. Y.-T. Hsu, and J. P. Bratt [1989]. “Overlapped loop support on
the Cydra 5,” Proc. Third Int’l. Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), April 3–6, 1989, Boston,
Mass., 26–39.

Diep, T. A., C. Nelson, and J. P. Shen [1995]. “Performance evaluation of the
PowerPC 620 microarchitecture,” Proc. 22nd Annual Int’l. Symposium on Com-
puter Architecture (ISCA), June 22–24, 1995, Santa Margherita, Italy.

Ditzel, D. R., and H. R. McLellan [1987]. “Branch folding in the CRISP micro-
processor: Reducing the branch delay to zero,” Proc. 14th Annual Int’l. Sympo-
sium on Computer Architecture (ISCA), June 2–5, 1987, Pittsburgh, Penn., 2–7.

Douglas, J. [2005]. “Intel 8xx series and Paxville Xeon-MP Microprocessors,”
paper presented at Hot Chips 17, August 14–16, 2005, Stanford University, Palo
Alto, Calif.

Eden, A., and T. Mudge [1998]. “The YAGS branch prediction scheme,” Proc. of
the 31st Annual ACM/IEEE Int’l. Symposium on Microarchitecture, November

30–December 2, 1998, Dallas, Tex., 69–80.

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-39
Edmondson, J. H., P. I. Rubinfield, R. Preston, and V. Rajagopalan [1995].
“Superscalar instruction execution in the 21164 Alpha microprocessor,” IEEE
Micro 15:2, 33–43.

Ellis, J. R. [1986]. Bulldog: A Compiler for VLIW Architectures, MIT Press,
Cambridge, Mass.

Emer, J. S., and D. W. Clark [1984]. “A characterization of processor performance
in the VAX-11/780,” Proc. 11th Annual Int’l. Symposium on Computer Archi-
tecture (ISCA), June 5–7, 1984, Ann Arbor, Mich., 301–310.

Evers, M., S. J. Patel, R. S. Chappell, and Y. N. Patt [1998]. “An analysis of cor-
relation and predictability: What makes two-level branch predictors work,”
Proc. 25th Annual Int’l. Symposium on Computer Architecture (ISCA), July
3–14, 1998, Barcelona, Spain, 52–61.

Fisher, J. A. [1981]. “Trace scheduling: A technique for global microcode compac-
tion,” IEEE Trans. on Computers 30:7 (July), 478–490.

Fisher, J. A. [1983]. “Very long instruction word architectures and ELI-512,” 10th
Annual Int’l. Symposium on Computer Architecture (ISCA), June 5–7, 1982,
Stockholm, Sweden, 140–150.

Fisher, J. A., and S. M. Freudenberger [1992]. “Predicting conditional branches
from previous runs of a program,” Proc. Fifth Int’l. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), October
12–15, 1992, Boston, 85–95.

Fisher, J. A., and B. R. Rau [1993]. Journal of Supercomputing, January
(special issue).

Fisher, J. A., J. R. Ellis, J. C. Ruttenberg, and A. Nicolau [1984]. “Parallel proces-
sing: A smart compiler and a dumb processor,” Proc. SIGPLAN Conf. on Com-
piler Construction, June 17–22, 1984, Montreal, Canada, 11–16.

Forgie, J. W. [1957]. “The Lincoln TX-2 input-output system,” Proc. Western
Joint Computer Conference, February 26–28, 1957, Los Angeles, 156–160.

Foster, C. C., and E. M. Riseman [1972]. “Percolation of code to enhance parallel
dispatching and execution,” IEEE Trans. on Computers C-21:12 (December),
1411–1415.

Gallagher, D. M., W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W.W. Hwu
[1994]. “Dynamic memory disambiguation using the memory conflict buffer,”
Proc. Sixth Int’l. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 4–7, Santa Jose, Calif., 183–193.

González, J., and A. González [1998]. “Limits of instruction level parallelism with
data speculation,” Proc. Vector and Parallel Processing (VECPAR) Conf., June
21–23, 1998, Porto, Portugal, 585–598.

Heinrich, J. [1993].MIPS R4000 User’s Manual, Prentice Hall, Englewood Cliffs,
N.J.

Hinton, G., D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel
[2001]. “The microarchitecture of the Pentium 4 processor,” Intel Technology
Journal, February.

Hirata, H., K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase, and
T. Nishizawa [1992]. “An elementary processor architecture with simultaneous

instruction issuing from multiple threads,” Proc. 19th Annual Int’l. Symposium

M-40 ■ Appendix M Historical Perspectives and References
on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia,
136–145.

Hopkins, M. [2000]. “A critical look at IA-64:Massive resources, massive ILP, but
can it deliver?” Microprocessor Report, February.

Hsu, P. [1994]. “Designing the TFP microprocessor,” IEEE Micro 18:2
(April), 2333.

Huck, J. et al. [2000]. “Introducing the IA-64 Architecture” IEEE Micro, 20:5
(September–October), 12–23.

Hwu, W.-M., and Y. Patt [1986]. “HPSm, a high performance restricted data flow
architecture having minimum functionality,” 13th Annual Int’l. Symposium on
Computer Architecture (ISCA), June 2–5, 1986, Tokyo, 297–307.

Hwu, W. W., S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. O. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D.
M. Lavery [1993]. “The superblock: An effective technique for VLIW and
superscalar compilation,” J. Supercomputing 7:1, 2 (March), 229–248.

IBM. [1990]. “The IBMRISC System/6000 processor” (collection of papers), IBM
J. Research and Development 34:1 (January).

Jimenez, D. A., and C. Lin [2002]. “Neural methods for dynamic branch
prediction,” ACM Trans. Computer Sys 20:4 (November), 369–397.

Johnson, M. [1990]. Superscalar Microprocessor Design, Prentice Hall, Engle-
wood Cliffs, N.J.

Jordan, H. F. [1983]. “Performance measurements on HEP—a pipelined MIMD
computer,” Proc. 10th Annual Int’l. Symposium on Computer Architecture
(ISCA), June 5–7, 1982, Stockholm, Sweden, 207–212.

Jouppi, N. P., and D. W. Wall [1989]. “Available instruction-level parallelism for
superscalar and superpipelined processors,” Proc. Third Int’l. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), April 3–6, 1989, Boston, 272–282.

Kaeli, D. R., and P. G. Emma [1991]. “Branch history table prediction of moving
target branches due to subroutine returns,” Proc. 18th Annual Int’l. Symposium
on Computer Architecture (ISCA), May 27–30, 1991, Toronto, Canada, 34–42.

Keckler, S. W., and W. J. Dally [1992]. “Processor coupling: Integrating compile
time and runtime scheduling for parallelism,” Proc. 19th Annual Int’l.
Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast,
Australia, 202–213.

Keller, R. M. [1975]. “Look-ahead processors,” ACM Computing Surveys 7:4
(December), 177–195.

Keltcher, C. N., K. J. McGrath, A. Ahmed, and P. Conway [2003]. “The AMD
Opteron processor for multiprocessor servers,” IEEE Micro 23:2 (March–
April), 66–76.

Kessler, R. [1999]. “The Alpha 21264 microprocessor,” IEEE Micro 19:2 (March/
April) 24–36.

Killian, E. [1991]. “MIPS R4000 technical overview–64 bits/100 MHz or bust,”
Hot Chips III Symposium Record, August 26–27, 1991, Stanford University,

Palo Alto, Calif., 1.6–1.19.

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-41
Kogge, P. M. [1981]. The Architecture of Pipelined Computers, McGraw-Hill,
New York.

Kumar, A. [1997]. “The HP PA-8000 RISC CPU,” IEEE Micro 17:2 (March/
April).

Kunkel, S. R., and J. E. Smith [1986]. “Optimal pipelining in supercomputers,”
Proc. 13th Annual Int’l. Symposium on Computer Architecture (ISCA), June
2–5, 1986, Tokyo, 404–414.

Lam, M. [1988]. “Software pipelining: An effective scheduling technique for
VLIW processors,” SIGPLAN Conf. on Programming Language Design and
Implementation, June 22–24, 1988, Atlanta, Ga., 318–328.

Lam, M. S., and R. P. Wilson [1992]. “Limits of control flow on parallelism,”
Proc. 19th Annual Int’l. Symposium on Computer Architecture (ISCA), May
19–21, 1992, Gold Coast, Australia, 46–57.

Laudon, J., A. Gupta, and M. Horowitz [1994]. “Interleaving: A multithreading
technique targeting multiprocessors and workstations,” Proc. Sixth Int’l. Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 4–7, San Jose, Calif., 308–318.

Lauterbach, G., and T. Horel [1999]. “UltraSPARC-III: Designing third generation
64-bit performance,” IEEE Micro 19:3 (May/June).

Lipasti, M. H., and J. P. Shen [1996]. “Exceeding the dataflow limit via value pre-
diction,” Proc. 29th Int’l. Symposium on Microarchitecture, December 2–4,
1996, Paris, France.

Lipasti, M. H., C. B. Wilkerson, and J. P. Shen [1996]. “Value locality and load
value prediction,” Proc. Seventh Conf. on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), October 1–5, 1996,
Cambridge, Mass., 138–147.

Lo, J., L. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and S. Parekh [1998]. “An
analysis of database workload performance on simultaneous multithreaded pro-
cessors,” Proc. 25th Annual Int’l. Symposium on Computer Architecture
(ISCA), July 3–14, 1998, Barcelona, Spain, 39–50.

Lo, J., S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen [1997].
“Converting thread-level parallelism into instruction-level parallelism via
simultaneous multithreading,” ACM Trans. on Computer Systems 15:2
(August), 322–354.

Mahlke, S. A., W. Y. Chen, W.-M. Hwu, B. R. Rau, and M. S. Schlansker [1992].
“Sentinel scheduling for VLIW and superscalar processors,” Proc. Fifth Int’l.
Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), October 12–15, 1992, Boston, 238–247.

Mahlke, S. A., R. E. Hank, J. E. McCormick, D. I. August, andW.W. Hwu [1995].
“A comparison of full and partial predicated execution support for ILP proces-
sors,” Proc. 22nd Annual Int’l. Symposium on Computer Architecture (ISCA),
June 22–24, 1995, Santa Margherita, Italy, 138–149.

Mathis, H. M., A. E. Mercias, J. D. McCalpin, R. J. Eickemeyer, and S. R. Kunkel
[2005]. “Characterization of the multithreading (SMT) efficiency in Power5,”

IBM J. of Research and Development, 49:4/5 (July/September), 555–564.

M-42 ■ Appendix M Historical Perspectives and References
McCormick, J., and A. Knies [2002]. “A brief analysis of the SPEC CPU2000
benchmarks on the Intel Itanium 2 processor,” paper presented at Hot Chips
14, August 18–20, 2002, Stanford University, Palo Alto, Calif.

McFarling, S. [1993]. Combining Branch Predictors, WRL Technical Note
TN-36, Digital Western Research Laboratory, Palo Alto, Calif.

McFarling, S., and J. Hennessy [1986]. “Reducing the cost of branches,” Proc.
13th Annual Int’l. Symposium on Computer Architecture (ISCA), June 2–5,
1986, Tokyo, 396–403.

McNairy, C., and D. Soltis [2003]. “Itanium 2 processor microarchitecture,” IEEE
Micro 23:2 (March–April), 44–55.

Moshovos, A., and G. S. Sohi [1997]. “Streamlining inter-operation memory
communication via data dependence prediction,” Proc. 30th Annual Int’l.
Symposium onMicroarchitecture, December 1–3, Research Triangle Park, N.C.,
235–245.

Moshovos, A., S. Breach, T. N. Vijaykumar, and G. S. Sohi [1997]. “Dynamic
speculation and synchronization of data dependences,” Proc. 24th Annual Int’l.
Symposium on Computer Architecture (ISCA), June 2–4, 1997, Denver, Colo.

Nicolau, A., and J. A. Fisher [1984]. “Measuring the parallelism available for very
long instruction word architectures,” IEEE Trans. on Computers C-33:11
(November), 968–976.

Pan, S.-T., K. So, and J. T. Rameh [1992]. “Improving the accuracy of dynamic
branch prediction using branch correlation,” Proc. Fifth Int’l. Conf. on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), October 12–15, 1992, Boston, 76–84.

Postiff, M.A., D. A. Greene, G. S. Tyson, and T. N. Mudge [1999]. “The limits of
instruction level parallelism in SPEC95 applications,” Computer Architecture
News 27:1 (March), 31–40.

Ramamoorthy, C. V., and H. F. Li [1977]. “Pipeline architecture,” ACM
Computing Surveys 9:1 (March), 61–102.

Rau, B. R. [1994]. “Iterative modulo scheduling: An algorithm for software pipe-
lining loops,” Proc. 27th Annual Int’l. Symposium on Microarchitecture,
November 30–December 2, 1994, San Jose, Calif., 63–74.

Rau, B. R., C. D. Glaeser, and R. L. Picard [1982]. “Efficient code generation for
horizontal architectures: Compiler techniques and architectural support,” Proc.
Ninth Annual Int’l. Symposium on Computer Architecture (ISCA), April 26–29,
1982, Austin, Tex., 131–139.

Rau, B. R., D. W. L. Yen, W. Yen, and R. A. Towle [1989]. “The Cydra 5 depart-
mental supercomputer: Design philosophies, decisions, and trade-offs,” IEEE
Computers 22:1 (January), 12–34.

Riseman, E. M., and C. C. Foster [1972]. “Percolation of code to enhance
paralleled dispatching and execution,” IEEE Trans. on Computers C-21:12
(December), 1411–1415.

Rymarczyk, J. [1982]. “Coding guidelines for pipelined processors,” Proc. Sym-
posium Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS), March 1–3, 1982, Palo Alto, Calif., 12–19.

M.5 The Development of Pipelining and Instruction-Level Parallelism ■ M-43
Sharangpani, H., and K. Arora [2000]. “Itanium Processor Microarchitecture,”
IEEE Micro, 20:5 (September–October), 24–43.

Sinharoy, B., R. N. Koala, J. M. Tendler, R. J. Eickemeyer, and J. B. Joyner
[2005]. “POWER5 system microarchitecture,” IBM J. of Research and Devel-
opment, 49:4–5, 505–521.

Sites, R. [1979]. Instruction Ordering for the CRAY-1 Computer, Tech. Rep.
78-CS-023, Dept. of Computer Science, University of California, San Diego.

Skadron, K., P. S. Ahuja, M. Martonosi, and D. W. Clark [1999]. “Branch
prediction, instruction-window size, and cache size: Performance tradeoffs
and simulation techniques,” IEEE Trans. on Computers, 48:11 (November).

Smith, A., and J. Lee [1984]. “Branch prediction strategies and branch-target
buffer design,” Computer 17:1 (January), 6–22.

Smith, B. J. [1978]. “A pipelined, shared resource MIMD computer,” Proc. Int’l.
Conf. on Parallel Processing (ICPP), August, Bellaire, Mich., 6–8.

Smith, J. E. [1981]. “A study of branch prediction strategies,” Proc. Eighth Annual
Int’l. Symposium on Computer Architecture (ISCA), May 12–14, 1981, Minne-
apolis, Minn., 135–148.

Smith, J. E. [1984]. “Decoupled access/execute computer architectures,” ACM
Trans. on Computer Systems 2:4 (November), 289–308.

Smith, J. E. [1989]. “Dynamic instruction scheduling and the Astronautics ZS-1,”
Computer 22:7 (July), 21–35.

Smith, J. E., and A. R. Pleszkun [1988]. “Implementing precise interrupts
in pipelined processors,” IEEE Trans. on Computers 37:5 (May), 562–573.
(This paper is based on an earlier paper that appeared in Proc. 12th Annual
Int’l. Symposium on Computer Architecture (ISCA), June 17–19, 1985, Boston,
Mass.)

Smith, J. E., G. E. Dermer, B. D. Vanderwarn, S. D. Klinger, C. M. Rozewski,
D. L. Fowler, K. R. Scidmore, and J. P. Laudon [1987]. “The ZS-1 central pro-
cessor,” Proc. Second Int’l. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), October 5–8, 1987, Palo Alto,
Calif., 199–204.

Smith, M. D., M. Horowitz, and M. S. Lam [1992]. “Efficient superscalar perfor-
mance through boosting,” Proc. Fifth Int’l. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), October 12–15,
1992, Boston, 248–259.

Smith, M. D., M. Johnson, and M. A. Horowitz [1989]. “Limits on multiple
instruction issue,” Proc. Third Int’l. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), April 3–6, 1989, Bos-
ton, 290–302.

Sodani, A., and G. Sohi [1997]. “Dynamic instruction reuse,” Proc. 24th Annual
Int’l. Symposium on Computer Architecture (ISCA), June 2–4, 1997,
Denver, Colo.

Sohi, G. S. [1990]. “Instruction issue logic for high-performance, interruptible,
multiple functional unit, pipelined computers,” IEEE Trans. on Computers

39:3 (March), 349–359.

M-44 ■ Appendix M Historical Perspectives and References
Sohi, G. S., and S. Vajapeyam [1989]. “Tradeoffs in instruction format design for
horizontal architectures,” Proc. Third Int’l. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), April 3–6, 1989,
Boston, 15–25.

Sussenguth, E. [1999]. “IBM’s ACS-1 Machine,” IEEE Computer 22:11
(November).

Tendler, J. M., J. S. Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy [2002].
“Power4 system microarchitecture,” IBM J. of Research and Development,
46:1, 5–26.

Thorlin, J. F. [1967]. “Code generation for PIE (parallel instruction execution)
computers,” Proc. Spring Joint Computer Conf., April 18–20, 1967, Atlantic
City, N.J., 27.

Thornton, J. E. [1964]. “Parallel operation in the Control Data 6600,” Proc. AFIPS
Fall Joint Computer Conf., Part II, October 27–29, 1964, San Francisco, 26,
33–40.

Thornton, J. E. [1970].Design of a Computer, the Control Data 6600, Scott, Fores-
man, Glenview, Ill.

Tjaden, G. S., and M. J. Flynn [1970]. “Detection and parallel execution of
independent instructions,” IEEE Trans. on Computers C-19:10 (October),
889–895.

Tomasulo, R. M. [1967]. “An efficient algorithm for exploiting multiple arithmetic
units,” IBM J. Research and Development 11:1 (January), 25–33.

Tuck, N., and D. Tullsen [2003]. “Initial observations of the simultaneous multi-
threading Pentium 4 processor,” Proc. 12th Int. Conf. on Parallel Architectures
and Compilation Techniques (PACT’03), September 27–October 1, New
Orleans, La., 26–34.

Tullsen, D. M., S. J. Eggers, and H. M. Levy [1995]. “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” Proc. 22nd Annual Int’l. Symposium on
Computer Architecture (ISCA), June 22–24, 1995, Santa Margherita, Italy, 392–
403.

Tullsen, D. M., S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm
[1996]. “Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor,” Proc. 23rd Annual Int’l. Symposium
on Computer Architecture (ISCA), May 22–24, 1996, Philadelphia, Penn.,
191–202.

Wall, D. W. [1991]. “Limits of instruction-level parallelism,” Proc. Fourth Int’l.
Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 8–11, 1991, Palo Alto, Calif., 248–259.

Wall, D. W. [1993]. Limits of Instruction-Level Parallelism, Research Rep. 93/6,
Western Research Laboratory, Digital Equipment Corp., Palo Alto, Calif.

Weiss, S., and J. E. Smith [1984]. “Instruction issue logic for pipelined supercom-
puters,” Proc. 11th Annual Int’l. Symposium on Computer Architecture (ISCA),
June 5–7, 1984, Ann Arbor, Mich., 110–118.

Weiss, S., and J. E. Smith [1987]. “A study of scalar compilation techniques for

pipelined supercomputers,” Proc. Second Int’l. Conf. on Architectural Support

M.6

M.6 The Development of SIMD Supercomputers, Vector Computers, Multimedia ■ M-45
for Programming Languages and Operating Systems (ASPLOS), October 5–8,
1987, Palo Alto, Calif., 105–109.

