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important application in the areas of file storage and distributed systems. Concepts from 
information theory as they relate to the goals and evaluation of data compression 
methods are discussed briefly. A framework for evaluation and comparison of methods is 
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INTRODUCTION 

Data compression is often referred to as 
coding, where coding is a general term en- 
compassing any special representation of 
data that satisfies a given need. Informa- 
tion theory is defined as the study of 
efficient coding and its consequences in 
the form of speed of transmission and 
probability of error [ Ingels 19711. Data com- 
pression may be viewed as a branch of 
information theory in which the primary 
objective is to minimize the amount of data 
to be transmitted. The purpose of this pa- 
per is to present and analyze a variety of 
data compression algorithms. 

A simple characterization of data 
compression is that it involves transform- 
ing a string of characters in some represen- 
tation (such as ASCII) into a new string 
(e.g., of bits) that contains the same infor- 

mation but whose length is as small as 
possible. Data compression has important 
application in the areas of data transmis- 
sion and data storage. Many data process- 
ing applications require storage of large 
volumes of data, and the number of such 
applications is constantly increasing as the 
use of computers extends to new disci- 
plines. At the same time, the proliferation 
of computer communication networks is 
resulting in massive transfer of data over 
communication links. Compressing data to 
be stored or transmitted reduces storage 
and/or communication costs. When the 
amount of data to be transmitted is re- 
duced, the effect is that of increasing the 
capacity of the communication channel. 
Similarly, compressing a file to half of its 
original size is equivalent to doubling the 
capacity of the storage medium. It may then 
become feasible to store the data at a 
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CONTENTS been reported to reduce a file to anywhere 
from 12.1 to 73.5% of its original size [Wit- 
ten et al. 1987 1. Cormack reports that data 
compression programs based on Huffman 
coding (Section 3.2) reduced the size of a 
large student-record database by 42.1% 
when only some of the information was 
compressed. As a consequence of this size 
reduction, the number of disk operations 
required to load the database was reduced 
by 32.7% [Cormack 19851. Data com- 
pression routines developed with specific 
applications in mind have achieved com- 
pression factors as high as 98% [Severance 
19831. 

Although coding for purposes of data se- 
curity (cryptography) and codes that guar- 
antee a certain level of data integrity (error 
detection/correction) are topics worthy of 
attention, they do not fall under the 
umbrella of data compression. With the 
exception of a brief discussion of the sus- 
ceptibility to error of the methods surveyed 
(Section 7), a discrete noiseless channel is 
assumed. That is, we assume a system in 
which a sequence of symbols chosen from 
a finite alphabet can be transmitted from 
one point to another without the possibility 
of error. Of course, the coding schemes 
described here may be combined with data 
security or error-correcting codes. 
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higher, thus faster, level of the storage hi- 
erarchy and reduce the load on the input/ 
output channels of the computer system. 

Many of the methods discussed in this 
paper are implemented in production 
systems. The UNIX1 utilities compact 
and compress are based on methods dis- 
cussed in Sections 4 and 5, respectively 
[UNIX 19841. Popular file archival systems 
such as ARC and PKARC use techniques 
presented in Sections 3 and 5 [ARC 1986; 
PKARC 19871. The savings achieved by 
data compression can be dramatic; reduc- 
tion as high as 80% is not uncommon 
[Reghbati 19811. Typical values of com- 
pression provided by compact are text 
(38%), Pascal source (43%), C source 
(36%), and binary (19%). Compress gener- 
ally achieves better compression (50-60% 
for text such as source code and English) 
and takes less time to compute [UNIX 
19841. Arithmetic coding (Section 3.4) has 

1 UNIX is a trademark of AT&T Bell Laboratories. 

Much of the available literature on data 
compression approaches the topic from the 
point of view of data transmission. As noted 
earlier, data compression is of value in data 
storage as well. Although this discussion is 
framed in the terminology of data trans- 
mission, compression and decompression 
of data files are essentially the same tasks 
as sending and receiving data over a com- 
munication channel. The focus of this 
paper is on algorithms for data compres- 
sion; it does not deal with hardware aspects 
of data transmission. The reader is referred 
to Cappellini [1985] for a discussion of 
techniques with natural hardware imple- 
mentation. 