Wilson, R. P., and M. S. Lam [1995]. “Efficient context-sensitive pointer analysis
for C programs,” Proc. ACM SIGPLAN’95 Conf. on Programming Language
Design and Implementation, June 18–21, 1995, La Jolla, Calif., 1–12.

Wolfe, A., and J. P. Shen [1991]. “A variable instruction stream extension to the
VLIW architecture,” Proc. Fourth Int’l. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), April 8–11, 1991,
Palo Alto, Calif., 2–14.

Yamamoto, W., M. J. Serrano, A. R. Talcott, R. C. Wood, and M. Nemirosky
[1994]. “Performance estimation of multistreamed, superscalar processors,”
Proc. 27th Annual Hawaii Int’l. Conf. on System Sciences, January 4–7,
1994, Maui, 195–204.

Yeager, K. [1996]. “The MIPS R10000 superscalar microprocessor,” IEEE Micro
16:2 (April), 28–40.

Yeh, T., and Y. N. Patt [1992]. “Alternative implementations of two-level adaptive
branch prediction,” Proc. 19th Annual Int’l. Symposium on Computer Architec-
ture (ISCA), May 19–21, 1992, Gold Coast, Australia, 124–134.

Yeh, T., and Y. N. Patt [1993]. “A comparison of dynamic branch predictors that
use two levels of branch history,” Proc. 20th Annual Int’l. Symposium on Com-

puter Architecture (ISCA), May 16–19, 1993, San Diego, Calif., 257–266.
The Development of SIMD Supercomputers, Vector
Computers, Multimedia SIMD Instruction Extensions,
and Graphical Processor Units (Chapter 4)

In this historical section, we start with perhaps the most infamous supercomputer,
the Illiac IV, as a representative of the early SIMD (Single Instruction, Multiple
Data) architectures and then move to perhaps the most famous supercomputer,
the Cray-1, as a representative of vector architectures. The next step is Multimedia
SIMD Extensions, which got its name in part due to an advertising campaign
involving the “Bunny People,” a disco-dancing set of workers in cleansuits on a
semiconductor fabrication line. We conclude with the history of GPUs, which is

not quite as colorful.
SIMD Supercomputers

The cost of a general multiprocessor is, however, very high and further design
options were considered which would decrease the cost without seriously degrad-
ing the power or efficiency of the system. The options consist of recentralizing one
of the three major components.… Centralizing the [control unit] gives rise to the
basic organization of [an] … array processor such as the Illiac IV.
Bouknight et al. [1972]

M-46 ■ Appendix M Historical Perspectives and References
… with Iliac IV, programming the machine was very difficult and the architecture
probably was not very well suited to some of the applications we were trying to
run. The key idea was that I did not think we had a very good match in Iliac IV
between applications and architecture.

David Kuck
Software designer for the Illiac IV and

early pioneer in parallel software
David Kuck

An oral history conducted in 1991 by Andrew Goldstein,
IEEE History Center, New Brunswick, N.J.

The SIMDmodel was one of the earliest models of parallel computing, dating back
to the first large-scale multiprocessor, the Illiac IV. Rather than pipelining the data
computation as in vector architectures, these machines had an array of functional
units; hence, they might be considered array processors.

The earliest ideas on SIMD-style computers are from Unger [1958] and Slot-
nick, Borck, and McReynolds [1962]. Slotnick’s Solomon design formed the basis
of the Illiac IV, perhaps the most infamous of the supercomputer projects.
Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the planned
multiprocessor. (In 2011 dollars, that was an increase from $54M to $152M.)
Actual performance was at best 15 MFLOPS versus initial predictions of 1000
MFLOPS for the full system [Hord 1982]. Delivered to NASA Ames Research
in 1972, the computer required three more years of engineering before it was
usable. These events slowed investigation of SIMD, but Danny Hillis [1985] resus-
citated this style in the Connection Machine, which had 65,536 1-bit processors.

The basic trade-off in SIMDmultiprocessors is performance of a processor ver-
sus number of processors. SIMD supercomputers of the 1980s emphasized a large
degree of parallelism over performance of the individual processors. The Connec-
tion Multiprocessor 2, for example, offered 65,536 single-bit-wide processors,
while the Illiac IV planned for 64 64-bit processors. Massively parallel SIMDmul-
tiprocessors relied on interconnection or communication networks to exchange
data between processing elements.

After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMD model faded away as supercomputers for two main reasons.
First, it is too inflexible. A number of important problems were not data parallel,
and the architecture did not scale down in a competitive fashion; that is, small-scale
SIMD multiprocessors often have worse cost-performance compared with that of
the alternatives. Second, SIMD could not take advantage of the tremendous per-
formance and cost advantages of SISD (Single Instruction, Single Data) micropro-
cessor technology of the 1980s, which was doubling in performance every
18 months. Instead of leveraging this low-cost technology, designers of SIMD

multiprocessors had to build custom processors for their multiprocessors.

M.6 The Development of SIMD Supercomputers, Vector Computers, Multimedia ■ M-47
Vector Computers

I’m certainly not inventing vector processors. There are three kinds that I know of
existing today. They are represented by the Illiac-IV, the (CDC) Star processor, and
the TI (ASC) processor. Those three were all pioneering processors. … One of the
problems of being a pioneer is you always make mistakes and I never, never want
to be a pioneer. It’s always best to come second when you can look at the mistakes
the pioneers made.

Seymour Cray
Public lecture at Lawrence Livermore Laboratories

on the introduction of the Cray-1 (1976)

The first vector processors were the Control Data Corporation (CDC) STAR-100
(see Hintz and Tate [1972]) and the Texas Instruments ASC (see Watson [1972]),
both announced in 1972. Both were memory-memory vector processors. They had
relatively slow scalar units—the STAR used the same units for scalars and
vectors—making the scalar pipeline extremely deep. Both processors had high
start-up overhead and worked on vectors of several hundred to several thousand
elements. The crossover between scalar and vector could be over 50 elements.
It appears that not enough attention was paid to the role of Amdahl’s law on these
two processors.

Seymour Cray, who worked on the 6600 and the 7600 at CDC, founded Cray
Research and introduced the Cray-1 in 1976 (see Russell [1978]). The Cray-1 used
a vector-register architecture to lower start-up overhead significantly and to reduce
memory bandwidth requirements. He also had efficient support for non-unit stride
and invented chaining. Most importantly, the Cray-1 was the fastest scalar proces-
sor in the world at that time. This matching of good scalar and vector performance
was probably the most significant factor in making the Cray-1 a success. Some
customers bought the processor primarily for its outstanding scalar performance.
Many subsequent vector processors are based on the architecture of this first
commercially successful vector processor. Baskett and Keller [1977] provided a
good evaluation of the Cray-1.

In 1981, CDC started shipping the CYBER 205 (see Lincoln [1982]). The 205
had the same basic architecture as the STAR but offered improved performance all
around as well as expandability of the vector unit with up to four lanes, each with
multiple functional units and a wide load-store pipe that provided multiple words
per clock. The peak performance of the CYBER 205 greatly exceeded the perfor-
mance of the Cray-1; however, on real programs, the performance difference was
much smaller.

In 1983, Cray Research shipped the first Cray X-MP (see Chen [1983]). With
an improved clock rate (9.5 ns versus 12.5 ns on the Cray-1), better chaining
support (allowing vector operations with RAW dependencies to operate in paral-
lel), and multiple memory pipelines, this processor maintained the Cray Research
lead in supercomputers. The Cray-2, a completely new design configurable with up

to four processors, was introduced later. A major feature of the Cray-2 was the use

M-48 ■ Appendix M Historical Perspectives and References
of DRAM, which made it possible to have very large memories at the time. The
first Cray-2, with its 256M word (64-bit words) memory, contained more memory
than the total of all the Cray machines shipped to that point! The Cray-2 had amuch
faster clock than the X-MP, but also much deeper pipelines; however, it lacked
chaining, had enormous memory latency, and had only one memory pipe per pro-
cessor. In general, the Cray-2 was only faster than the Cray X-MP on problems that
required its very large main memory.

That same year, processor vendors from Japan entered the supercomputer mar-
ketplace. First were the Fujitsu VP100 and VP200 (see Miura and Uchida [1983]),
and later came the Hitachi S810 and the NEC SX/2 (see Watanabe [1987]). These
processors proved to be close to the Cray X-MP in performance. In general, these
three processors had much higher peak performance than the Cray X-MP. How-
ever, because of large start-up overhead, their typical performance was often lower
than that of the Cray X-MP. The Cray X-MP favored a multiple-processor
approach, first offering a two-processor version and later a four-processor version.
In contrast, the three Japanese processors had expandable vector capabilities.

In 1988, Cray Research introduced the Cray Y-MP—a bigger and faster ver-
sion of the X-MP. The Y-MP allowed up to eight processors and lowered the cycle
time to 6 ns. With a full complement of eight processors, the Y-MP was generally
the fastest supercomputer, though the single-processor Japanese supercomputers
could be faster than a one-processor Y-MP. In late 1989, Cray Research was split
into two companies, both aimed at building high-end processors available in the
early 1990s. Seymour Cray headed the spin-off, Cray Computer Corporation, until
its demise in 1995. Their initial processor, the Cray-3, was to be implemented in
gallium arsenide, but they were unable to develop a reliable and cost-effective
implementation technology. Shortly before his tragic death in a car accident in
1996, Seymour Cray started yet another company to develop high-performance
systems but this time using commodity components.

Cray Research focused on the C90, a new high-end processor with up to 16
processors and a clock rate of 240 MHz. This processor was delivered in 1991.
In 1993, Cray Research introduced their first highly parallel processor, the
T3D, employing up to 2048 Digital Alpha21064 microprocessors. In 1995, they
announced the availability of both a new low-end vector machine, the J90, and
a high-end machine, the T90. The T90 was much like the C90, but with a clock
that was twice as fast (460 MHz), using three-dimensional packaging and optical
clock distribution.

In 1995, Cray Research was acquired by Silicon Graphics. In 1998, it released
the SV1 system, which grafted considerably faster CMOS processors onto the J90
memory system. It also added a data cache for vectors to each CPU to help meet the
increased memory bandwidth demands. Silicon Graphics sold Cray Research to
Tera Computer in 2000, and the joint company was renamed Cray Inc.

The Japanese supercomputer makers continued to evolve their designs. In
2001, the NEC SX/5 was generally held to be the fastest available vector super-
computer, with 16 lanes clocking at 312 MHz and with up to 16 processors sharing
the same memory. The NEC SX/6, released in 2001, was the first commercial

single-chip vector microprocessor, integrating an out-of-order quad-issue

M.6 The Development of SIMD Supercomputers, Vector Computers, Multimedia ■ M-49
superscalar processor, scalar instruction and data caches, and an eight-lane vector
unit on a single die [Kitagawa et al. 2003]. The Earth Simulator is constructed from
640 nodes connected with a full crossbar, where each node comprises eight SX-6
vector microprocessors sharing a local memory. The SX-8, released in 2004,
reduces the number of lanes to four but increases the vector clock rate to 2
GHz. The scalar unit runs at a slower 1 GHz clock rate, a common pattern in vector
machines where the lack of hazards simplifies the use of deeper pipelines in the
vector unit.

In 2002, Cray Inc. released the X1 based on a completely new vector ISA. The
X1 SSP processor chip integrates an out-of-order superscalar with scalar caches
running at 400 MHz and a two-lane vector unit running at 800 MHz. When four
SSP chips are ganged together to form an MSP, the resulting peak vector perfor-
mance of 12.8 GFLOPS is competitive with the contemporary NEC SX machines.
The X1E enhancement, delivered in 2004, raises the clock rates to 565 and 1130
MHz, respectively. Many of the ideas were borrowed from the Cray T3E design,
which is a MIMD (Multiple Instruction, Multiple Data) computer that uses off-the-
shelf microprocessors. X1 has a new instruction set with a larger number of reg-
isters and with memory distributed locally with the processor in shared address
space. The out-of-order scalar unit and vector units are decoupled, so that the scalar
unit can get ahead of the vector unit. Vectors become shorter when the data are
blocked to utilize the MSP caches, which is not a good match to an eight-lane vec-
tor unit. To handle these shorter vectors, each processor with just two vector lanes
can work on a different loop.

The Cray X2 was announced in 2007, and it may prove to be the last Cray vec-
tor architecture to be built, as it’s difficult to justify the investment in new silicon
given the size of the market. The processor has a 1.3 GHz clock rate and 8 vector
lanes for a processor peak performance of 42 GFLOP/sec for single precision. It
includes both L1 and L2 caches. Each node is a 4-way SMP with up to 128 GBytes
of DRAM, and the maximum size is 8K nodes.

The NEC SX-9 has up to 16 processors per node, with each processor having
8 lanes and running at 3.2 GHz. It was announced in 2008. The peak double pre-
cision vector performance is 102 GFLOP/sec. The 16 processor SMP can have
1024 GBytes of DRAM. The maximum size is 512 nodes.

The basis for modern vectorizing compiler technology and the notion of data
dependence was developed by Kuck and his colleagues [1974] at the University of
Illinois. Padua and Wolfe [1986] gave a good overview of vectorizing compiler

technology.
Multimedia SIMD Instruction Extensions

What could a computer hardware company … possibly have in common with
disco dancing. A lot, if one goes by an advertisement campaign released by
the world’s largest microprocessor company … Intel, in 1997.

IBS Center for Management Research

“Dancing Its Way Towards Leadership,” 2002

M-50 ■ Appendix M Historical Perspectives and References
Going through the history books, the 1957 TX-2 had partitioned ALUs to support
media of the time, but these ideas faded away to be rediscovered 30 years later in
the personal computer era. Since every desktop microprocessor by definition has
its own graphical displays, as transistor budgets increased it was inevitable that
support would be added for graphics operations. Many graphics systems use 8 bits
to represent each of the 3 primary colors plus 8 bits for a transparency of a pixel.
The addition of speakers and microphones for teleconferencing and video games
suggested support of sound as well. Audio samples need more than 8 bits of pre-
cision, but 16 bits are sufficient.

Every microprocessor has special support so that bytes and half words take up
less space when stored in memory, but due to the infrequency of arithmetic oper-
ations on these data sizes in typical integer programs, there is little support
beyond data transfers. The Intel i860 was justified as a graphical accelerator
within the company. Its architects recognized that many graphics and audio appli-
cations would perform the same operation on vectors of these data [Atkins 1991;
Kohn 1989]. Although a vector unit was beyond the transistor budget of the i860
in 1989, by partitioning the carry chains within a 64-bit ALU, it could perform
simultaneous operations on short vectors of eight 8-bit operands, four 16-bit oper-
ands, or two 32-bit operands. The cost of such partitioned ALUs was small.
Applications that lend themselves to such support include MPEG (video), video
games (3D graphics), digital photography, and teleconferencing (audio and image
processing).

Like a virus, over time such multimedia support has spread to nearly every
desktop microprocessor. HP was the first successful desktop RISC to include
such support, but soon every other manufacturer had their own take on the idea
in the 1990s.

These extensions were originally called subword parallelism or vector. Since
Intel marketing used SIMD to describe the MMX extension of the 80x86
announced in 1996, that became the popular name, due in part to a successful tele-
vision advertising campaign involving disco dancers wearing clothing modeled
after the cleansuits worn in semiconductor fabrication lines.

Graphical Processor Units

It’s been almost three years since GPU computing broke into the mainstream of
HPC with the introduction of NVIDIA’s CUDA API in September 2007. Adoption of
the technology since then has proceeded at a surprisingly strong and steady
pace. Many organizations that began with small pilot projects a year or two
ago have moved on to enterprise deployment, and GPU accelerated machines
are now represented on the TOP500 list starting at position two. The relatively
rapid adoption of CUDA by a community not known for the rapid adoption of
much of anything is a noteworthy signal. Contrary to the accepted wisdom that
GPU computing is more difficult, I believe its success thus far signals that it is no
more complicated than good CPU programming. Further, it more clearly and

succinctly expresses the parallelism of a large class of problems leading to code

M.6 The Development of SIMD Supercomputers, Vector Computers, Multimedia ■ M-51
that is easier to maintain, more scalable and better positioned to map to future
many-core architectures.

Vincent Natol
“Kudos for CUDA,” HPCwire (2010)

3D graphics pipeline hardware evolved from the large expensive systems of the
early 1980s to small workstations and then to PC accelerators in the mid- to late
1990s. During this period, three major transitions occurred:

■ Performance-leading graphics subsystems declined in price from $50,000 to
$200.

■ Performance increased from 50 million pixels per second to 1 billion pixels per
second and from 100,000 vertices per second to 10 million vertices per second.

■ Native hardware capabilities evolved from wireframe (polygon outlines) to
flat-shaded (constant color) filled polygons, to smooth-shaded (interpolated
color) filled polygons, to full-scene anti-aliasing with texture mapping and
rudimentary multitexturing.

Scalable GPUs

Scalability has been an attractive feature of graphics systems from the beginning.
Workstation graphics systems gave customers a choice in pixel horse-power by vary-
ing the number of pixel processor circuit boards installed. Prior to the mid-1990s PC
graphics scalingwas almost nonexistent.Therewas oneoption—theVGAcontroller.
As 3D-capable accelerators appeared, the market had room for a range of offerings.
3dfx introduced multiboard scaling with the original SLI (Scan Line Interleave) on
their Voodoo2, which held the performance crown for its time (1998). Also in
1998, NVIDIA introduced distinct products as variants on a single architecture with
Riva TNTUltra (high-performance) andVanta (low-cost), first by speed binning and
packaging, then with separate chip designs (GeForce 2 GTS and GeForce 2MX). At
present, for a given architecturegeneration, four or five separateGPUchipdesigns are
needed to cover the range of desktop PC performance and price points. In addition,
there are separate segments in notebook and workstation systems. After acquiring
3dfx, NVIDIA continued the multi-GPU SLI concept in 2004, starting with GeForce
6800—providing multi-GPU scalability transparently to the programmer and to the
user. Functional behavior is identical across the scaling range;oneapplicationwill run
unchanged on any implementation of an architectural family.

Graphics Pipelines

Early graphics hardware was configurable, but not programmable by the applica-
tion developer. With each generation, incremental improvements were offered;
however, developers were growing more sophisticated and asking for more new

features than could be reasonably offered as built-in fixed functions. The NVIDIA

M-52 ■ Appendix M Historical Perspectives and References
GeForce 3, described by Lindholm et al. [2001], took the first step toward true gen-
eral shader programmability. It exposed to the application developer what had been
the private internal instruction set of the floating-point vertex engine. This coin-
cided with the release ofMicrosoft’s DirectX 8 and OpenGL’s vertex shader exten-
sions. Later GPUs, at the time of DirectX 9, extended general programmability and
floating-point capability to the pixel fragment stage and made texture available at
the vertex stage. The ATI Radeon 9700, introduced in 2002, featured a program-
mable 24-bit floating-point pixel fragment processor programmed with DirectX 9
and OpenGL. The GeForce FX added 32-bit floating-point pixel processors. This
was part of a general trend toward unifying the functionality of the different stages,
at least as far as the application programmer was concerned. NVIDIA’s GeForce
6800 and 7800 series were built with separate processor designs and separate hard-
ware dedicated to the vertex and to the fragment processing. The XBox 360 intro-
duced an early unified processor GPU in 2005, allowing vertex and pixel shaders to

execute on the same processor.
GPGPU: An Intermediate Step

As DirectX 9-capable GPUs became available, some researchers took notice of the
raw performance growth path of GPUs and began to explore the use of GPUs to
solve complex parallel problems. DirectX 9 GPUs had been designed only to
match the features required by the graphics API. To access the computational
resources, a programmer had to cast their problem into native graphics operations.
For example, to run many simultaneous instances of a pixel shader, a triangle had
to be issued to the GPU (with clipping to a rectangle shape if that was what was
desired). Shaders did not have the means to perform arbitrary scatter operations to
memory. The only way to write a result to memory was to emit it as a pixel color
value and configure the framebuffer operation stage to write (or blend, if desired)
the result to a two-dimensional framebuffer. Furthermore, the only way to get a
result from one pass of computation to the next was to write all parallel results
to a pixel framebuffer, then use that framebuffer as a texture map as input to
the pixel fragment shader of the next stage of the computation. Mapping general
computations to a GPU in this era was quite awkward. Nevertheless, intrepid
researchers demonstrated a handful of useful applications with painstaking efforts.

This field was called “GPGPU” for general-purpose computing on GPUs.
GPU Computing

While developing the Tesla architecture for the GeForce 8800, NVIDIA realized
its potential usefulness would be much greater if programmers could think of the
GPU as a processor. NVIDIA selected a programming approach in which program-
mers would explicitly declare the data-parallel aspects of their workload.

For the DirectX 10 generation, NVIDIA had already begun work on a highef-

ficiency floating-point and integer processor that could run a variety of

M.6 The Development of SIMD Supercomputers, Vector Computers, Multimedia ■ M-53
simultaneous workloads to support the logical graphics pipeline. This processor
was designed to take advantage of the common case of groups of threads executing
the same code path. NVIDIA added memory load and store instructions with inte-
ger byte addressing to support the requirements of compiled C programs. It intro-
duced the thread block (cooperative thread array), grid of thread blocks, and barrier
synchronization to dispatch and manage highly parallel computing work. Atomic
memory operations were added. NVIDIA developed the CUDA C/C++ compiler,
libraries, and runtime software to enable programmers to readily access the new
data-parallel computation model and develop applications.

To create a vendor-neutral GPU programming language, a large number of com-
panies are creating compilers for the OpenCL language, which has many of the fea-
tures of CUDA but which runs onmanymore platforms. In 2011, the performance is
much higher if you write CUDA code for GPUs than if you write OpenCL code.

AMD’s acquisition of ATI, the second leading GPU vendor, suggests a spread
of GPU computing. The AMD Fusion architecture, announced just as this edition
was being finished, is an initial merger between traditional GPUs and traditional
CPUs. NVIDIA also announced Project Denver, which combines an ARM scalar
processor with NVIDIA GPUs in a single address space. When these systems are
shipped, it will be interesting to learn just how tightly integrated they are and the
impact of integration on performance and energy of both data parallel and graphics
applications.

References

SIMD Supercomputers

Bouknight,W. J., S. A. Deneberg, D. E.McIntyre, J. M. Randall, A. H. Sameh, and
D. L. Slotnick [1972]. “The Illiac IV system,” Proc. IEEE 60:4, 369–379. Also
appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures:
Principles and Examples, McGraw-Hill, New York, 1982, 306–316.

Hillis, W. D. [1985]. The ConnectionMultiprocessor, MIT Press, Cambridge,Mass.
Hord, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science

Press, Rockville, Md.
Slotnick, D. L., W. C. Borck, and R. C. McReynolds [1962]. “The Solomon com-

puter,” Proc. AFIPS Fall Joint Computer Conf., December 4–6, 1962,
Philadelphia, Penn., 97–107.

Unger, S. H. [1958]. “A computer oriented towards spatial problems,” Proc. Insti-
tute of Radio Engineers 46:10 (October), 1744–1750.

Vector Architecture

Asanovic, K. [1998]. “Vector Microprocessors,” Ph.D. thesis, Computer Science
Division, University of California, Berkeley.

Baskett, F., and T. W. Keller [1977]. “An Evaluation of the Cray-1 Processor,” in
High Speed Computer and Algorithm Organization, D. J. Kuck, D. H. Lawrie,

and A. H. Sameh, eds., Academic Press, San Diego, Calif., 71–84.

M-54 ■ Appendix M Historical Perspectives and References
Chen, S. [1983]. “Large-scale and high-speed multiprocessor system for scientific
applications,” Proc. NATO Advanced Research Workshop on High Speed Com-
puting, June 20–22, Julich, West Germany. Also in K. Hwang, ed., “Superpro-
cessors: Design and applications,” IEEE, August, 59–73, 1984.

Flynn, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12
(December), 1901–1909.

Gebis, J. and Patterson, D. [2007]. “Embracing and extending 20th-century
instruction set architectures,” IEEE Computer, 40:4 (April), 68–75.

Hintz, R. G., and D. P. Tate [1972]. “Control data STAR-100 processor design,”
Proc. IEEE COMPCON, September 12–14, 1972, San Francisco, 1–4.

Kitagawa, K., S. Tagaya, Y. Hagihara, and Y. Kanoh [2003]. “A hardware over-
view of SX-6 and SX-7 supercomputer,”NEC Research and Development Jour-
nal 44:1 (January), 2–7.

Kozyrakis, C., and D. Patterson [2002]. “Vector vs. superscalar and VLIW archi-
tectures for embedded multimedia benchmarks,” Proc. 35th Annual Intl. Sym-
posium on Microarchitecture (MICRO), November 18–22, 2002, Istanbul,
Turkey.

Kuck, D., P. P. Budnik, S.-C. Chen, D. H. Lawrie, R. A. Towle, R. E. Strebendt, E.
W. Davis, Jr., J. Han, P. W. Kraska, and Y. Muraoka [1974]. “Measurements of
parallelism in ordinary Fortran programs,” Computer 7:1 (January), 37–46.

Lincoln, N. R. [1982]. “Technology and design trade offs in the creation of a mod-
ern supercomputer,” IEEE Trans. on Computers C-31:5 (May), 363–376.

Miura, K., and K. Uchida [1983]. “FACOM vector processing system: VP100/
200,” Proc. NATO Advanced Research Workshop on High Speed Computing,
June 20–22, Julich, West Germany. Also in K. Hwang, ed., “Superprocessors:
Design and applications,” IEEE, August, 59–73, 1984.

Padua, D., andM.Wolfe [1986]. “Advanced compiler optimizations for supercom-
puters,” Communications of the ACM 29:12 (December), 1184–1201.

Russell, R. M. [1978]. “The Cray-1 processor system,” Communications of the
ACM 21:1 (January), 63–72.

Vajapeyam, S. [1991]. “Instruction-Level Characterization of the Cray Y-MP Pro-
cessor,” Ph.D. thesis, Computer Sciences Department, University of Wiscon-
sin–Madison.

Watanabe, T. [1987]. “Architecture and performance of the NEC supercomputer
SX system,” Parallel Computing 5, 247–255.

Watson, W. J. [1972]. “The TI ASC—a highly modular and flexible super
processor architecture,” Proc. AFIPS Fall Joint Computer Conf., December
5–7, 1972, Anaheim, Calif., 221–228.

Multimedia SIMD

Atkins, M. [1991]. “Performance and the i860Microprocessor,” IEEE Micro, 11:5
(September), 24–27, 72–78.

Kohn, L., and N. Margulis [1989]. “Introducing the Intel i860 64-Bit Microproces-

sor,” IEEE Micro, 9:4 (July), 15–30.

M.7

M.7 The History of Multiprocessors and Parallel Processing ■ M-55
GPU

Akeley, K., and T. Jermoluk [1988]. “High-performance polygon rendering,”
Proc. SIGGRAPH 88, August 1–5, 1988, Atlanta, Ga., 239–46.

Hillis, W. D., and G. L. Steele [1986]. “Data parallel algorithms,”Communications
of the ACM 29:12 (December), 1170–1183 (http://doi.acm.org/10.1145/7902.
7903).

IEEE 754-2008 Working Group. [2006]. DRAFT Standard for Floating-Point
Arithmetic, 754-2008 (https://doi.org/10.1109/IEEESTD.2008.4610935).

Lee, W. V., et al. [2010]. “Debunking the 100X GPU vs. CPU myth: an evaluation
of throughput computing on CPU and GPU,” Proc. ISCA ’10, June 19–23, 2010,
Saint-Malo, France.

Lindholm, E., M. J. Kligard, and H. Moreton [2001]. A user-programmable vertex
engine. In SIGGRAPH ’01: Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, 149–158.

Moore, G. E. [1965]. “Cramming more components onto integrated circuits,” Elec-
tronics 38:8 (April 19), 114–117.

Williams, S., A. Waterman, and D. Patterson [2009]. “Roofline: An insightful
visual performance model for multicore architectures,” Communications of

the ACM, 52:4 (April), 65–76.
The History of Multiprocessors and Parallel Processing
(Chapter 5 and Appendices F, G, and I)

There is a tremendous amount of history in multiprocessors; in this section, we
divide our discussion by both time period and architecture. We start with the SIMD
approach and the Illiac IV. We then turn to a short discussion of some other early
experimental multiprocessors and progress to a discussion of some of the great
debates in parallel processing. Next we discuss the historical roots of the present

multiprocessors and conclude by discussing recent advances.
SIMD Computers: Attractive Idea, Many Attempts,
No Lasting Successes

The cost of a general multiprocessor is, however, very high and further design
options were considered which would decrease the cost without seriously
degrading the power or efficiency of the system. The options consist of recen-
tralizing one of the three major components. … Centralizing the [control unit]
gives rise to the basic organization of [an] … array processor such as the
Illiac IV.
Bouknight et al. [1972]

M-56 ■ Appendix M Historical Perspectives and References
The SIMD model was one of the earliest models of parallel computing, dating
back to the first large-scale multiprocessor, the Illiac IV. The key idea in that mul-
tiprocessor, as in more recent SIMDmultiprocessors, is to have a single instruction
that operates on many data items at once, using many functional units.

The earliest ideas on SIMD-style computers are from Unger [1958] and Slot-
nick, Borck, and McReynolds [1962]. Slotnick’s Solomon design formed the basis
of the Illiac IV, perhaps the most infamous of the supercomputer projects.
Although successful in pushing several technologies that proved useful in later
projects, it failed as a computer. Costs escalated from the $8 million estimate in
1966 to $31 million by 1972, despite construction of only a quarter of the planned
multiprocessor. Actual performance was at best 15 MFLOPS versus initial predic-
tions of 1000MFLOPS for the full system [Hord 1982]. Delivered to NASAAmes
Research in 1972, the computer took three more years of engineering before it was
usable. These events slowed investigation of SIMD, but Danny Hillis [1985] resus-
citated this style in the Connection Machine, which had 65,636 1-bit processors.

Real SIMD computers need to have a mixture of SISD and SIMD instructions.
There is an SISD host computer to perform operations such as branches and
address calculations that do not need parallel operation. The SIMD instructions
are broadcast to all the execution units, each of which has its own set of registers.
For flexibility, individual execution units can be disabled during an SIMD instruc-
tion. In addition, massively parallel SIMDmultiprocessors rely on interconnection
or communication networks to exchange data between processing elements.

SIMDworks best in dealing with arrays in for loops; hence, to have the opportu-
nity for massive parallelism in SIMD there must be massive amounts of data, or data
parallelism. SIMDis at itsweakest in case statements,where eachexecutionunitmust
perform adifferent operation on its data, depending onwhat data it has. The execution
units with the wrong data are disabled so that the proper units can continue. Such sit-
uations essentially run at 1/nth performance, where n is the number of cases.

The basic trade-off in SIMD multiprocessors is performance of a processor
versus number of processors. Recent multiprocessors emphasize a large degree
of parallelism over performance of the individual processors. The Connection
Multiprocessor 2, for example, offered 65,536 single-bit-wide processors, while
the Illiac IV had 64 64-bit processors.

After being resurrected in the 1980s, first by Thinking Machines and then by
MasPar, the SIMDmodel has once again been put to bed as a general-purpose mul-
tiprocessor architecture, for two main reasons. First, it is too inflexible. A number
of important problems cannot use such a style of multiprocessor, and the architec-
ture does not scale down in a competitive fashion; that is, small-scale SIMD
multiprocessors often have worse cost-performance compared with that of the
alternatives. Second, SIMD cannot take advantage of the tremendous performance
and cost advantages of microprocessor technology. Instead of leveraging this low-
cost technology, designers of SIMDmultiprocessors must build custom processors
for their multiprocessors.

Although SIMD computers have departed from the scene as general-purpose

alternatives, this style of architecture will continue to have a role in special-purpose

M.7 The History of Multiprocessors and Parallel Processing ■ M-57
designs. Many special-purpose tasks are highly data parallel and require a limited
set of functional units. Thus, designers can build in support for certain operations,
as well as hardwired interconnection paths among functional units. Such organi-
zations are often called array processors, and they are useful for such tasks as
image and signal processing.

Other Early Experiments

It is difficult to distinguish the first MIMD multiprocessor. Surprisingly, the first
computer from the Eckert-Mauchly Corporation, for example, had duplicate units
to improve availability. Holland [1959] gave early arguments for multiple proces-
sors. Two of the best-documented multiprocessor projects were undertaken in the
1970s at CarnegieMellon University. The first of these was C.mmp [Wulf and Bell
1972; Wulf and Harbison 1978], which consisted of 16 PDP-11s connected by a
crossbar switch to 16 memory units. It was among the first multiprocessors with
more than a few processors, and it had a shared-memory programming model.
Much of the focus of the research in the C.mmp project was on software, especially
in the OS area. A later multiprocessor, Cm* [Swan et al. 1977], was a cluster-based
multiprocessor with a distributed memory and a nonuniform access time. The
absence of caches and a long remote access latency made data placement critical.
This multiprocessor and a number of application experiments are well described by
Gehringer, Siewiorek, and Segall [1987]. Many of the ideas in these multiproces-
sors would be reused in the 1980s when the microprocessor made it much cheaper
to build multiprocessors.

Great Debates in Parallel Processing

The turning away from the conventional organization came in the middle 1960s,
when the law of diminishing returns began to take effect in the effort to increase
the operational speed of a computer.… Electronic circuits are ultimately limited in
their speed of operation by the speed of light … and many of the circuits were
already operating in the nanosecond range.

Bouknight et al. [1972]

… sequential computers are approaching a fundamental physical limit on their
potential computational power. Such a limit is the speed of light …

Angel L. DeCegama
The Technology of Parallel Processing, Vol. I (1989)

… today’s multiprocessors … are nearing an impasse as technologies approach
the speed of light. Even if the components of a sequential processor could bemade
to work this fast, the best that could be expected is no more than a few million
instructions per second.

David Mitchell

The Transputer: The Time Is Now (1989)

M-58 ■ Appendix M Historical Perspectives and References
The quotes above give the classic arguments for abandoning the current form
of computing, and Amdahl [1967] gave the classic reply in support of continued
focus on the IBM 360 architecture. Arguments for the advantages of parallel exe-
cution can be traced back to the 19th century [Menabrea 1842]! Yet, the effective-
ness of the multiprocessor for reducing latency of individual important programs is
still being explored. Aside from these debates about the advantages and limitations
of parallelism, several hot debates have focused on how to build multiprocessors.

It’s hard to predict the future, yet in 1989 Gordon Bell made two predictions for
1995. We included these predictions in the first edition of the book, when the out-
come was completely unclear. We discuss them in this section, together with an
assessment of the accuracy of the prediction.

The first was that a computer capable of sustaining a teraFLOPS—one million
MFLOPS—would be constructed by 1995, using either a multicomputer with 4K
to 32K nodes or a Connection Multiprocessor with several million processing ele-
ments [Bell 1989]. To put this prediction in perspective, each year the Gordon Bell
Prize acknowledges advances in parallelism, including the fastest real program
(highest MFLOPS). In 1989, the winner used an eight-processor Cray Y-MP to
run at 1680 MFLOPS. On the basis of these numbers, multiprocessors and pro-
grams would have to have improved by a factor of 3.6 each year for the fastest
program to achieve 1 TFLOPS in 1995. In 1999, the first Gordon Bell prize winner
crossed the 1 TFLOPS bar. Using a 5832-processor IBM RS/6000 SST system
designed specially for Livermore Laboratories, they achieved 1.18 TFLOPS on
a shock-wave simulation. This ratio represents a year-to-year improvement of
1.93, which is still quite impressive.

What has become recognized since the 1990s is that, although wemay have the
technology to build a TFLOPS multiprocessor, it is not clear that the machine is
cost effective, except perhaps for a few very specialized and critically important
applications related to national security. We estimated in 1990 that to achieve 1
TFLOPS would require a machine with about 5000 processors and would cost
about $100 million. The 5832-processor IBM system at Livermore cost $110 mil-
lion. As might be expected, improvements in the performance of individual micro-
processors both in cost and performance directly affect the cost and performance of
large-scale multiprocessors, but a 5000-processor system will cost more than 5000
times the price of a desktop system using the same processor. Since that time, much
faster multiprocessors have been built, but the major improvements have increas-
ingly come from the processors in the past five years, rather than fundamental
breakthroughs in parallel architecture.

The second Bell prediction concerned the number of data streams in supercom-
puters shipped in 1995. Danny Hillis believed that, although supercomputers with
a small number of data streams may be the best sellers, the biggest multiprocessors
would be multiprocessors with many data streams, and these would perform the
bulk of the computations. Bell bet Hillis that in the last quarter of calendar year
1995 more sustained MFLOPS would be shipped in multiprocessors using few

data streams (�100) rather than many data streams (�1000). This bet concerned

M.7 The History of Multiprocessors and Parallel Processing ■ M-59
only supercomputers, defined as multiprocessors costing more than $1 million and
used for scientific applications. Sustained MFLOPS was defined for this bet as the
number of floating-point operations per month, so availability of multiprocessors
affects their rating.

In 1989, when this bet was made, it was totally unclear who would win. In
1995, a survey of the current publicly known supercomputers showed only six
multiprocessors in existence in the world with more than 1000 data streams,
so Bell’s prediction was a clear winner. In fact, in 1995, much smaller
microprocessor-based multiprocessors (�20 processors) were becoming domi-
nant. In 1995, a survey of the 500 highest-performance multiprocessors in use
(based on Linpack ratings), called the TOP500, showed that the largest number
of multiprocessors were bus-based shared-memory multiprocessors! By 2005,
various clusters or multicomputers played a large role. For example, in the top
25 systems, 11 were custom clusters, such as the IBM Blue Gene system or the
Cray XT3; 10 were clusters of shared-memory multiprocessors (both using distrib-
uted and centralized memory); and the remaining 4 were clusters built using PCs

with an off-the-shelf interconnect.
More Recent Advances and Developments

With the primary exception of the parallel vector multiprocessors (see Appendix
G) and more recently of the IBM Blue Gene design, all other recent MIMD
computers have been built from off-the-shelf microprocessors using a bus and log-
ically central memory or an interconnection network and a distributed memory. A
number of experimental multiprocessors built in the 1980s further refined and

enhanced the concepts that form the basis for many of today’s multiprocessors.
The Development of Bus-Based Coherent Multiprocessors

Although very large mainframes were built with multiple processors in the 1960s
and 1970s, multiprocessors did not become highly successful until the 1980s. Bell
[1985] suggested that the key was that the smaller size of the microprocessor
allowed the memory bus to replace the interconnection network hardware and that
portable operating systems meant that multiprocessor projects no longer required
the invention of a new operating system. In his paper, Bell defined the terms mul-
tiprocessor and multicomputer and set the stage for two different approaches to
building larger scale multiprocessors.

The first bus-based multiprocessor with snooping caches was the Synapse
N+1 described by Frank [1984]. Goodman [1983] wrote one of the first papers
to describe snooping caches. The late 1980s saw the introduction of many commer-
cial bus-based, snooping cache architectures, including the Silicon Graphics
4D/240 [Baskett, Jermoluk, and Solomon 1988], the Encore Multimax [Wilson

1987], and the Sequent Symmetry [Lovett and Thakkar 1988]. The mid-1980s

Figure M.2 Five snooping protocols summarized. Archibald and Baer [1986] use these names to describe the five
protocols, and Eggers [1989] summarizes the similarities and differences as shown in this figure. The Firefly protocol
was named for the experimental DEC Firefly multiprocessor, in which it appeared. The alternative names for protocols
are based on the states they support: M¼Modified, E¼Exclusive (private clean), S¼Shared, I¼ Invalid, O¼Owner
(shared dirty).