Background concepts in the form of ter- 
minology and a model for the study of data 
compression are provided in Section 1. Ap- 
plications of data compression are also dis- 
cussed in Section 1 to provide motivation 
for the material that follows. 
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Although the primary focus of this survey 
is data compression methods of general 
utility, Section 2 includes examples from 
the literature in which ingenuity applied to 
domain-specific problems has yielded inter- 
esting coding techniques. These techniques 
are referred to as semantic dependent since 
they are designed to exploit the context 
and semantics of the data to achieve re- 
dundancy reduction. Semantic-dependent 
techniques include the use of quadtrees, 
run-length encoding, or difference mapping 
for storage and transmission of image data 
[Gonzalez and Wintz 1977; Samet 19841. 

General-purpose techniques, which as- 
sume no knowledge of the information 
content of the data, are described in 
Sections 3-5. These descriptions are suffi- 
ciently detailed to provide an understand- 
ing of the techniques. The reader will need 
to consult the references for implementa- 
tion details. In most cases only worst-case 
analyses of the methods are feasible. To 
provide a more realistic picture of their 
effectiveness, empirical data are presented 
in Section 6. The susceptibility to error of 
the algorithms surveyed is discussed in Sec- 
tion 7, and possible directions for future 
research are considered in Section 8. 

1. FUNDAMENTAL CONCEPTS 

A brief introduction to information theory 
is provided in this section. The definitions 
and assumptions necessary to a compre- 
hensive discussion and evaluation of data 
compression methods are discussed. The 
following string of characters is used to 
illustrate the concepts defined: EXAMPLE 
= “au bbb cccc ddddd eeeeee fffffffgggggggg”. 

1.1 Definitions 

A code is a mapping of source messages 
(words from the source alphabet a) into 
codewords (words of the code alphabet 0). 
The source messages are the basic units 
into which the string to be represented is 
partitioned. These basic units may be single 
symbols from the source alphabet, or they 
may be strings of symbols. For string 
EXAMPLE, cy = (a, b, c, d, e, f, g, space). 
For purposes of explanation, /3 is taken to 

Source message Codeword 

a 000 
b 001 
ii 011 010 

7 100 101 
g 110 

space 111 

Figure 1. A block-block code for EXAMPLE. 

Source message Codeword 

;ib 0 1 
cccc 10 
ddddd 11 
eeeeee 100 
fffffff 101 
&%%Nmz! 110 
space 111 

Figure 2. A variable-variable code for EXAMPLE. 

be (0,l). Codes can be categorized as block- 
block, block-variable, variable-block, or 
variable-variable, where block-block in- 
dicates that the source messages and 
codewords are of fixed length and variable- 
variable codes map variable-length source 
messages into variable-length codewords. A 
block-block code for EXAMPLE is shown 
in Figure 1, and a variable-variable code is 
given in Figure 2. If the string EXAMPLE 
were coded using the Figure 1 code, the 
length of the coded message would be 120; 
using Figure 2 the length would be 30. 

The oldest and most widely used codes, 
ASCII and EBCDIC, are examples of 
block-block codes, mapping an alphabet of 
64 (or 256) single characters onto 6-bit (or 
8-bit) codewords. These are not discussed, 
since they do not provide compression. 
The codes featured in this survey are of 
the block-variable, variable-variable, and 
variable-block types. 

When source messages of variable length 
are allowed, the question of how a mes- 
sage ensemble (sequence of messages) is 
parsed into individual messages arises. 
Many of the algorithms described here are 
defined-word schemes. That is, the set of 
source messages is determined before the 
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invocation of the coding scheme. For 
example, in text file processing, each 
character may constitute a message, or 
messages may be defined to consist 
of alphanumeric and nonalphanumeric 
strings. In Pascal source code, each token 
may represent a message. All codes involv- 
ing fixed-length source messages are, by 
default, defined-word codes. In free-parse 
methods, the coding algorithm itself parses 
the ensemble into variable-length se- 
quences of symbols. Most of the known 
data compression methods are defined- 
word schemes; the free-parse model differs 
in a fundamental way from the classical 
coding paradigm. 