M-60 ■ Appendix M Historical Perspectives and References
saw an explosion in the development of alternative coherence protocols, and
Archibald and Baer [1986] provided a good survey and analysis, as well as refer-
ences to the original papers. Figure M.2 summarizes several snooping cache coher-
ence protocols and shows some multiprocessors that have used or are using that
protocol.

The early 1990s saw the beginning of an expansion of such systems with the
use of very wide, high-speed buses (the SGI Challenge system used a 256-bit,
packet-oriented bus supporting up to 8 processor boards and 32 processors) and
later the use of multiple buses and crossbar interconnects—for example, in the
Sun SPARCCenter and Enterprise systems (Charlesworth [1998] discussed the
interconnect architecture of these multiprocessors). In 2001, the Sun Enterprise
servers represented the primary example of large-scale (>16 processors), symmet-
ric multiprocessors in active use. Today, most bus-based machines offer only four
or so processors and switches, or alternative designs are used for eight or more.

Toward Large-Scale Multiprocessors

In the effort to build large-scale multiprocessors, two different directions were
explored: message-passing multicomputers and scalable shared-memory multipro-
cessors. Although there had been many attempts to build mesh and hypercube-
connected multiprocessors, one of the first multiprocessors to successfully bring
together all the pieces was the Cosmic Cube built at Caltech [Seitz 1985]. It intro-

duced important advances in routing and interconnect technology and substantially

M.7 The History of Multiprocessors and Parallel Processing ■ M-61
reduced the cost of the interconnect, which helped make the multicomputer viable.
The Intel iPSC 860, a hypercube-connected collection of i860s, was based on these
ideas. More recent multiprocessors, such as the Intel Paragon, have used networks
with lower dimensionality and higher individual links. The Paragon also employed
a separate i860 as a communications controller in each node, although a number of
users have found it better to use both i860 processors for computation as well as
communication. The Thinking Multiprocessors CM-5 made use of off-the-shelf
microprocessors and a fat tree interconnect (see Appendix F). It provided user-
level access to the communication channel, thus significantly improving commu-
nication latency. In 1995, these two multiprocessors represented the state of the art
in message-passing multicomputers.

Early attempts at building a scalable shared-memorymultiprocessor include the
IBMRP3 [Pfister et al. 1985], the NYUUltracomputer [Elder et al. 1985; Schwartz
1980], the University of Illinois Cedar project [Gajksi et al. 1983], and the BBN
Butterfly and Monarch [BBN Laboratories 1986; Rettberg et al. 1990]. These
multiprocessors all provided variations on a nonuniformdistributed-memorymodel
and, hence, are distributed shared-memory (DSM) multiprocessors, but they did
not support cache coherence, which substantially complicated programming.
The RP3 and Ultracomputer projects both explored new ideas in synchronization
(fetch-and-operate) as well as the idea of combining references in the network.
In all four multiprocessors, the interconnect networks turned out to be more
costly than the processing nodes, raising problems for smaller versions of the
multiprocessor. The Cray T3D/E (see Arpaci et al. [1995] for an evaluation of
theT3DandScott [1996] for a description of theT3E enhancements) builds on these
ideas, using a noncoherent shared address space but building on the advances in
interconnect technology developed in the multicomputer domain (see Scott and
Thorson [1996]).

Extending the shared-memory model with scalable cache coherence was done
by combining a number of ideas. Directory-based techniques for cache coherence
were actually known before snooping cache techniques. In fact, the first cache
coherence protocols actually used directories, as described by Tang [1976] and
implemented in the IBM 3081. Censier and Feautrier [1978] described a directory
coherence scheme with tags in memory. The idea of distributing directories with
the memories to obtain a scalable implementation of cache coherence was first
described by Agarwal et al. [1988] and served as the basis for the Stanford DASH
multiprocessor (see Lenoski et al. [1990, 1992]), which was the first operational
cache-coherent DSM multiprocessor. DASH was a “plump” node cc-NUMA
machine that used four-processor SMPs as its nodes, interconnecting them in a
style similar to that of Wildfire but using a more scalable two-dimensional grid
rather than a crossbar for the interconnect.

The Kendall Square Research KSR-1 [Burkhardt et al. 1992] was the first com-
mercial implementation of scalable coherent shared memory. It extended the basic
DSM approach to implement a concept called cache-only memory architecture
(COMA), which makes the main memory a cache. In the KSR-1, memory blocks

could be replicated in the main memories of each node with hardware support to

M-62 ■ Appendix M Historical Perspectives and References
handle the additional coherence requirements for these replicatedblocks. (TheKSR-1
was not strictly a pure COMA because it did not migrate the home location of a data
item but always kept a copy at home. Essentially, it implemented only replication.)
Manyother research proposals [Falsafi andWood1997;Hagersten, Landin, andHar-
idi 1992; Saulsbury et al. 1995; Stenstr€om, Joe, and Gupta 1992] for COMA-style
architectures and similar approaches that reduce the burden of nonuniform memory
access throughmigration [Chandra et al. 1994; Soundararajan et al. 1998]weredevel-
oped, but there have been no further commercial implementations.

The Convex Exemplar implemented scalable coherent shared memory using a
two-level architecture: At the lowest level, eight-processor modules are built using
a crossbar. A ring can then connect up to 32 of these modules, for a total of 256
processors (see Thekkath et al. [1997] for an evaluation). Laudon and Lenoski
[1997] described the SGI Origin, which was first delivered in 1996 and is closely
based on the original Stanford DASH machine, although including a number of
innovations for scalability and ease of programming. Origin uses a bit vector
for the directory structure, which is either 16 or 32 bits long. Each bit represents
a node, which consists of two processors; a coarse bit vector representation allows
each bit to represent up to 8 nodes for a total of 1024 processors. As Galles [1996]
described, a high-performance fat hypercube is used for the global interconnect.
Hristea, Lenoski, and Keen [1997] have provided a thorough evaluation of the
performance of the Origin memory system.

Several research prototypes were undertaken to explore scalable coherence
with and without multithreading. These include the MIT Alewife machine
[Agarwal et al. 1995] and the Stanford FLASH multiprocessor [Gibson et al.

2000; Kuskin et al. 1994].
Clusters

Clusters were probably “invented” in the 1960s by customers who could not fit
all their work on one computer or who needed a backup machine in case of failure
of the primary machine [Pfister 1998]. Tandem introduced a 16-node cluster in
1975.Digital followedwithVAXclusters, introduced in 1984.Theywere originally
independent computers that shared I/O devices, requiring a distributed operating
system to coordinate activity. Soon they had communication links between com-
puters, in part so that the computers could be geographically distributed to
increase availability in case of a disaster at a single site. Users log onto the cluster
and are unaware of which machine they are running on. DEC (now HP) sold
more than 25,000 clusters by 1993. Other early companies were Tandem (now
HP) and IBM (still IBM). Today, virtually every company has cluster products.
Most of these products are aimed at availability, with performance scaling as a
secondary benefit.

Scientific computing on clusters emerged as a competitor toMPPs. In 1993, the
Beowulf project started with the goal of fulfilling NASA’s desire for a 1 GFLOPS

computer for under $50,000. In 1994, a 16-node cluster built from off-the-shelf

M.7 The History of Multiprocessors and Parallel Processing ■ M-63
PCs using 80486s achieved that goal [Bell and Gray 2001]. This emphasis led to a
variety of software interfaces to make it easier to submit, coordinate, and debug
large programs or a large number of independent programs.

Efforts were made to reduce latency of communication in clusters as well as to
increase bandwidth, and several research projects worked on that problem.
(One commercial result of the low-latency research was the VI interface standard,
which has been embraced by Infiniband, discussed below.) Low latency then
proved useful in other applications. For example, in 1997 a cluster of 100 Ultra-
SPARC desktop computers at the University of California–Berkeley, connected by
160 MB/sec per link Myrinet switches, was used to set world records in database
sort—sorting 8.6 GB of data originally on disk in 1 minute—and in cracking an
encrypted message—taking just 3.5 hours to decipher a 40-bit DES key.

This research project, called Network of Workstations [Anderson, Culler, and
Patterson 1995], also developed the Inktomi search engine, which led to a startup
company with the same name. Google followed the example of Inktomi to build
search engines from clusters of desktop computers rather large-scale SMPs, which
was the strategy of the leading search engine Alta Vista that Google overtook [Brin
and Page 1998]. In 2011, nearly all Internet services rely on clusters to serve their
millions of customers.

Clusters are also very popular with scientists. One reason is their low cost, so
individual scientists or small groups can own a cluster dedicated to their programs.
Such clusters can get results faster than waiting in the long job queues of the shared
MPPs at supercomputer centers, which can stretch to weeks. For those interested in

learning more, Pfister [1998] wrote an entertaining book on clusters.
Recent Trends in Large-Scale Multiprocessors

In the mid- to late 1990s, it became clear that the hoped for growth in the market for
ultralarge-scale parallel computing was unlikely to occur. Without this market
growth, it became increasingly clear that the high-end parallel computing market
could not support the costs of highly customized hardware and software designed
for a small market. Perhaps the most important trend to come out of this observa-
tion was that clustering would be used to reach the highest levels of performance.
There are now four general classes of large-scale multiprocessors:

■ Clusters that integrate standard desktop motherboards using interconnection
technology such as Myrinet or Infiniband.

■ Multicomputers built from standard microprocessors configured into proces-
sing elements and connectedwith a custom interconnect. These include theCray
XT3 (which used an earlier version of Cray interconnect with a simple cluster
architecture) and IBM Blue Gene (more on this unique machine momentarily).

■ Clusters of small-scale shared-memory computers, possibly with vector
support, which includes the Earth Simulator (which has its own journal

available online).

M-64 ■ Appendix M Historical Perspectives and References
■ Large-scale shared-memory multiprocessors, such as the Cray X1 [Dunigan
et al. 2005] and SGI Origin and Altix systems. The SGI systems have also been
configured into clusters to provide more than 512 processors, although only
message passing is supported across the clusters.

The IBM Blue Gene is the most interesting of these designs since its rationale par-
allels the underlying causes of the recent trend toward multicore in uniprocessor
architectures. Blue Gene started as a research project within IBM aimed at the pro-
tein sequencing and folding problem. The Blue Gene designers observed that
power was becoming an increasing concern in large-scale multiprocessors and
that the performance/watt of processors from the embedded space was much better
that those in the high-end uniprocessor space. If parallelism was the route to high
performance, why not start with the most efficient building block and simply have
more of them?

Thus, Blue Gene is constructed using a custom chip that includes an embedded
PowerPC microprocessor offering half the performance of a high-end PowerPC,
but at a much smaller fraction of the area of power. This allows more system func-
tions, including the global interconnect, to be integrated onto the same die. The
result is a highly replicable and efficient building block, allowing Blue Gene to
reach much larger processor counts more efficiently. Instead of using stand-alone
microprocessors or standard desktop boards as building blocks, Blue Gene uses
processor cores. There is no doubt that such an approach provides much greater
efficiency. Whether the market can support the cost of a customized design and
special software remains an open question.

In 2006, a Blue Gene processor at Lawrence Livermore with 32K processors
(and scheduled to go to 65K in late 2005) holds a factor of 2.6 lead in Linpack
performance over the third-place system consisting of 20 SGI Altix 512-processor
systems interconnected with Infiniband as a cluster.

Blue Gene’s predecessor was an experimental machine, QCDOD, which pio-
neered the concept of a machine using a lower-power embedded microprocessor
and tightly integrated interconnect to drive down the cost and power consumption
of a node.

Developments in Synchronization and Consistency Models

A wide variety of synchronization primitives have been proposed for shared-
memory multiprocessors. Mellor-Crummey and Scott [1991] provided an over-
view of the issues as well as efficient implementations of important primitives,
such as locks and barriers. An extensive bibliography supplies references to other
important contributions, including developments in spin locks, queuing locks, and
barriers. Lamport [1979] introduced the concept of sequential consistency and
what correct execution of parallel programs means. Dubois, Scheurich, and Briggs
[1988] introduced the idea of weak ordering (originally in 1986). In 1990, Adve
and Hill provided a better definition of weak ordering and also defined the concept
of data-race-free; at the same conference, Gharachorloo and his colleagues [1990]

introduced release consistency and provided the first data on the performance of

M.7 The History of Multiprocessors and Parallel Processing ■ M-65
relaxed consistency models. More relaxed consistency models have been widely
adopted in microprocessor architectures, including the Sun SPARC, Alpha, and
IA-64. Adve andGharachorloo [1996] have provided an excellent tutorial onmem-
ory consistency and the differences among these models.

Other References

The concept of using virtual memory to implement a shared address space among
distinctmachines was pioneered inKai Li’s Ivy system in 1988. There have been sub-
sequent papers exploring hardware support issues, software mechanisms, and pro-
gramming issues. Amza et al. [1996] described a system built on workstations using
a new consistency model, Kontothanassis et al. [1997] described a software shared-
memory scheme using remote writes, and Erlichson et al. [1996] described the use
of shared virtual memory to build large-scale multiprocessors using SMPs as nodes.

There isanalmostunboundedamountof informationonmultiprocessorsandmul-
ticomputers: Conferences, journal papers, and even books seem to appear faster than
any single person can absorb the ideas. No doubt many of these papers will go unno-
ticed—not unlike the past.Most of themajor architecture conferences contain papers
on multiprocessors. An annual conference, Supercomputing XY (where X and Y are
the last two digits of the year), brings together users, architects, software developers,
and vendors, and the proceedings are published in book, CD-ROM, and online (see
www.scXY.org) form. Twomajor journals, Journal of Parallel andDistributedCom-
puting and the IEEE Transactions on Parallel and Distributed Systems, contain
papers on all aspects of parallel processing. Several books focusing on parallel pro-
cessing are included in the following references,withCuller, Singh, andGupta [1999]
being the most recent, large-scale effort. For years, Eugene Miya of NASA Ames
Research Center has collected an online bibliography of parallel-processing papers.
The bibliography,which nowcontainsmore than35,000 entries, is available online at
liinwww.ira.uka.de/bibliography/Parallel/Eugene/index.html.

In addition to documenting the discovery of concepts now used in practice,
these references also provide descriptions of many ideas that have been explored
and found wanting, as well as ideas whose time has just not yet come. Given the
move toward multicore and multiprocessors as the future of high-performance
computer architecture, we expect that many new approaches will be explored in
the years ahead. A few of them will manage to solve the hardware and software

problems that have been the key to using multiprocessing for the past 40 years!
References

Adve, S. V., and K. Gharachorloo [1996]. “Shared memory consistency models: A
tutorial,” IEEE Computer 29:12 (December), 66–76.

Adve, S. V., and M. D. Hill [1990]. “Weak ordering—a new definition,” Proc.
17th Annual Int’l. Symposium on Computer Architecture (ISCA), May 28–31,

1990, Seattle, Wash., 2–14.

M-66 ■ Appendix M Historical Perspectives and References
Agarwal, A., R. Bianchini, D. Chaiken, K. Johnson, and D. Kranz [1995]. “The
MIT Alewife machine: Architecture and performance,” 22nd Annual Int’l.
Symposium on Computer Architecture (ISCA), June 22–24, 1995, Santa Mar-
gherita, Italy, 2–13.

Agarwal, A., J. L. Hennessy, R. Simoni, and M. A. Horowitz [1988]. “An
evaluation of directory schemes for cache coherence,” Proc. 15th Annual Int’l.
Symposium on Computer Architecture, May 30–June 2, 1988, Honolulu,
Hawaii, 280–289.

Agarwal, A., J. Kubiatowicz, D. Kranz, B.-H. Lim, D. Yeung, G. D’Souza, and M.
Parkin [1993]. “Sparcle: An evolutionary processor design for large-scale
multiprocessors,” IEEE Micro 13 (June), 48–61.

Alles, A. [1995]. “ATM Internetworking,” White Paper (May), Cisco Systems,
Inc., San Jose, Calif. (www.cisco.com/warp/public/614/12.html).

Almasi, G. S., and A. Gottlieb [1989]. Highly Parallel Computing, Benjamin/
Cummings, Redwood City, Calif.

Alverson, G., R. Alverson, D. Callahan, B. Koblenz, A. Porterfield, and B. Smith
[1992]. “Exploiting heterogeneous parallelism on a multithreaded multiproces-
sor,” Proc. ACM/IEEE Conf. on Supercomputing, November 16–20, 1992,Min-
neapolis, Minn., 188–197.

Amdahl, G. M. [1967]. “Validity of the single processor approach to achieving
large scale computing capabilities,” Proc. AFIPS Spring Joint Computer Conf.,
April 18–20, 1967, Atlantic City, N.J., 483–485.

Amza C., A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel [1996]. “Treadmarks: Shared memory computing on networks
of workstations,” IEEE Computer 29:2 (February), 18–28.

Anderson, T. E., D. E. Culler, and D. Patterson [1995]. “A case for NOW
(networks of workstations),” IEEE Micro 15:1 (February), 54–64.

Ang, B., D. Chiou, D. Rosenband, M. Ehrlich, L. Rudolph, and Arvind [1998].
“StarT-Voyager: A flexible platform for exploring scalable SMP issues,” Proc.
ACM/IEEE Conf. on Supercomputing, November 7–13, 1998, Orlando, FL.

Archibald, J., and J.-L. Baer [1986]. “Cache coherence protocols: Evaluation using
a multiprocessor simulation model,” ACM Trans. on Computer Systems 4:4
(November), 273–298.

Arpaci, R. H., D. E. Culler, A. Krishnamurthy, S. G. Steinberg, and K. Yelick
[1995]. “Empirical evaluation of the CRAY-T3D: A compiler perspective,”
Proc. 22nd Annual Int’l. Symposium on Computer Architecture (ISCA), June
22–24, 1995, Santa Margherita, Italy.

Baer, J.-L., and W.-H. Wang [1988]. “On the inclusion properties for multi-level
cache hierarchies,” Proc. 15th Annual Int’l. Symposium on Computer Architec-
ture, May 30–June 2, 1988, Honolulu, Hawaii, 73–80.

Balakrishnan, H. V., N. Padmanabhan, S. Seshan, and R. H. Katz [1997]. “A com-
parison of mechanisms for improving TCP performance over wireless links,”
IEEE/ACM Trans. on Networking 5:6 (December), 756–769.

Barroso, L. A., K. Gharachorloo, and E. Bugnion [1998]. “Memory system char-
acterization of commercial workloads,” Proc. 25th Annual Int’l. Symposium on

Computer Architecture (ISCA), July 3–14, 1998, Barcelona, Spain, 3–14.

M.7 The History of Multiprocessors and Parallel Processing ■ M-67
Baskett, F., T. Jermoluk, and D. Solomon [1988]. “The 4D-MP graphics super-
workstation: Computing+graphics¼40 MIPS+40 MFLOPS and 10,000
lighted polygons per second,” Proc. IEEE COMPCON, February 29–March
4, 1988, San Francisco, 468–471.

BBN Laboratories. [1986]. Butterfly Parallel Processor Overview, Tech.
Rep. 6148, BBN Laboratories, Cambridge, Mass.

Bell, C. G. [1985]. “Multis: A new class of multiprocessor computers,” Science
228 (April 26), 462–467.

Bell, C. G. [1989]. “The future of high performance computers in science and engi-
neering,” Communications of the ACM 32:9 (September), 1091–1101.

Bell, C. G., and J. Gray [2001].Crays, Clusters and Centers, Tech. Rep. MSR-TR-
2001-76, Microsoft Research, Redmond, Wash.

Bell, C. G., and J. Gray [2002]. “What’s next in high performance computing,”
CACM, 45:2 (February), 91–95.

Bouknight,W. J., S. A. Deneberg, D. E.McIntyre, J. M. Randall, A. H. Sameh, and
D. L. Slotnick [1972]. “The Illiac IV system,” Proc. IEEE 60:4, 369–379. Also
appears in D. P. Siewiorek, C. G. Bell, and A. Newell, Computer Structures:
Principles and Examples, McGraw-Hill, New York, 1982, 306–316.

Brain, M. [2000]. Inside a Digital Cell Phone, www.howstuffworks.com/inside-
cell-phone.htm.

Brewer, E. A., and B. C. Kuszmaul [1994]. “How to get good performance from
the CM-5 data network,” Proc. Eighth Int’l. Parallel Processing Symposium
(IPPS), April 26–29, 1994, Cancun, Mexico.

Brin, S., and L. Page [1998]. “The anatomy of a large-scale hypertextual
Web search engine,” Proc. 7th Int’l. World Wide Web Conf., April 14–18,
1998, Brisbane, Queensland, Australia, 107–117.

Burkhardt III, H., S. Frank, B. Knobe, and J. Rothnie [1992].Overview of the KSR1
Computer System, Tech. Rep. KSR-TR-9202001, Kendall Square Research,
Boston.

Censier, L., and P. Feautrier [1978]. “A new solution to coherence problems
in multicache systems,” IEEE Trans. on Computers C-27:12 (December),
1112–1118.

Chandra, R., S. Devine, B. Verghese, A. Gupta, and M. Rosenblum [1994].
“Scheduling and page migration for multiprocessor compute servers,” Proc.
Sixth Int’l. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), October 4–7, 1994, San Jose, Calif., 12–24.

Charlesworth, A. [1998]. “Starfire: Extending the SMP envelope,” IEEE Micro
18:1 (January/February), 39–49.

Clark, W. A. [1957]. “The Lincoln TX-2 computer development,” Proc. Western
Joint Computer Conference, February 26–28, 1957, Los Angeles, 143–145.

Comer, D. [1993]. Internetworking with TCP/IP, 2nd ed., Prentice Hall, Engle-
wood Cliffs, N.J.

Culler, D. E., J. P. Singh, and A. Gupta [1999]. Parallel Computer Architecture: A
Hardware/Software Approach, Morgan Kaufmann, San Francisco.

Dally, W. J., and C. I. Seitz [1986]. “The torus routing chip,” Distributed Comput-

ing 1:4, 187–196.

M-68 ■ Appendix M Historical Perspectives and References
Davie, B. S., L. L. Peterson, and D. Clark [1999]. Computer Networks: A Systems
Approach, 2nd ed., Morgan Kaufmann, San Francisco.

Desurvire, E. [1992]. “Lightwave communications: The fifth generation,”
Scientific American (International Edition) 266:1 (January), 96–103.

Dongarra, J., T. Sterling, H. Simon, and E. Strohmaier [2005]. “High-performance
computing: Clusters, constellations, MPPs, and future directions,”Computing in
Science & Engineering, 7:2 (March/April), 51–59.

Dubois, M., C. Scheurich, and F. Briggs [1988]. “Synchronization, coherence, and
event ordering,” IEEE Computer 21:2 (February), 9–21.

Dunigan, W., K. Vetter, K. White, and P. Worley [2005]. “Performance evaluation
of the Cray X1 distributed shared memory architecture,” IEEE Micro, January/
February, 30–40.

Eggers, S. [1989]. “Simulation Analysis of Data Sharing in Shared Memory Mul-
tiprocessors,” Ph.D. thesis, Computer Science Division, University of Califor-
nia, Berkeley.

Elder, J., A. Gottlieb, C. K. Kruskal, K. P. McAuliffe, L. Randolph, M. Snir, P.
Teller, and J.Wilson [1985]. “Issues related toMIMD shared-memory computers:
The NYU Ultracomputer approach,” Proc. 12th Annual Int’l. Symposium on
Computer Architecture (ISCA), June 17–19, 1985, Boston, Mass., 126–135.

Erlichson, A., N. Nuckolls, G. Chesson, and J. L. Hennessy [1996]. “SoftFLASH:
Analyzing the performance of clustered distributed virtual shared memory,”
Proc. Seventh Int’l. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), October 1–5, 1996, Cambridge,
Mass., 210–220.

Falsafi, B., and D. A. Wood [1997]. “Reactive NUMA: A design for unifying S-
COMA and CC-NUMA,” Proc. 24th Annual Int’l. Symposium on Computer
Architecture (ISCA), June 2–4, 1997, Denver, Colo., 229–240.

Flynn, M. J. [1966]. “Very high-speed computing systems,” Proc. IEEE 54:12
(December), 1901–1909.

Forgie, J. W. [1957]. “The Lincoln TX-2 input-output system,” Proc. Western
Joint Computer Conference, February 26–28, 1957, Los Angeles, 156–160.

Frank, S. J. [1984]. “Tightly coupled multiprocessor systems speed memory access
time,” Electronics 57:1 (January), 164–169.

Gajski, D., D. Kuck, D. Lawrie, and A. Sameh [1983]. “CEDAR—a large scale
multiprocessor,” Proc. Int’l. Conf. on Parallel Processing (ICPP), August,
Columbus, Ohio, 524–529.

Galles, M. [1996]. “Scalable pipelined interconnect for distributed endpoint rout-
ing: The SGI SPIDER chip,” Proc. IEEE HOT Interconnects ’96, August 15–
17, 1996, Stanford University, Palo Alto, Calif.

Gehringer, E. F., D. P. Siewiorek, and Z. Segall [1987]. Parallel Processing: The
Cm* Experience, Digital Press, Bedford, Mass.

Gharachorloo, K., A. Gupta, and J. L. Hennessy [1992]. “Hiding memory latency
using dynamic scheduling in shared-memory multiprocessors,” Proc. 19th
Annual Int’l. Symposium on Computer Architecture (ISCA), May 19–21,

1992, Gold Coast, Australia.

M.7 The History of Multiprocessors and Parallel Processing ■ M-69
Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. L. Hen-
nessy [1990]. “Memory consistency and event ordering in scalable shared-
memory multiprocessors,” Proc. 17th Annual Int’l. Symposium on Computer
Architecture (ISCA), May 28–31, 1990, Seattle, Wash., 15–26.

Gibson, J., R. Kunz, D. Ofelt, M. Horowitz, J. Hennessy, and M. Heinrich [2000].
“FLASH vs. (simulated) FLASH: Closing the simulation loop,” Proc. Ninth
Int’l. Conf. on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS), November 12–15, Cambridge, Mass., 49–58.

Goodman, J. R. [1983]. “Using cache memory to reduce processor memory traf-
fic,” Proc. 10th Annual Int’l. Symposium on Computer Architecture (ISCA),
June 5–7, 1982, Stockholm, Sweden, 124–131.

Goralski, W. [1997]. SONET: AGuide to Synchronous Optical Network, McGraw-
Hill, New York.

Grice, C., and M. Kanellos [2000]. “Cell phone industry at crossroads: Go high or
low?” CNET News (August 31), technews.netscape.com/news/0-1004-201-
2518386-0.html?tag¼st.ne.1002.tgif.sf.

Groe, J. B., and L. E. Larson [2000]. CDMA Mobile Radio Design, Artech House,
Boston.

Hagersten E., and M. Koster [1998]. “WildFire: A scalable path for SMPs,” Proc.
Fifth Int’l. Symposium on High-Performance Computer Architecture, January
9–12, 1999, Orlando, Fla.

Hagersten, E., A. Landin, and S. Haridi [1992]. “DDM—a cache-only memory
architecture,” IEEE Computer 25:9 (September), 44–54.

Hill, M. D. [1998]. “Multiprocessors should support simple memory consistency
models,” IEEE Computer 31:8 (August), 28–34.

Hillis, W. D. [1985]. The Connection Multiprocessor, MIT Press,
Cambridge, Mass.

Hirata, H., K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y. Nakase, and
T. Nishizawa [1992]. “An elementary processor architecture with simultaneous
instruction issuing from multiple threads,” Proc. 19th Annual Int’l. Symposium
on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia,
136–145.

Hockney, R. W., and C. R. Jesshope [1988]. Parallel Computers 2: Architectures,
Programming and Algorithms, Adam Hilger, Ltd., Bristol, England.

Holland, J. H. [1959]. “A universal computer capable of executing an arbitrary
number of subprograms simultaneously,” Proc. East Joint Computer Conf.
16, 108–113.

Hord, R. M. [1982]. The Illiac-IV, The First Supercomputer, Computer Science
Press, Rockville, Md.

Hristea, C., D. Lenoski, and J. Keen [1997]. “Measuring memory hierarchy per-
formance of cache-coherent multiprocessors using micro benchmarks,”
Proc. ACM/IEEE Conf. on Supercomputing, November 15–21, 1997, San
Jose, Calif.

Hwang, K. [1993]. Advanced Computer Architecture and Parallel Programming,

McGraw-Hill, New York.

M-70 ■ Appendix M Historical Perspectives and References
IBM. [2005]. “Blue Gene,” IBM J. of Research and Development, 49:2/3
(special issue).

Infiniband Trade Association. [2001]. InfiniBand Architecture Specifications
Release 1.0.a, www.infinibandta.org.

Jordan, H. F. [1983]. “Performance measurements on HEP—a pipelined MIMD
computer,” Proc. 10th Annual Int’l. Symposium on Computer Architecture
(ISCA), June 5–7, 1982, Stockholm, Sweden, 207–212.

Kahn, R. E. [1972]. “Resource-sharing computer communication networks,” Proc.
IEEE 60:11 (November), 1397–1407.

Keckler, S. W., and W. J. Dally [1992]. “Processor coupling: Integrating compile
time and runtime scheduling for parallelism,” Proc. 19th Annual Int’l. Sympo-
sium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast, Austra-
lia, 202–213.

Kontothanassis, L., G. Hunt, R. Stets, N. Hardavellas, M. Cierniak, S.
Parthasarathy, W. Meira, S. Dwarkadas, and M. Scott [1997]. “VM-based
shared memory on low-latency, remotememory-access networks,” Proc. 24th
Annual Int’l. Symposium on Computer Architecture (ISCA), June 2–4, 1997,
Denver, Colo.

Kurose, J. F., and K. W. Ross [2001]. Computer Networking: A Top-Down
Approach Featuring the Internet, Addison-Wesley, Boston.

Kuskin, J., D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo, J. Cha-
pin, D.Nakahira, J. Baxter,M.Horowitz, A.Gupta,M.Rosenblum, and J. L. Hen-
nessy [1994]. “The Stanford FLASH multiprocessor,” Proc. 21st Annual Int’l.
Symposium on Computer Architecture (ISCA), April 18–21, 1994, Chicago.

Lamport, L. [1979]. “How to make a multiprocessor computer that correctly exe-
cutes multiprocess programs,” IEEE Trans. on Computers C-28:9 (September),
241–248.

Laudon, J., A. Gupta, and M. Horowitz [1994]. “Interleaving: A multithreading
technique targeting multiprocessors and workstations,” Proc. Sixth Int’l. Conf.
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 4–7, 1994, San Jose, Calif., 308–318.

Laudon, J., and D. Lenoski [1997]. “The SGI Origin: A ccNUMA highly scalable
server,” Proc. 24th Annual Int’l. Symposium on Computer Architecture (ISCA),
June 2–4, 1997, Denver, Colo., 241–251.

Lenoski, D., J. Laudon, K. Gharachorloo, A. Gupta, and J. L. Hennessy [1990].
“The Stanford DASH multiprocessor,” Proc. 17th Annual Int’l. Symposium
on Computer Architecture (ISCA), May 28–31, 1990, Seattle, Wash., 148–159.

Lenoski, D., J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. L. Hennessy,
M. A. Horowitz, and M. Lam [1992]. “The Stanford DASH multiprocessor,”
IEEE Computer 25:3 (March), 63–79.

Li, K. [1988]. “IVY: A shared virtual memory system for parallel computing,”
Proc. Int’l. Conf. on Parallel Processing (ICCP), August, The Pennsylvania
State University, University Park, Penn.

Lo, J., L. Barroso, S. Eggers, K. Gharachorloo, H. Levy, and S. Parekh [1998]. “An

analysis of database workload performance on simultaneous multithreaded

M.7 The History of Multiprocessors and Parallel Processing ■ M-71
processors,” Proc. 25th Annual Int’l. Symposium on Computer Architecture
(ISCA), July 3–14, 1998, Barcelona, Spain, 39–50.

Lo, J., S. Eggers, J. Emer, H. Levy, R. Stamm, and D. Tullsen [1997]. “Converting
thread-level parallelism into instruction-level parallelism via simultaneous mul-
tithreading,” ACM Trans. on Computer Systems 15:2 (August), 322–354.

Lovett, T., and S. Thakkar [1988]. “The Symmetry multiprocessor system,” Proc.
Int’l. Conf. on Parallel Processing (ICCP), August, The Pennsylvania State
University, University Park, Penn., 303–310.

Mellor-Crummey, J. M., andM. L. Scott [1991]. “Algorithms for scalable synchro-
nization on shared-memory multiprocessors,” ACM Trans. on Computer
Systems 9:1 (February), 21–65.

Menabrea, L. F. [1842]. “Sketch of the analytical engine invented by Charles Bab-
bage,” Bibliothèque Universelle de Genève, 82 (October).

Metcalfe, R. M. [1993]. “Computer/network interface design: Lessons from Arpa-
net and Ethernet.” IEEE J. on Selected Areas in Communications 11:2
(February), 173–180.

Metcalfe, R.M., andD.R. Boggs [1976]. “Ethernet: Distributed packet switching for
local computer networks,” Communications of the ACM 19:7 (July), 395–404.

Mitchell, D. [1989]. “The Transputer: The time is now,” Computer Design (RISC
suppl.), 40–41.

Miya, E. N. [1985]. “Multiprocessor/distributed processing bibliography,” Com-
puter Architecture News 13:1, 27–29.

National Research Council. [1997]. The Evolution of Untethered Communications,
Computer Science and Telecommunications Board, National Academy Press,
Washington, D.C.

Nikhil, R. S., G. M. Papadopoulos, and Arvind [1992]. “*T: A multithreaded mas-
sively parallel architecture,” Proc. 19th Annual Int’l. Symposium on Computer
Architecture (ISCA), May 19–21, 1992, Gold Coast, Australia, 156–167.

Noordergraaf, L., and R. van der Pas [1999]. “Performance experiences on Sun’s
WildFire prototype,” Proc. ACM/IEEE Conf. on Supercomputing, November
13–19, 1999, Portland, Ore.

Partridge, C. [1994]. Gigabit Networking, Addison-Wesley, Reading, Mass.
Pfister, G. F. [1998]. In Search of Clusters, 2nd ed., Prentice Hall, Upper Saddle

River, N.J.
Pfister, G. F., W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfekder, K. P.

McAuliffe, E. A. Melton, V. A. Norton, and J. Weiss [1985]. “The IBM research
parallel processor prototype (RP3): Introduction and architecture,” Proc. 12th
Annual Int’l. Symposium on Computer Architecture (ISCA), June 17–19,
1985, Boston, Mass., 764–771.

Reinhardt, S. K., J. R. Larus, and D. A. Wood [1994]. “Tempest and Typhoon:
User-level shared memory,” Proc. 21st Annual Int’l. Symposium on Computer
Architecture (ISCA), April 18–21, 1994, Chicago, 325–336.

Rettberg, R. D., W. R. Crowther, P. P. Carvey, and R. S. Towlinson [1990].
“The Monarch parallel processor hardware design,” IEEE Computer 23:4

(April), 18–30.

M-72 ■ Appendix M Historical Perspectives and References
Rosenblum, M., S. A. Herrod, E. Witchel, and A. Gupta [1995]. “Complete com-
puter simulation: The SimOS approach,” in IEEE Parallel and Distributed
Technology (now called Concurrency) 4:3, 34–43.

Saltzer, J. H., D. P. Reed, and D. D. Clark [1984]. “End-to-end arguments in sys-
tem design,” ACM Trans. on Computer Systems 2:4 (November), 277–288.

Satran, J., D. Smith, K. Meth, C. Sapuntzakis, M. Wakeley, P. Von Stamwitz, R.
Haagens, E. Zeidner, L. Dalle Ore, and Y. Klein [2001]. “iSCSI,” IPS Working
Group of IETF, Internet draft www.ietf.org/internet-drafts/draft-ietf-ips-iscsi-
07.txt.

Saulsbury, A., T. Wilkinson, J. Carter, and A. Landin [1995]. “An argument for
Simple COMA,” Proc. First IEEE Symposium on High-Performance Computer
Architectures, January 22–25, 1995, Raleigh, N.C., 276–285.

Schwartz, J. T. [1980]. “Ultracomputers,” ACM Trans. on Programming
Languages and Systems 4:2, 484–521.

Scott, S. L. [1996]. “Synchronization and communication in the T3E multiproces-
sor,” Seventh Int’l. Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), October 1–5, 1996, Cambridge, Mass., 26–
36.

Scott, S. L., and G. M. Thorson [1996]. “The Cray T3E network: Adaptive routing
in a high-performance 3D torus,” Proc. IEEE HOT Interconnects ’96, August
15–17, 1996, Stanford University, Palo Alto, Calif., 14–156.

Seitz, C. L. [1985]. “The Cosmic Cube (concurrent computing),” Communications
of the ACM 28:1 (January), 22–33.

Singh, J. P., J. L. Hennessy, and A. Gupta [1993]. “Scaling parallel programs for
multiprocessors: Methodology and examples,” Computer 26:7 (July), 22–33.

Slotnick, D. L., W. C. Borck, and R. C. McReynolds [1962]. “The Solomon com-
puter,” Proc. AFIPS Fall Joint Computer Conf., December 4–6, 1962,
Philadelphia, Penn., 97–107.

Smith, B. J. [1978]. “A pipelined, shared resource MIMD computer,” Proc. Int’l.
Conf. on Parallel Processing (ICPP), August, Bellaire, Mich., 6–8.

Soundararajan, V., M. Heinrich, B. Verghese, K. Gharachorloo, A. Gupta, and J. L.
Hennessy [1998]. “Flexible use of memory for replication/migration in
cache-coherent DSM multiprocessors,” Proc. 25th Annual Int’l. Symposium
on Computer Architecture (ISCA), July 3–14, 1998, Barcelona, Spain, 342–355.

Spurgeon, C. [2001]. “Charles Spurgeon’s Ethernet Web site,” www.host.ots.
utexas.edu/ethernet/ethernet-home.html.

Stenstr€om, P., T. Joe, and A. Gupta [1992]. “Comparative performance evaluation
of cachecoherent NUMA and COMA architectures,” Proc. 19th Annual Int’l.
Symposium on Computer Architecture (ISCA), May 19–21, 1992, Gold Coast,
Australia, 80–91.

Sterling, T. [2001]. Beowulf PC Cluster Computing with Windows and Beowulf
PC Cluster Computing with Linux, MIT Press, Cambridge, Mass.

Stevens, W. R. [1994–1996]. TCP/IP Illustrated (three volumes), Addison-
Wesley, Reading, Mass.
Stone, H. [1991]. High Performance Computers, Addison-Wesley, New York.

M.7 The History of Multiprocessors and Parallel Processing ■ M-73
Swan, R. J., A. Bechtolsheim, K. W. Lai, and J. K. Ousterhout [1977]. “The imple-
mentation of the Cm*multi-microprocessor,” Proc. AFIPS National Computing
Conf., June 13–16, 1977, Dallas, Tex., 645–654.

Swan, R. J., S. H. Fuller, and D. P. Siewiorek [1977]. “Cm*—a modular, multi-
microprocessor,” Proc. AFIPS National Computing Conf., June 13–16, 1977,
Dallas, Tex., 637–644.

Tanenbaum, A. S. [1988]. Computer Networks, 2nd ed., Prentice Hall, Englewood
Cliffs, N.J.