A code is distinct if each codeword is 
distinguishable from every other (i.e., the 
mapping from source messages to code- 
words is one to one). A distinct code is 
uniquely decodable if every codeword is 
identifiable when immersed in a sequence 
of codewords. Clearly, each of these fea- 
tures is desirable. The codes of Figures 1 
and 2 are both distinct, but the code of 
Figure 2 is not uniquely decodable. For 
example, the coded message 11 could be 
decoded as either “ddddd” or “bbbbbb”. A 
uniquely decodable code is a prefix code (or 
prefix-free code) if it has the prefix prop- 
erty, which requires that no codeword be a 
proper prefix of any other codeword. All 
uniquely decodable block-block and vari- 
able-block codes are prefix codes. The code 
with codewords (1, 100000, 00) is an ex- 
ample of a code that is uniquely decodable 
but that does not have the prefix property. 
Prefix codes are instantaneously decodable; 
that is, they have the desirable property 
that the coded message can be parsed into 
codewords without the need for lookahead. 
In order to decode a message encoded using 
the codeword set (1, 100000, 001, lookahead 
is required. For example, the first codeword 
of the message 1000000001 is 1, but this 
cannot be determined until the last (tenth) 
symbol of the message is read (if the string 
of zeros had been of odd length, the first 
codeword would have been 100000). 

A minimal prefix code is a prefix code 
such that, if x is a proper prefix of some 
codeword, then xu is either a codeword or 
a proper prefix of a codeword for each letter 
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u in ,B. The set of codewords (00, 01, 10) is 
an example of a prefix code that is not 
minimal. The fact that 1 is a proper prefix 
of the codeword 10 requires that 11 be 
either a codeword or a proper prefix of a 
codeword, and it is neither. Intuitively, the 
minimality constraint prevents the use of 
codewords that are longer than necessary. 
In the above example the codeword 10 could 
be replaced by the codeword 1, yielding a 
minimal prefix code with shorter code- 
words. The codes discussed in this paper 
are all minimal prefix codes. 

In this section a code has been defined 
to be a mapping from a source alphabet 
to a code alphabet; we now define related 
terms. The process of transforming a source 
ensemble into a coded message is coding or 
encoding. The encoded message may be re- 
ferred to as an encoding of the source en- 
semble. The algorithm that constructs the 
mapping and uses it to transform the source 
ensemble is called the encoder. The decoder 
performs the inverse operation, restoring 
the coded message to its original form. 

1.2 Classification of Methods 

Not only are data compression schemes 
categorized with respect to message and 
codeword lengths, but they are also classi- 
fied as either static or dynamic. A static 
method is one in which the mapping from 
the set of messages to the set of codewords 
is fixed before transmission begins, so that 
a given message is represented by the same 
codeword every time it appears in the mes- 
sage ensemble. The classic static defined- 
word scheme is Huffman coding [Huffman 
19521. In Huffman coding, the assignment 
of codewords to source messages is based 
on the probabilities with which the source 
messages appear in the message ensemble. 
Messages that appear frequently are rep- 
resented by short codewords; messages with 
smaller probabilities map to longer code- 
words. These probabilities are determined 
before transmission begins. A Huffman 
code for the ensemble EXAMPLE is given 
in Figure 3. If EXAMPLE were coded using 
this Huffman mapping, the length of the 
coded message would be 117. Static Huff- 
man coding is discussed in Section 3.2; 
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Source message Probability Codeword 

a 216 10 
b 3/6 0 

space l/6 11 

Figure 4. A dynamic Huffman code table for the 
prefix “an bbb” of message EXAMPLE. 

Source message Probability Codeword 

; 2140 3140 

i 4140 5/40 
e 6140 
f 7/40 
g a/40 

space 5140 

1001 
1000 
011 
010 
111 
110 
00 
101 

Figure 3. A Huffman code for the message EXAM- 
PLE (code length = 117). 

other static schemes are discussed in Sec- 
tions 2 and 3. 

A code is dynamic if the mapping from 
the set of messages to the set of codewords 
changes over time. For example, dynamic 
Huffman coding involves computing an ap- 
proximation to the probabilities of occur- 
rence “on the fly,” as the ensemble is being 
transmitted. The assignment of codewords 
to messages is based on the values of the 
relative frequencies of occurrence at each 
point in time. A message x may be repre- 
sented by a short codeword early in the 
transmission because it occurs frequently 
at the beginning of the ensemble, even 
though its probability of occurrence over 
the total ensemble is low. Later, when the 
more probable messages begin to occur with 
higher frequency, the short codeword will 
be mapped to one of the higher probability 
messages, and x will be mapped to a longer 
codeword. As an illustration, Figure 4 
presents a dynamic Huffman code table 
corresponding to the prefix “aa bbb ” of 
EXAMPLE. Although the frequency of 
space over the entire message is greater 
than that of b, at this point b has higher 
frequency and therefore is mapped to the 
shorter codeword. 