Tang, C. K. [1976]. “Cache design in the tightly coupled multiprocessor system,”
Proc. AFIPS National Computer Conf., June 7–10, 1976, New York, 749–753.

Thacker, C. P., E. M. McCreight, B. W. Lampson, R. F. Sproull, and D. R. Boggs
[1982]. “Alto: A personal computer,” in D. P. Siewiorek, C. G. Bell, and A.
Newell, eds., Computer Structures: Principles and Examples, McGraw-Hill,
New York, 549–572.

Thekkath, R., A. P. Singh, J. P. Singh, S. John, and J. L. Hennessy [1997]. “An
evaluation of a commercial CC-NUMA architecture—the CONVEX Exemplar
SPP1200,” Proc. 11th Int’l. Parallel Processing Symposium (IPPS), April 1–7,
1997, Geneva, Switzerland.

Tullsen, D. M., S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo, and R. L. Stamm
[1996]. “Exploiting choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor,” Proc. 23rd Annual Int’l. Symposium
on Computer Architecture (ISCA), May 22–24, 1996, Philadelphia, Penn.,
191–202.

Tullsen, D. M., S. J. Eggers, and H. M. Levy [1995]. “Simultaneous multithread-
ing: Maximizing on-chip parallelism,” Proc. 22nd Annual Int’l. Symposium on
Computer Architecture (ISCA), June 22–24, 1995, Santa Margherita, Italy, 392–
403.

Unger, S. H. [1958]. “A computer oriented towards spatial problems,” Proc. Insti-
tute of Radio Engineers 46:10 (October), 1744–1750.

Walrand, J. [1991]. Communication Networks: A First Course, Aksen Associates:
Irwin, Homewood, Ill.

Wilson, A.W., Jr. [1987]. “Hierarchical cache/bus architecture for shared-memory
multiprocessors,” Proc. 14th Annual Int’l. Symposium on Computer Architec-
ture (ISCA), June 2–5, 1987, Pittsburgh, Penn., 244–252.

Wolfe, A., and J. P. Shen [1991]. “A variable instruction stream extension to the
VLIW architecture.” Proc. Fourth Int’l. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS), April 8–11, 1991,
Palo Alto, Calif., 2–14.

Wood, D. A., and M. D. Hill [1995]. “Cost-effective parallel computing,” IEEE
Computer 28:2 (February), 69–72.

Wulf,W., and C. G. Bell [1972]. “C.mmp—Amulti-mini-processor,” Proc. AFIPS
Fall Joint Computer Conf., December 5–7, 1972, Anaheim, Calif., 765–777.

Wulf, W., and S. P. Harbison [1978]. “Reflections in a pool of processors—an
experience report on C.mmp/Hydra,” Proc. AFIPS National Computing Conf.

June 5–8, 1978, Anaheim, Calif., 939–951.

M.8

M-74 ■ Appendix M Historical Perspectives and References
Yamamoto,W.,M. J. Serrano,A. R. Talcott, R. C.Wood, andM.Nemirosky [1994].
“Performance estimation of multistreamed, superscalar processors,” Proc. 27th

Hawaii Int’l. Conf. on System Sciences, January 4–7, 1994, Wailea, 195–204.
The Development of Clusters (Chapter 6)

In this section, we cover the development of clusters that were the foundation of
warehouse-scale computers (WSCs) and of utility computing. (Readers interested
in learning more should start with Barroso and H€olzle [2009] and the blog postings
and talks of James Hamilton at http://perspectives.mvdirona.com.)

Clusters, the Forerunner of WSCs

Clusters were probably “invented” in the 1960s by customers who could not fit
all their work on one computer or who needed a backup machine in case of failure
of the primary machine [Pfister 1998]. Tandem introduced a 16-node cluster in
1975.Digital followedwithVAXclusters, introduced in 1984.Theywere originally
independent computers that shared I/O devices, requiring a distributed operating
system to coordinate activity. Soon they had communication links between com-
puters, in part so that the computers could be geographically distributed to increase
availability in case of a disaster at a single site. Users log onto the cluster and are
unaware of which machine they are running on. DEC (now HP) sold more than
25,000 clusters by 1993. Other early companies were Tandem (now HP) and
IBM(still IBM). Today, virtually every companyhas cluster products.Most of these
products are aimed at availability, with performance scaling as a secondary benefit.

Scientific computing on clusters emerged as a competitor toMPPs. In 1993, the
Beowulf project started with the goal of fulfilling NASA’s desire for a 1 GFLOPS
computer for under $50,000. In 1994, a 16-node cluster built from off-the-shelf
PCs using 80486s achieved that goal [Bell and Gray 2001]. This emphasis led
to a variety of software interfaces to make it easier to submit, coordinate, and debug
large programs or a large number of independent programs.

Efforts were made to reduce latency of communication in clusters as well as to
increase bandwidth, and several research projects worked on that problem. (One
commercial result of the low-latency research was the VI interface standard, which
has been embraced by Infiniband, discussed below.) Low latency then proved use-
ful in other applications. For example, in 1997 a cluster of 100 UltraSPARC desk-
top computers at the University of California–Berkeley, connected by 160 MB/sec
per link Myrinet switches, was used to set world records in database sort—sorting
8.6 GB of data originally on disk in 1 minute—and in cracking an encrypted mes-
sage—taking just 3.5 hours to decipher a 40-bit DES key.

This research project, called Network of Workstations [Anderson, Culler, and

Patterson 1995], also developed the Inktomi search engine, which led to a start-up

M.8 The Development of Clusters ■ M-75
company with the same name. Eric Brewer led the Inktomi effort at Berkeley and
then at the company to demonstrate the use of commodity hardware to build com-
puting infrastructure for Internet services. Using standardized networks within a
rack of PC servers gave Inktomi better scalability. In contrast, the strategy of
the prior leading search engine Alta Vista was to build from large-scale SMPs.
Compared to the high-performance computing work in clusters, the emphasis
was on a relatively large number of low-cost nodes and a clear programming
model. Hence, the NOW project and Inktomi are considered the foundation of
WSCs and Cloud Computing. Google followed the example of Inktomi technology
when it took the leading search engine mantle from Inktomi just as Inktomi had
taken it from Alta Vista [Brin and Page 1998]. (Google’s initial innovation was
search quality; the WSC innovations came much later.) For many years now,
all Internet services have relied on cluster technology to serve their millions of

customers.
Utility Computing, the Forerunner of Cloud Computing

As stated in the text, the earliest version of utility computing was timesharing.
Although timesharing faded away over time with the creation of smaller and
cheaper personal computers, in the last decade there have been many less than fully
successful attempts to resuscitate utility computing. Sun began selling time on Sun
Cloud at $1 per hour in 2000, HP offered a Utility Data Center in 2001, and Intel
tried selling time on internal supercomputers in the early 2000s. Although they
were commercially available, few customers used them.

A related topic is grid computing, which was originally invented so that scien-
tific programs could be run across geographically distributed computing facilities.
At the time, some questioned the wisdom of this goal, setting aside how difficult it
would be to achieve. Grid computing tended to require very large systems running
very large programs, using multiple datacenters for the tasks. Single applications
did not really run well when geographically distributed, given the long latencies
inherent with long distance. This first step eventually led to some conventions
for data access, but the grid computing community did not develop APIs that were
useful beyond the high-performance computing community, so the cloud comput-
ing effort shares little code or history with grid computing.

Armbrust et al [2009] argued that, once the Internet service companies solved
the operational problems to work at large scale, the significant economies of scale
that they uncovered brought their costs down below those of smaller datacenters.
Amazon recognized that if this cost advantage was true then Amazon should be
able to make a profit selling this service. In 2006, Amazon announced Elastic
Cloud Computing (EC2) at $0.10 per hour per instance. The subsequent popularity
of EC2 led other Internet companies to offer cloud computing services, such as
Google App Engine and Microsoft Azure, albeit at higher abstraction levels than
the x86 virtual machines of Amazon Web Services. Hence, the current popularity

of pay-as-you go computing isn’t because someone recently came up with the idea;

M-76 ■ Appendix M Historical Perspectives and References
it’s because the technology and business models have aligned so that companies
can make money offering a service that many people want to use. Time will tell
whether there will be many successful utility computing models or whether the
industry will converge around a single standard. It will certainly be interesting

to watch.
Containers

In the fall of 2003, many people were thinking about using containers to hold
servers. Brewster Kahle, director and founder of the Internet Archive, gave talks
about how he could fit the whole archive in a single 40-foot container. His interest
was making copies of the Archive and distributing it around the world to ensure its
survivability, thereby avoiding the fate of the Library of Alexandria that was
destroyed by fire in 48 B.C.E. People working with Kahle wrote a white paper
based on his talk in November 2003 to get more detail about what a container
design would look like.

That same year, engineers at Google were also looking at building datacenters
using containers and submitted a patent on aspects of it in December 2003. The
first container for a datacenter was delivered in January 2005, and Google received
the patent in October 2007. Google publicly revealed the use of containers in
April 2009.

Greg Papadopolous of Sun Microsystems and Danny Hillis of Applied Minds
heard Kahle’s talk and designed a product called the Sun Modular Datacenter that
debuted in October 2006. (The project code name was Black Box, a term many
people still use.) This half-length (20-foot) container could hold 280 servers. This
product release combined with Microsoft’s announcement that they were building
a datacenter designed to hold 220 40-foot containers inspired many other compa-
nies to offer containers and servers designed to be placed in them.

In a nice turn of events, in 2009 the Internet Archive migrated its data to a Sun
Modular Datacenter. A copy of the Internet Archive is now at the New Library of

Alexandria in Egypt, near the site of the original library.
References

Anderson, T. E., D. E. Culler, and D. Patterson [1995]. “A case for NOW (net-
works of workstations),” IEEE Micro 15:1 (February), 54–64.

Apache Software Foundation. [2011]. Apache Hadoop project, http://hadoop.
apache.org.

Armbrust, M., A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia [2009]. Above the Clouds: A
Berkeley View of Cloud Computing, Tech. Rep. UCB/EECS-2009-28, Univer-
sity of California, Berkeley (http://www.eecs.berkeley.edu/Pubs/TechRpts/

2009/EECS-2009-28.html).

M.8 The Development of Clusters ■ M-77
Barroso, L. A. [2010]. “Warehouse scale computing [keynote address],” Proc.
ACM SIG-MOD, June 8–10, 2010, Indianapolis, Ind.

Barroso, L. A., and U. H€olzle [2007]. “The case for energy-proportional comput-
ing,” IEEE Computer 40:12 (December), 33–37.

Barroso, L.A., and U. H€olzle [2009]. “The datacenter as a computer: An introduc-
tion to the design of warehouse-scale machines,” in M. D. Hill, ed., Synthesis
Lectures on Computer Architecture, Morgan & Claypool, San Rafael, Calif.

Barroso, L.A., Clidaras, J. and H€olzle, U., 2013. The datacenter as a computer:An
introduction to the design of warehouse-scale machines. Synthesis lectures on
computer architecture, 8(3), pp.1–154.

Barroso, L.A., Marty, M., Patterson, D., and Ranganathan, P. 2017. Attack of the
Killer Microseconds. Communications of the ACM, 56(2).

Bell, C. G., and J. Gray [2002]. “What’s next in high performance computing,”
Communications of the ACM 45:2 (February), 91–95.

Brady, J.T., 1986. A theory of productivity in the creative process. IEEE Computer
Graphics and Applications, 6(5), pp.25–34.

Brin, S., and L. Page [1998]. “The anatomy of a large-scale hypertextual Web
search engine,” Proc. 7th Int’l. World Wide Web Conf., April 14–18, 1998, Bris-
bane, Queensland, Australia, 107–117.

Carter, J., and K. Rajamani [2010]. “Designing energy-efficient servers and data
centers,” IEEE Computer 43:7 (July), 76–78.

Chang, F., J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber [2006]. “Bigtable: A distributed storage
system for structured data,” in Proc. Operating Systems Design and Implemen-
tation (OSDI ’06), November 6–8, 2006, Seattle, Wash.

Chang, J., J. Meza, P. Ranganathan, C. Bash, and A. Shah [2010]. “Green server
design: Beyond operational energy to sustainability,” Workshop on Power
Aware Computing and Systems (HotPower ’10), October 4–6, 2010, Vancou-
ver, British Columbia.

Clark, J., 2014 Five Numbers That Illustrate the Mind-Bending Size of Amazon’s
Cloud, Bloomberg, https://www.bloomberg.com/news/2014-11-14/5-
numbersthat-illustrate-the-mind-bending-size-of-amazon-s-cloud.html.

Clidaras, J., C. Johnson, and B. Felderman [2010]. Private communication.
Climate Savers Computing. [2007]. Efficiency specs, http://www.

climatesaverscomputing.org/.
Clos, C., 1953. A Study of Non-Blocking Switching Networks. Bell Labs Techni-

cal Journal, 32(2), pp.406-424.
Dean, J. [2009]. “Designs, lessons and advice from building large distributed sys-

tems [keynote address],” Proc. 3rd ACM SIGOPS International Workshop on
Large Scale Distributed Systems and Middleware, Co-located with the 22nd
ACM Symposium on Operating Systems Principles (SOSP 2009), October
10–11, 2009, Big Sky, Mont.

Dean, J. and Barroso, L.A., 2013. The tail at scale. Communications of the ACM,

56(2), pp.74-80.

M-78 ■ Appendix M Historical Perspectives and References
Dean, J., and S. Ghemawat [2004]. “MapReduce: Simplified data processing on
large clusters.” In Proc. Operating Systems Design and Implementation (OSDI
’04), December 6–8, 2004, San Francisco, 137–150.

Dean, J., and S. Ghemawat [2008]. “MapReduce: simplified data processing on
large clusters,” Communications of the ACM 51:1, 107–113.

DeCandia, G., D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels [2007]. “Dynamo: Amazon’s
highly available key-value store,” in Proc. 21st ACM Symposium on Operating
Systems Principles, October 14–17, 2007, Stevenson, Wash.

Doherty, W.J. and Thadhani, A.J., 1982. The economic value of rapid response
time. IBM Report.

Fan, X., W. Weber, and L. A. Barroso [2007]. “Power provisioning for a
warehouse-sized computer,” in Proc. 34th Annual Int’l. Symposium on Com-
puter Architecture (ISCA), June 9–13, 2007, San Diego, Calif.

A. Fikes, “Storage architecture and challenges,” in Google Faculty Summit, 2010.
Ghemawat, S., H. Gobioff, and S.-T. Leung (2003). “The Google file system,” in

Proc. 19th ACM Symposium on Operating Systems Principles, October 19–22,
2003, Lake George, N.Y.

Greenberg, A., N. Jain, S. Kandula, C. Kim, P. Lahiri, D. Maltz, P. Patel, and S.
Sengupta [2009]. “VL2: A scalable and flexible data center network,” in Proc.
SIGCOMM, August 17–21, Barcelona, Spain.

González, A.and Day, M. April 27, 2016, “Amazon, Microsoft invest billions as
computing shifts to cloud,” The Seattle Times. http://www.seattletimes.com/
business/technology/amazon-microsoft-invest-billions-as-computing-shifts-to-
cloud/

Hamilton, J. [2009]. “Data center networks are in my way,” Stanford Clean Slate
CTO Summit, October 23, 2009, http://mvdirona.com/jrh/TalksAndPapers/
JamesHamilton_CleanSlateCTO2009.pdf.

Hamilton, J. [2010]. “Cloud computing economies of scale,” Proc. AWSWorkshop
on Genomics & Cloud Computing, June 8, 2010, Seattle, Wash. (http://
mvdirona.com/jrh/TalksAndPapers/JamesHamilton_
GenomicsCloud20100608.pdf).

Hamilton, J., 2014. AWS Innovation at Scale, AWS Re-invent conference. https://
www.youtube.com/watch?v¼JIQETrFC_SQ

Hamilton, J., May 2015. The Return to the Cloud, http://perspectives.mvdirona.
com/2015/05/the-return-to-the-cloud//

Hamilton, J., April 2017. How Many Data Centers Needed World-Wide, http://
perspectives.mvdirona.com/2017/04/how-many-data-centers-needed-worldwide/

H€olzle, U. [2010]. “Brawny cores still beat wimpy cores, most of the time,” IEEE
Micro, July/August.

Kanev, S., Darago, J.P., Hazelwood, K., Ranganathan, P., Moseley, T., Wei, G.Y.
and Brooks, D., 2015, June. Profiling a warehouse-scale computer. ACM/
IEEE 42nd Annual International Symposium on Computer Architecture

(ISCA).

M.9

M.9 Historical Perspectives and References ■ M-79
Lang, W., J. M. Patel, and S. Shankar [2010]. “Wimpy node clusters: What about
non-wimpy workloads?” Proc. Sixth Int’l. Workshop on Data Management on
New Hardware, June 7, 2010, Indianapolis, Ind.

Lim, K., P. Ranganathan, J. Chang, C. Patel, T. Mudge, and S. Reinhardt [2008].
“Understanding and designing new system architectures for emerging
warehouse-computing environments,” Proc. 35th Annual Int’l. Symposium on
Computer Architecture (ISCA), June 21–25, 2008, Beijing, China.

Narayanan, D., E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron [2009].
“Migrating server storage to SSDs: Analysis of trade-offs,” Proc. 4th ACM
European Conf. on Computer Systems, April 1–3, 2009, Nuremberg, Germany.

Pfister, G. F. [1998]. In Search of Clusters, 2nd ed., Prentice Hall, Upper Saddle
River, N.J.

Pinheiro, E., W.-D. Weber, and L. A. Barroso [2007]. “Failure trends in a large
disk drive population,” Proc. 5th USENIX Conference on File and Storage
Technologies (FAST ’07), February 13–16, 2007, San Jose, Calif.

Ranganathan, P., P. Leech, D. Irwin, and J. Chase [2006]. “Ensemble-level power
management for dense blade servers,” Proc. 33rd Annual Int’l. Symposium on
Computer Architecture (ISCA), June 17–21, 2006, Boston, Mass., 66–77.

Reddi, V. J., B. C. Lee, T. Chilimbi, and K. Vaid [2010]. “Web search using mobile
cores: Quantifying and mitigating the price of efficiency,” Proc. 37th Annual
Int’l. Symposium on Computer Architecture (ISCA), June 19–23, 2010, Saint-
Malo, France.

Schroeder, B., and G. A. Gibson [2007]. “Understanding failures in petascale com-
puters,” Journal of Physics: Conference Series 78, 188–198.

Schroeder, B., E. Pinheiro, andW.-D. Weber [2009]. “DRAM errors in the wild: A
large-scale field study,” Proc. Eleventh Int’l. Joint Conf. on Measurement and
Modeling of Computer Systems (SIGMETRICS), June 15–19, 2009,
Seattle, Wash.

Schurman, E. and J. Brutlag [2009]. “The User and Business Impact of Server
Delays,” Proc. Velocity: Web Performance and Operations Conf., June 22–
24, 2009, San Jose, Calif.

Tezzaron Semiconductor. [2004]. “Soft Errors in Electronic Memory—A White
Paper, Tezzaron Semiconductor, Naperville, Ill. (http://www.tezzaron.com/
about/papers/soft_errors_1_1_secure.pdf).

Vahdat, A., M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and S. Radhak-
rishnan [2010]. “Scale-out networking in the data center,” IEEE Micro July/

August 2010.
Historical Perspectives and References

As architects experiment with DSAs, knowing architecture history may help.
There are likely older architecture ideas that were unsuccessful for general-purpose
computing that could nevertheless make eminent sense for domain-specific archi-

tectures. After all, they probably did some things well, and either they might match

M-80 ■ Appendix M Historical Perspectives and References
your domain, or, conversely, your domain might omit features that were challenges
for these architectures. For example, both the Illiac IV (Barnes et al., 1968) from
the 1960s and the FPS 120a (Charlesworth, 1981) from the 1970s had two-
dimensional arrays of processing elements, so they are proper ancestors to the
TPU and Paintbox. Similarly, while VLIW architectures of the Multiflow (Rau
and Fisher, 1993) and Itanium (Sharangpani and Arora, 2000) were not commer-
cial successes for general-purpose computing, Paintbox does not have the erratic
data cache misses, unpredictable branches, or large code footprint that were diffi-
cult for VLIW architectures.

Two survey articles document that custom neural network ASICs go back at
least 25 years (Ienne et al., 1996; Asanovi�c, 2002). For example, CNAPS chips
contained a 64 SIMD array of 16-bit by 8-bit multipliers, and several CNAPS chips
could be connected together with a sequencer (Hammerstrom, 1990). The
Synapse-1 system was based on a custom systolic multiply-accumulate chip called
the MA-16, which performed sixteen 16-bit multiplications at a time (Ramacher
et al., 1991). The system concatenated MA-16 chips and had custom hardware
to do activation functions.

Twenty-five SPERT-II workstations, accelerated by the T0 customASIC, were
deployed starting in 1995 to do both NN training and inference for speech recog-
nition (Asanovi�c et al., 1998). The 40-MHz T0 added vector instructions to the
MIPS instruction set architecture. The eight-lane vector unit could produce up
to sixteen 32-bit arithmetic results per clock cycle based on 8-bit and 16-bit inputs,
making it 25 times faster at inference and 20 times faster at training than a SPARC-
20 workstation. They found that 16 bits were insufficient for training, so they used
two 16-bit words instead, which doubled training time. To overcome that draw-
back, they introduced “bunches” (batches) of 32–1000 data sets to reduce time
spent updating weights, which made it faster than training with one word but
no batches.

We use the phrase Image Processing Unit for Paintbox to identify this emerg-
ing class of processor, but this is not the first use of the term. The earliest use we can
find is 1999, when the Sony Playstation put the name on a chip that was basically
an MPEG2 decoder (Sony/Toshiba, 1999). In 2006, Freescale used IPU to name
part of the i.MX31 Applications Processor, which is closer to the more generic way
we interpret it (Freescale as part of i.MX31 Applications Processor, 2006).

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.
S., Davis, A., Dean, J., Devin, M., Ghemawat, S., 2016. Tensor-flow: large-
scale machine learning on heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467.

Adolf, R., Rama, S., Reagen, B., Wei, G.Y., Brooks, D., 2016. Fathom: reference
workloads for modern deep learning methods. In: IEEE International Sympo-
sium on Workload Characterization (IISWC).

Amodei, D., et al., 2015. Deep speech 2: end-to-end speech recognition in English

and mandarin, arXiv:1512.02595.

M.9 Historical Perspectives and References ■ M-81
Asanovi�c, K., 2002. Programmable neurocomputing. In: Arbib, M.A. (Ed.), The
Handbook of Brain Theory and Neural Networks, second ed. MIT Press, Cam-
bridge, MA. ISBN: 0-262-01197-2. https://people.eecs.berkeley.edu/�krste/
papers/neurocomputing.pdf.

Asanovi�c, K., Beck, A., Johnson, J., Wawrzynek, J., Kingsbury, B., Morgan, N.,
1998. Training neural networks with Spert-II. In: Sundararajan, N., Saratchan-
dran, P. (Eds.), Parallel Architectures for Artificial Networks: Paradigms
and Implementations. IEEE Computer Society Press. ISBN: 0-8186-8399-6.
(Chapter 11) https://people.eecs.berkeley.edu/�krste/papers/annbook.pdf.

Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,
Wawrzynek, J., Asanovi�c, K., 2012. Chisel: constructing hardware in a Scala
embedded language. In: Proceedings of the 49th Annual Design Automation
Conference, pp. 1216–1225.

Barnes, G.H., Brown, R.M., Kato, M., Kuck, D.J., Slotnick, D.L., Stokes, R.,
1968. The ILLIAC IV computer. IEEE Trans. Comput. 100 (8), 746–757.

Bhattacharya, S., Lane, N.D., 2016. Sparsification and separation of deep learning
layers for constrained resource inference on wearables. In: Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems CD-ROM,
pp. 176–189.

Brunhaver, J., 2014. PhD thesis. Stanford.
Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A., Czajkowski, T.,

Brown, S.D., Anderson, J.H., 2013. LegUp: an open-source high-level synthesis
tool for FPGA-based processor/accelerator systems. ACM Trans. Embed. Com-
put. Syst. 13 (2).

Canny, J., et al., 2015. Machine learning at the limit. In: IEEE International Con-
ference on Big Data.

Caulfield, A.M., Chung, E.S., Putnam, A., Haselman, H.A.J.F.M., Humphrey,
S.H.M., Daniel, P.K.J.Y.K., Ovtcharov, L.T.M.K., Lanka, M.P.L.W.S.,
Burger, D.C.D., 2016. A cloud-scale acceleration architecture. In: MICRO
Conference.

Charlesworth, A.E., 1981. An approach to scientific array processing: the architec-
tural design of the AP-120B/FPS-164 family. Computer 9, 18–27.

Clark, J., October 26, 2015. Google Turning Its Lucrative Web Search Over to AI
Machines. Bloomberg Technology, www.bloomberg.com.

Dally, W.J., 2002. Computer architecture is all about interconnect. In: Proceed-
ings of the 8th International Symposium High Performance Computer
Architecture.

Freescale as part of i.MX31 Applications Processor, 2006. http://cache.freescale.
com/files/32bit/doc/white_paper/IMX31MULTIWP.pdf.

Galal, S., Shacham, O., Brunhaver II, J.S., Pu, J., Vassiliev, A., Horowitz, M.,
2013. FPU generator for design space exploration. In: 21st IEEE Symposium
on Computer Arithmetic (ARITH).

Hameed, R., Qadeer, W., Wachs, M., Azizi, O., Solomatnikov, A., Lee, B.C.,
Richardson, S., Kozyrakis, C., Horowitz, M., 2010. Understanding sources of
inefficiency in general-purpose chips. ACM SIGARCH Comput. Architect.

News 38 (3), 37–47.

M-82 ■ Appendix M Historical Perspectives and References
Hammerstrom, D., 1990. A VLSI architecture for high-performance, low-cost, on-
chip learning. In: IJCNN International Joint Conference on Neural Networks.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Identity mappings in deep residual net-
works. Also in arXiv preprint arXiv:1603.05027.

Huang, M., Wu, D., Yu, C.H., Fang, Z., Interlandi, M., Condie, T., Cong, J., 2016.
Programming and runtime support to blaze FPGA accelerator deployment
at datacenter scale. In: Proceedings of the Seventh ACM Symposium on Cloud
Computing. ACM, pp. 456–469.

Iandola, F., 2016. Exploring the Design Space of Deep Convolutional Neural Net-
works at Large Scale (Ph.D. dissertation). UC Berkeley.

Ienne, P., Cornu, T., Kuhn, G., 1996. Special-purpose digital hardware for neural
networks: an architectural survey. J. VLSI Signal Process. Syst. Signal Image
Video Technol. 13 (1).

Jouppi, N., 2016. Google supercharges machine learning tasks with TPU custom
chip. https://cloudplatform.googleblog.com.

Jouppi, N., Young, C., Patil, N., Patterson, D., Agrawal, G., et al., 2017. Datacenter
performance analysis of a matrix processing unit. In: 44th International Sympo-
sium on Computer Architecture.

Karpathy, A., et al., 2014. Large-scale video classification with convolutional neu-
ral networks. CVPR.

Krizhevsky, A., Sutskever, I., Hinton, G., 2012. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst.

Kung, H.T., Leiserson, C.E., 1980. Algorithms for VLSI processor arrays. Intro-
duction to VLSI systems.

Lee, Y., Waterman, A., Cook, H., Zimmer, B., Keller, B., Puggelli, A., Kwak, J.,
Jevtic, R., Bailey, S., Blagojevic, M., Chiu, P.-F., Avizienis, R., Richards, B.,
Bachrach, J., Patterson, D., Alon, E., Nikolic, B., Asanovic, K., 2016. An agile
approach to building RISC-V microprocessors. IEEE Micro 36 (2), 8–20.

Lewis-Kraus, G., 2016. The Great A.I. Awakening. New York Times Magazine.
Nielsen, M., 2016. Neural Networks and Deep Learning. http://

neuralnetworksanddeeplearning.com/.
Nvidia, 2016. Tesla GPUAccelerators For Servers. http://www.nvidia.com/object/

teslaservers.html.
Olofsson, A., 2011. Debunking the myth of the $100 M ASIC. EE Times. http://

www.eetimes.com/author.asp?section_id¼36&doc_id¼1266014.
Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S., 2015a.

Accelerating deep convolutional neural networks using specialized hardware.
Microsoft Research Whitepaper. https://www.microsoft.com/en-us/research/
publication/accelerating-deepconvolutional-neural-networks-using-specialized-
hardware/.

Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S., 2015b.
Toward accelerating deep learning at scale using specialized hardware in the

datacenter. In: 2015 IEEE Hot Chips 27 Symposium.

M.9 Historical Perspectives and References ■ M-83
Patterson, D., Nikoli�c, B., 7/25/2015, Agile Design for Hardware, Parts I, II, and
III. EE Times, http://www.eetimes.com/author.asp?doc_id¼1327239.

Patterson, D.A., Ditzel, D.R., 1980. The case for the reduced instruction set com-
puter. ACM SIGARCH Comput. Architect. News 8 (6), 25–33.

Prabhakar, R., Koeplinger, D., Brown, K.J., Lee, H., De Sa, C., Kozyrakis, C.,
Olukotun, K., 2016. Generating configurable hardware from parallel patterns.
In: Proceedingsof theTwenty-First InternationalConferenceonArchitectural Sup-
port for Programming Languages and Operating Systems. ACM, pp. 651–665.

Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme,
J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., Haselman, M., Hauck,
S., Heil, S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S.,
Smith, A., Thong, J., Xiao, P.Y., Burger, D., 2014. A reconfigurable fabric for
accelerating large-scale datacenter services. In: 41st International Symposium
on Computer Architecture.

Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme,
J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., Haselman, M., Hauck,
S., Heil, S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S.,
Smith, A., Thong, J., Xiao, P.Y., Burger, D., 2015. A reconfigurable fabric for
accelerating large-scale datacenter services. IEEE Micro. 35 (3).

Putnam, A., Caulfield, A.M., Chung, E.S., Chiou, D., Constantinides, K., Demme,
J., Esmaeilzadeh, H., Fowers, J., Gopal, G.P., Gray, J., Haselman, M., Hauck,
S., Heil, S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J., Peterson, E., Pope, S.,
Smith, A., Thong, J., Xiao, P.Y., Burger, D., 2016. A reconfigurable fabric for
accelerating large-scale datacenter services. Commun. ACM.

Qadeer, W., Hameed, R., Shacham, O., Venkatesan, P., Kozyrakis, C., Horowitz,
M.A., 2015. Convolution engine: balancing efficiency & flexibility in special-
ized computing. Commun. ACM 58 (4).

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., Amarasinghe, S.,
2013. Halide: a language and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines. ACM SIGPLAN Not. 48 (6),
519–530.

Ramacher, U., Beichter, J., Raab, W., Anlauf, J., Bruels, N., Hachmann, A.,
Wesseling, M., 1991. Design of a 1st generation neurocomputer. VLSI Design
of Neural Networks. Springer, USA.

Rau, B.R., Fisher, J.A., 1993. Instruction-level parallelism. J. Supercomput. 235,
Springer Science & Business Media.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., 2015. Imagenet large scale
visual recognition challenge. Int. J. Comput. Vis. 115 (3).

Sergio Guadarrama, 2015. BVLC googlenet. https://github.com/BVLC/caffe/tree/
master/models/bvlc_googlenet.

Shao, Y.S., Brooks, D., 2015. Research infrastructures for hardware accelerators.

Synth. Lect. Comput. Architect. 10 (4), 1–99.

M.10

M-84 ■ Appendix M Historical Perspectives and References
Sharangpani, H., Arora, K., 2000. Itanium processor microarchitecture. IEEE
Micro 20 (5), 24–43.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., 2016. Mastering the game of Go with deep neural networks and tree search.
Nature 529 (7587).

Smith, J.E., 1982. Decoupled access/execute computer architectures. In: Proceed-
ings of the 11th International Symposium on Computer Architecture.

Sony/Toshiba, 1999. ‘Emotion Engine’ in PS2 (“IPU is basically an MPEG2
decoder…”). http://www.cpu-collection.de/?l0¼co&l1¼Sony&l2¼Emotion
+Engine, http://arstechnica.com/gadgets/2000/02/ee/3/.

Steinberg, D., 2015. Full-Chip Simulations, Keys to Success. In: Proceedings of
the Synopsys Users Group (SNUG) Silicon Valley 2015.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

TensorFlow Tutorials, 2016. https://www.tensorflow.org/versions/r0.12/tutorials/
index.html.

Tung, L., 2016. Google Translate: ‘This landmark update is our biggest single leap
in 10 years’, ZDNet. http://www.zdnet.com/article/google-translate-this-
landmarkupdate-is-our-biggest-single-leap-in-10years/.

Vanhoucke, V., Senior, A., Mao, M.Z., 2011. Improving the speed of neural net-
works on CPUs. https://static.googleusercontent.com/media/research.google.
com/en//pubs/archive/37631.pdf.

Wu, Y., Schuster, M., Chen, Z., Le, Q., Norouzi, M., Macherey, W., Krikun, M.,
Cao, Y., Gao, Q., Macherey, K., Klingner, J., Shah, A., Johnson, M., Liu, X.,
Kaiser, Ł., Gouws, S., Kato, Y., Kudo, T., Kazawa, H., Stevens, K., Kurian, G.,
Patil, N., Wang, W., Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O.,
Corrado, G., Hughes, M., Dean, J., 2016. Google’s Neural Machine Translation
System: Bridging the Gap between Human and Machine Translation. http://

arxiv.org/abs/1609.08144.
The History of Magnetic Storage, RAID, and I/O Buses
(Appendix D)

Mass storage is a term used there to imply a unit capacity in excess of one million
alphanumeric characters …

Hoagland [1963]

The variety of storage I/O and issues leads to a varied history for the rest of
the story. (Smotherman [1989] explored the history of I/O in more depth.) This
section discusses magnetic storage, RAID, and I/O buses and controllers.
Jain [1991] and Lazowska et al. [1984] are books for those interested in learning

more about queuing theory.

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-85
Magnetic Storage

Magnetic recording was invented to record sound, and by 1941 magnetic tape was
able to compete with other storage devices. It was the success of the ENIAC in
1947 that led to the push to use tapes to record digital information. Reels of mag-
netic tapes dominated removable storage through the 1970s. In the 1980s, the IBM
3480 cartridge became the de facto standard, at least for mainframes. It can transfer
at 3 MB/sec by reading 18 tracks in parallel. The capacity is just 200 MB for this 1/
2-inch tape. The 9840 cartridge, used by StorageTek in the Powder-Horn, transfers
at 10 MB/sec and stores 20,000 MB. This device records the tracks in a zigzag
fashion rather than just longitudinally, so that the head reverses direction to follow
the track. This technique is called serpentine recording. Another 1/2-inch tape is
Digital Linear Tape; the DLT7000 stores 35,000 MB and transfers at 5 MB/sec. Its
competitor is helical scan, which rotates the head to get the increased recording
density. In 2001, the 8-mm helical-scan tapes contain 20,000 MB and transfer
at about 3 MB/sec. Whatever their density and cost, the serial nature of tapes cre-
ates an appetite for storage devices with random access.

In 1953, Reynold B. Johnson of IBM picked a staff of 15 scientists with the
goal of building a radically faster random access storage system than tape. The goal
was to have the storage equivalent of 50,000 standard IBM punch cards and to
fetch the data in a single second. Johnson’s disk drive design was simple but
untried: The magnetic read/write sensors would have to float a few thousandths
of an inch above the continuously rotating disk. Twenty-four months later the team
emerged with the functional prototype. It weighed 1 ton and occupied about 300
cubic feet of space. The RAMAC-350 (Random Access Method of Accounting
Control) used 50 platters that were 24 inches in diameter, rotated at 1200 RPM,
with a total capacity of 5 MB and an access time of 1 second.

Starting with the RAMAC, IBM maintained its leadership in the disk industry,
with its storage headquarters in San Jose, California, where Johnson’s team did its
work. Many of the future leaders of competing disk manufacturers started their
careers at IBM, and many disk companies are located near San Jose.

Although RAMAC contained the first disk, a major breakthrough in magnetic
recording was found in later disks with air-bearing read/write heads, where
the head would ride on a cushion of air created by the fast-moving disk surface.
This cushion meant the head could both follow imperfections in the surface and
yet be very close to the surface. Subsequent advances have come largely from
improved quality of components and higher precision. In 2001, heads flew 2 to
3 microinches above the surface, whereas in the RAMAC drive they were 1000
microinches away.

Moving-head disks quickly became the dominant high-speed magnetic stor-
age, although their high cost meant that magnetic tape continued to be used
extensively until the 1970s. The next important development for hard disks was
the removable hard disk drive developed by IBM in 1962; this made it possible
to share the expensive drive electronics and helped disks overtake tapes as the pre-

ferred storage medium. The IBM 1311 disk in 1962 had an areal density of 50,000

M-86 ■ Appendix M Historical Perspectives and References
bits per square inch and a cost of about $800 per megabyte. IBM also invented the
floppy disk drive in 1970, originally to hold microcode for the IBM 370 series.
Floppy disks became popular with the PC about 10 years later.

The second major disk breakthrough was the so-called Winchester disk design
in about 1973. Winchester disks benefited from two related properties. First, inte-
grated circuits lowered the costs of not only CPUs but also of disk controllers and
the electronics to control disk arms. Reductions in the cost of the disk electronics
made it unnecessary to share the electronics and thus made nonremovable disks
economical. Since the disk was fixed and could be in a sealed enclosure, both
the environmental and control problems were greatly reduced. Sealing the system
allowed the heads to fly closer to the surface, which in turn enabled increases
in areal density. The first sealed disk that IBM shipped had two spindles, each
with a 30 MB disk; the moniker “30-30” for the disk led to the name Winchester.
(America’s most popular sporting rifle, the Winchester 94, was nicknamed the
“30-30” after the caliber of its cartridge.) Winchester disks grew rapidly in popu-
larity in the 1980s, completely replacing removable disks by the middle of that
decade. Before this time, the cost of the electronics to control the disk meant that
the media had to be removable.

As mentioned in Appendix D, as DRAMs started to close the areal density gap
and appeared to be catching up with disk storage, internal meetings at IBM called
into question the future of disk drives. Disk designers concluded that disks must
improve at 60% per year to forestall the DRAM threat, in contrast to the historical
29% per year. The essential enabler was magnetoresistive heads, with giant
magnetoresistive heads enabling the current densities. Because of this competition,
the gap in time between when a density record is achieved in the lab and when a
disk is shipped with that density has closed considerably.

The personal computer created a market for small form factor (SFF) disk
drives, since the 14-inch disk drives used in mainframes were bigger than
the PC. In 2006, the 3.5-inch drive was the market leader, although the smaller
2.5-inch drive required for laptop computers was significant in sales volume. It
remains to be seen whether handheld devices such as iPODs or video cameras,
which require even smaller disks, will remain significant in sales volume. For
example, 1.8-inch drives were developed in the early 1990s for palmtop com-

puters, but that market chose Flash instead and 1.8-inch drives disappeared.
RAID

The SFF hard disks for PCs in the 1980s led a group at Berkeley to propose redun-
dant arrays of inexpensive disks (RAID). This group had worked on the reduced
instruction set computer effort and so expected much faster CPUs to become avail-
able. They asked: What could be done with the small disks that accompanied their
PCs? and What could be done in the area of I/O to keep up with much faster pro-
cessors? They argued to replace one mainframe drive with 50 small drives to gain

much greater performance from that many independent arms. The many small

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-87
drives even offered savings in power consumption and floor space. The downside
of many disks was much lower mean time to failure (MTTF). Hence, on their own
they reasoned out the advantages of redundant disks and rotating parity to address
how to get greater performance with many small drives yet have reliability as high
as that of a single mainframe disk.

The problem they experienced when explaining their ideas was that some
researchers had heard of disk arrays with some form of redundancy, and they didn’t
understand the Berkeley proposal. Hence, the first RAID paper [Patterson, Gibson,
and Katz 1987] is not only a case for arrays of SFF disk drives but also something
of a tutorial and classification of existing work on disk arrays. Mirroring (RAID 1)
had long been used in fault-tolerant computers such as those sold by Tandem.
Thinking Machines had arrays with 32 data disks and 7 check disks using ECC
for correction (RAID 2) in 1987, and Honeywell Bull had a RAID 2 product even
earlier. Also, disk arrays with a single parity disk had been used in scientific com-
puters in the same time frame (RAID 3). Their paper then described a single parity
disk with support for sector accesses (RAID 4) and rotated parity (RAID 5). Chen
et al. [1994] surveyed the original RAID ideas, commercial products, and more
recent developments.

Unknown to the Berkeley group, engineers at IBM working on the AS/400
computer also came up with rotated parity to give greater reliability for a collection
of large disks. IBM filed a patent on RAID 5 before the Berkeley group wrote their
paper. Patents for RAID 1, RAID 2, and RAID 3 from several companies predate
the IBM RAID 5 patent, which has led to plenty of courtroom action.

The Berkeley paper was written before the World Wide Web, but it captured
the imagination of many engineers, as copies were faxed around the world. One
engineer at what is now Seagate received seven copies of the paper from friends
and customers. EMC had been a supplier of DRAM boards for IBM computers, but
around 1988 new policies from IBM made it nearly impossible for EMC to con-
tinue to sell IBM memory boards. Apparently, the Berkeley paper also crossed the
desks of EMC executives, and they decided to go after the market dominated by
IBM disk storage products instead. As the paper advocated, their model was to use
many small drives to compete with mainframe drives, and EMC announced a
RAID product in 1990. It relied on mirroring (RAID 1) for reliability; RAID 5
products came much later for EMC. Over the next year, Micropolis offered a RAID
3 product, Compaq offered a RAID 4 product, and Data General, IBM, and NCR
offered RAID 5 products.

The RAID ideas soon spread to the rest of the workstation and server industry.
An article explaining RAID in Byte magazine (see Anderson [1990]) led to RAID
products being offered on desktop PCs, which was something of a surprise to the
Berkeley group. They had focused on performance with good availability, but
higher availability was attractive to the PC market.

Another surprise was the cost of the disk arrays. With redundant power sup-
plies and fans, the ability to “hot swap” a disk drive, the RAID hardware controller
itself, the redundant disks, and so on, the first disk arrays cost many times the cost

of the disks. Perhaps as a result, the “inexpensive” in RAID morphed into

M-88 ■ Appendix M Historical Perspectives and References
“independent.”Many marketing departments and technical writers today know of
RAID only as “redundant arrays of independent disks.”

The EMC transformation was successful; in 2006, EMC was the leading
supplier of storage systems, and NetApp was the leading supplier of Network-
Attached Storage systems. RAIDwas a $30 billion industry in 2006, and more than
80% of the non-PC drive sales were found in RAIDs. In recognition of their role, in
1999 Garth Gibson, Randy Katz, and David Patterson received the IEEE Reynold
B. Johnson Information Storage Award “for the development of Redundant Arrays

of Inexpensive Disks (RAID).”
I/O Buses and Controllers

The ubiquitous microprocessor inspired not only the personal computers of the
1970s but also the trend in the late 1980s and 1990s of moving controller functions
into I/O devices. I/O devices have continued this trend by moving controllers into
the devices themselves. These devices are called intelligent devices, and some bus
standards (e.g., SCSI) have been created specifically for them. Intelligent devices
can relax the timing constraints by handling many low-level tasks themselves and
queuing the results. For example, many SCSI-compatible disk drives include a
track buffer on the disk itself, supporting read ahead and connect/disconnect. Thus,
on a SCSI string some disks can be seeking and others loading their track buffer
while one is transferring data from its buffer over the SCSI bus. The controller in
the original RAMAC, built from vacuum tubes, only needed to move the head over
the desired track, wait for the data to pass under the head, and transfer data with
calculated parity. SCSI, which stands for small computer systems interface, is an
example of one company inventing a bus and generously encouraging other com-
panies to build devices that would plug into it. Shugart created this bus, originally
called SASI. It was later standardized by the IEEE.

There have been several candidates to be the successor to SCSI, with the cur-
rent leading contender being Fibre Channel Arbitrated Loop (FC-AL). The SCSI
committee continues to increase the clock rate of the bus, giving this standard a
new life, and SCSI is lasting much longer than some of its proposed successors.
With the creation of serial interfaces for SCSI (“Serial Attach SCSI”) and ATA
(“Serial ATA”), they may have very long lives.

Perhaps the first multivendor bus was the PDP-11 Unibus in 1970 from DEC.
Alas, this open-door policy on buses is in contrast to companies with proprietary
buses using patented interfaces, thereby preventing competition from plug-
compatible vendors. Making a bus proprietary also raises costs and lowers the
number of available I/O devices that plug into it, since such devices must have
an interface designed just for that bus. The PCI bus pushed by Intel represented
a return to open, standard I/O buses inside computers. Its immediate successor
is PCI-X, with Infiniband under development in 2000. Both were standardized

by multicompany trade associations.

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-89
The machines of the RAMAC era gave us I/O interrupts as well as storage
devices. The first machine to extend interrupts from detecting arithmetic abnor-
malities to detecting asynchronous I/O events is credited as the NBS DYSEAC in
1954 [Leiner and Alexander 1954]. The following year, the first machine with
DMA was operational, the IBM SAGE. Just as today’s DMA has, the SAGE
had address counters that performed block transfers in parallel with CPU
operations.

The early IBM 360s pioneered many of the ideas that we use in I/O systems
today. The 360 was the first commercial machine to make heavy use of DMA,
and it introduced the notion of I/O programs that could be interpreted by the device.
Chaining of I/O programs was an important feature. The concept of channels intro-
duced in the 360 corresponds to the I/O bus of today.

Myer and Sutherland [1968] wrote a classic paper on the trade-off of complex-
ity and performance in I/O controllers. Borrowing the religious concept of the
“wheel of reincarnation,” they eventually noticed they were caught in a loop
of continuously increasing the power of an I/O processor until it needed its own
simpler coprocessor. Their quote in Appendix D captures their cautionary tale.

The IBM mainframe I/O channels, with their I/O processors, can be thought of
as an inspiration for Infiniband, with their processors on their Host Channel
Adaptor cards.

References

Anderson, D. [2003]. “You don’t know jack about disks,” Queue 1:4 (June),
20–30.

Anderson, D., J. Dykes, and E. Riedel [2003]. “SCSI vs. ATA—more than an
interface,” Proc. 2nd USENIX Conf. on File and Storage Technology (FAST
’03), March 31–April 2, 2003, San Francisco.

Anderson, M. H. [1990]. “Strength (and safety) in numbers (RAID, disk storage
technology),” Byte 15:13 (December), 337–339.

Anon. et al. [1985]. A Measure of Transaction Processing Power, Tandem Tech.
Rep. TR 85.2. Also appeared in Datamation, 31:7 (April), 112–118.

Bashe, C. J., W. Buchholz, G. V. Hawkins, J. L. Ingram, and N. Rochester [1981].
“The architecture of IBM’s early computers,” IBM J. Research and Develop-
ment 25:5 (September), 363–375.

Bashe, C. J., L. R. Johnson, J. H. Palmer, and E. W. Pugh [1986]. IBM’s Early
Computers, MIT Press, Cambridge, Mass.

Blaum, M., J. Brady, J. Bruck, and J. Menon [1994]. “EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectures,” Proc. 21st
Annual Int’l. Symposium on Computer Architecture (ISCA), April 18–21,
1994, Chicago, 245–254.

Blaum, M., J. Brady, J. Bruck, and J. Menon [1995]. “EVENODD: An optimal
scheme for tolerating double disk failures in RAID architectures,” IEEE Trans.

on Computers 44:2 (February), 192–202.

M-90 ■ Appendix M Historical Perspectives and References
Blaum, M., J. Brady, J., Bruck, J. Menon, and A. Vardy [2001]. “The EVENODD
code and its generalization,” in H. Jin, T. Cortes, and R. Buyya, eds., High Per-
formance Mass Storage and Parallel I/O: Technologies and Applications, IEEE
& Wiley Press, New York, 187–208.

Blaum, M., J. Bruck, and A. Vardy [1996]. “MDS array codes with independent
parity symbols,” IEEE Trans. on Information Theory, IT-42 (March),
529–542.

Brady, J. T. [1986]. “A theory of productivity in the creative process,” IEEE
CG&A (May), 25–34.

Brown, A., and D. A. Patterson [2000]. “Towards maintainability, availability, and
growth benchmarks: A case study of software RAID systems.” Proc. 2000 USE-
NIX Annual Technical Conf., June 18–23, San Diego, Calif.

Bucher, I. V., and A. H. Hayes [1980]. “I/O performance measurement on Cray-1
and CDC 7000 computers,” Proc. Computer Performance Evaluation Users
Group, 16th Meeting, October 20–23, 1980, Orlando, Fl., 245–254.

Chen, P. M., G. A. Gibson, R. H. Katz, and D. A. Patterson [1990]. “An evaluation
of redundant arrays of inexpensive disks using an Amdahl 5890,” Proc. ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, May
22–25, 1990, Boulder, Colo.

Chen, P. M., and E. K. Lee [1995]. “Striping in a RAID level 5 disk array,” Proc.
ACM SIGMETRICS Conf. on Measurement and Modeling of Computer
Systems, May 15–19, 1995, Ottawa, Canada, 136–145.

Chen, P. M., E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson [1994].
“RAID: High-performance, reliable secondary storage,” ACM Computing Sur-
veys 26:2 (June), 145–188.

Corbett, P., B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar
[2004]. “Row-diagonal parity for double disk failure correction,” Proc. 3rd
USENIX Conf. on File and Storage Technology (FAST ’04), March 31–April
2, 2004, San Francisco.

Denehy, T. E., J. Bent, F. I. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau [2004]. “Deconstructing storage arrays,” Proc. 11th Int’l. Conf. on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), October 7–13, 2004, Boston, Mass., 59–71.

Doherty, W. J., and R. P. Kelisky [1979]. “Managing VM/CMS systems for user
effectiveness,” IBM Systems J. 18:1, 143–166.

Douceur, J. R., and W. J. Bolosky [1999]. “A large scale study of file-system con-
tents,” Proc. ACM SIGMETRICS Conf. on Measurement and Modeling of Com-
puter Systems, May 1–9, 1999, Atlanta, Ga., 59–69.

Enriquez, P. [2001]. “What happened to my dial tone? A study of FCC service
disruption reports,” poster, Richard Tapia Symposium on the Celebration of
Diversity in Computing, October 18–20, 2001, Houston, Tex.

Friesenborg, S. E., and R. J. Wicks [1985]. DASD Expectations: The 3380, 3380-
23, and MVS/XA, Tech. Bulletin GG22-9363-02, IBM Washington Systems

Center, Gaithersburg, Md.

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-91
Gibson, G. A. [1992]. Redundant Disk Arrays: Reliable, Parallel Secondary Stor-
age, ACM Distinguished Dissertation Series, MIT Press, Cambridge, Mass.

Goldstein, S. [1987]. Storage Performance—An Eight Year Outlook, Tech. Rep.
TR 03.308-1, IBM Santa Teresa Laboratory, San Jose, Calif.

Gray, J. [1990]. “A census of Tandem system availability between 1985 and
1990,” IEEE Trans. on Reliability, 39:4 (October), 409–418.

Gray, J. (ed.) [1993]. The Benchmark Handbook for Database and Transaction
Processing Systems, 2nd ed., Morgan Kaufmann, San Francisco.

Gray, J., and A. Reuter [1993]. Transaction Processing: Concepts and Tech-
niques, Morgan Kaufmann, San Francisco.

Gray, J., and D. P. Siewiorek [1991]. “High-availability computer systems.” Com-
puter 24:9 (September), 39–48.

Gray, J., and C. van Ingen [2005]. Empirical Measurements of Disk Failure Rates
and Error Rates,” MSR-TR-2005-166, Microsoft Research, Redmond, Wash.

Gurumurthi, S., A. Sivasubramaniam, and V. Natarajan [2005]. Disk Drive Road-
map from the Thermal Perspective: A Case for Dynamic Thermal Management,
Proceedings of the International Symposium on Computer Architecture (ISCA),
June, 38–49.

Henly, M., and B. McNutt [1989]. DASD I/O Characteristics: A Comparison of
MVS to VM, Tech. Rep. TR 02.1550, IBM General Products Division, San
Jose, Calif.

Hewlett-Packard. [1998]. “HP’s ‘5NINES:5MINUTES’ vision extends leadership
and re-defines high availability in mission-critical environments,” February 10,
www.future.enterprisecomputing.hp.com/ia64/news/5nines_vision_pr.html.

Hoagland, A. S. [1963]. Digital Magnetic Recording, Wiley, New York.
Hospodor, A. D., and A. S. Hoagland [1993]. “The changing nature of disk con-

trollers.” Proc. IEEE 81:4 (April), 586–594.
IBM. [1982]. The Economic Value of Rapid Response Time, GE20-0752-0, IBM,

White Plains, N.Y., 11–82.
Imprimis. [1989]. Imprimis Product Specification, 97209 Sabre Disk Drive IPI-2

Interface 1.2 GB, Document No. 64402302, Imprimis, Dallas, Tex.
Jain, R. [1991]. The Art of Computer Systems Performance Analysis: Techniques for

ExperimentalDesign,Measurement, Simulation, andModeling,Wiley,NewYork.
Katz, R. H., D. A. Patterson, and G. A. Gibson [1989]. “Disk system architectures

for high performance computing,” Proc. IEEE 77:12 (December), 1842–1858.
Kim, M. Y. [1986]. “Synchronized disk interleaving,” IEEE Trans. on Computers

C-35:11 (November), 978–988.
Kuhn, D. R. [1997]. “Sources of failure in the public switched telephone network,”

IEEE Computer 30:4 (April), 31–36.
Lambright, D. [2000]. “Experiences in measuring the reliability of a cache-based

storage system,” Proc. of First Workshop on Industrial Experiences with Sys-
tems Software (WIESS 2000), Co-Located with the 4th Symposium on Operating
Systems Design and Implementation (OSDI), October 22, 2000, San

Diego, Calif.

M-92 ■ Appendix M Historical Perspectives and References
Laprie, J.-C. [1985]. “Dependable computing and fault tolerance: Concepts and
terminology,” Proc. 15th Annual Int’l. Symposium on Fault-Tolerant Comput-
ing, June 19–21, 1985, Ann Arbor, Mich., 2–11.

Lazowska, E. D., J. Zahorjan, G. S. Graham, and K. C. Sevcik [1984].Quantitative
System Performance: Computer System Analysis Using Queueing Network
Models, Prentice Hall, Englewood Cliffs, N.J. (Although out of print, it is avail-
able online at www.cs.washington.edu/homes/lazowska/qsp/.)

Leiner, A. L. [1954]. “System specifications for the DYSEAC,” J. ACM 1:2
(April), 57–81.

Leiner, A. L., and S. N. Alexander [1954]. “System organization of the DYSEAC,”
IRE Trans. of Electronic Computers EC-3:1 (March), 1–10.

Maberly, N. C. [1966]. Mastering Speed Reading, New American Library,
New York.

Major, J. B. [1989]. “Are queuing models within the grasp of the unwashed?”
Proc. Int’l. Conf. on Management and Performance Evaluation of Computer
Systems, December 11–15, 1989, Reno, Nev., 831–839.

Mueller, M., L. C. Alves, W. Fischer, M. L. Fair, and I. Modi [1999]. “RAS strat-
egy for IBM S/390 G5 and G6,” IBM J. Research and Development, 43:5–6
(September–November), 875–888.

Murphy, B., and T. Gent [1995]. “Measuring system and software reliability using
an automated data collection process,” Quality and Reliability Engineering
International, 11:5 (September–October), 341–353.

Myer, T. H., and I. E. Sutherland [1968]. “On the design of display processors,”
Communications of the ACM, 11:6 (June), 410–414.

National Storage Industry Consortium. [1998]. “Tape Roadmap,” www.nsic.org.
Nelson, V. P. [1990]. “Fault-tolerant computing: Fundamental concepts,” Com-

puter 23:7 (July), 19–25.
Nyberg, C. R., T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet [1994]. “Alpha-

Sort: A RISC machine sort,” Proc. ACM SIGMOD, May 24–27, 1994,
Minneapolis, Minn.

Okada, S., S. Okada, Y. Matsuda, T. Yamada, and A. Kobayashi [1999].
“System on a chip for digital still camera,” IEEE Trans. on Consumer Electron-
ics 45:3 (August), 584–590.

Patterson, D. A., G. A. Gibson, and R. H. Katz [1987]. A Case for Redundant
Arrays of Inexpensive Disks (RAID), Tech. Rep. UCB/CSD 87/391, University
of California, Berkeley. Also appeared in Proc. ACM SIGMOD, June 1–3, 1988,
Chicago, 109–116.

Pavan, P., R. Bez, P. Olivo, and E. Zanoni [1997]. “Flash memory cells—an over-
view,” Proc. IEEE 85:8 (August), 1248–1271.

Robinson, B., and L. Blount [1986]. The VM/HPO 3880-23 Performance Results,
IBM Tech. Bulletin GG66-0247-00, IBM Washington Systems Center,
Gaithersburg, Md.

Salem, K., and H. Garcia-Molina [1986]. “Disk striping,” Proc. 2nd Int’l. IEEE

Conf. on Data Engineering, February 5–7, 1986, Washington, D.C., 249–259.

M.10 The History of Magnetic Storage, RAID, and I/O Buses ■ M-93
Scranton, R. A., D. A. Thompson, and D. W. Hunter [1983]. The Access Time
Myth, Tech. Rep. RC 10197 (45223), IBM, Yorktown Heights, N.Y.

Seagate. [2000]. Seagate Cheetah 73 Family: ST173404LW/LWV/LC/LCV Prod-
uct Manual, Vol. 1, Seagate, Scotts Valley, Calif. (www.seagate.com/support/
disc/manuals/scsi/29478b.pdf).

Smotherman, M. [1989]. “A sequencing-based taxonomy of I/O systems and
review of historical machines,” Computer Architecture News 17:5 (September),
5–15. Reprinted in Computer Architecture Readings, M. D. Hill, N. P. Jouppi,
and G. S. Sohi, eds., Morgan Kaufmann, San Francisco, 1999, 451–461.

Talagala, N. [2000]. “Characterizing Large Storage Systems: Error Behavior and
Performance Benchmarks,” Ph.D. dissertation, Computer Science Division,
University of California, Berkeley.

Talagala, N., and D. Patterson [1999]. An Analysis of Error Behavior in a Large
Storage System, Tech. Report UCB//CSD-99-1042, Computer Science Divi-
sion, University of California, Berkeley.

Talagala, N., R. Arpaci-Dusseau, and D. Patterson [2000]. Micro-Benchmark
Based Extraction of Local and Global Disk Characteristics, CSD-99-1063,
Computer Science Division, University of California, Berkeley.

Talagala, N., S. Asami, D. Patterson, R. Futernick, and D. Hart [2000]. “The art of
massive storage: A case study of a Web image archive,” IEEE Computer
(November), 22–28.

Thadhani, A. J. [1981]. “Interactive user productivity,” IBM Systems J. 20:4, 407–
423.