Dynamic codes are also referred to in the 
literature as adaptive, in that they adapt to 
changes in ensemble characteristics over 
time, The term adaptive is used for the 
remainder of this paper; the fact that these 
codes adapt to changing characteristics is 
the source of their appeal. Some adaptive 
methods adapt to changing patterns in the 
source [Welch 19841, whereas others ex- 
ploit locality of reference [Bentley et al. 
19861. Locality of reference is the tendency, 

common in a wide variety of text types, for 
a particular word to occur frequently for 
short periods of time and then fall into 
disuse for long periods. 

All of the adaptive methods are one-pass 
methods; only one scan of the ensemble is 
required. Static Huffman coding requires 
two passes: one pass to compute probabili- 
ties and determine the mapping, and a sec- 
ond pass for transmission. Thus, as long as 
the encoding and decoding times of an 
adaptive method are not substantially 
greater than those of a static method, the 
fact that an initial scan is not needed im- 
plies a speed improvement in the adaptive 
case. In addition, the mapping determined 
in ,the first pass of a static coding scheme 
must be transmitted by the encoder to the 
decoder. The mapping may preface each 
transmission (i.e., each file sent), or a single 
mapping may be agreed upon and used for 
multiple transmissions. In one-pass meth- 
ods the encoder defines and redefines the 
mapping dynamically during transmission. 
The decoder must define and redefine the 
mapping in sympathy, in essence “learn- 
ing” the mapping as codewords are re- 
ceived. Adaptive methods are discussed in 
Sections 4 and 5. 

An algorithm may also be a hybrid, 
neither completely static nor completely 
dynamic. In a simple hybrid scheme, sender 
and receiver maintain identical codebooks 
containing lz static codes. For each trans- 
mission, the sender must choose one of the 
k previously agreed upon codes and inform 
the receiver of the choice (by transmitting 
first the “name” or number of the chosen 
code). Hybrid methods are discussed fur- 
ther in Sections 2 and 3.2. 

1.3 A Data Compression Model 

In order to discuss the relative merits of 
data compression techniques, a framework 
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for comparison must be established. There 
are two dimensions along which each of 
the schemes discussed here may be mea- 
sured: algorithm complexity and amount of 
compression. When data compression is 
used in a data transmission application, the 
goal is speed. Speed of transmission de- 
pends on the number of bits sent, the time 
required for the encoder to generate the 
coded message, and the time required for 
the decoder to recover the original ensem- 
ble. In a data storage application, although 
the degree of compression is the primary 
concern, it is nonetheless necessary that 
the algorithm be efficient in order for the 
scheme to be practical. For a static scheme, 
there are three algorithms to analyze: the 
map construction algorithm, the encoding 
algorithm, and the decoding algorithm. For 
a dynamic scheme, there are just two algo- 
rithms: the encoding algorithm and the 
decoding algorithm. 

Several common measures of compres- 
sion have been suggested: redundancy 
[Shannon and Weaver 19491, average mes- 
sage length [Huffman 19521, and compres- 
sion ratio [Rubin 1976; Ruth and Kreutzer 
19721. These measures are defined below. 
Related to each of these measures are 
assumptions about the characteristics 
of the source. It is generally assumed in 
information theory that all statistical 
parameters of a message source are known 
with perfect accuracy [Gilbert 19711. The 
most common model is that of a discrete 
memoryless source; a source whose output 
is a sequence of letters (or messages), each 
letter being a selection from some fixed 
alphabet al, - - - , a,,. The letters are taken 
to be random, statistically independent se- 
lections from the alphabet, the selection 
being made according to some fixed prob- 
ability assignment p(al), . . ., p(a,) [Gal- 
lager 19681. Without loss of generality, the 
code alphabet is assumed to be (0, 1) 
throughout this paper. The modifications 
necessary for larger code alphabets are 
straightforward. 

We assume that any cost associated 
with the code letters is uniform. This is a 
reasonable assumption, although it omits 
applications like telegraphy where the 
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code symbols are of different durations. 
The assumption is also important, since 
the problem of constructing optimal 
codes over unequal code letter costs is 
a significantly different and more diffi- 
cult problem. Perl et al. [1975] and Varn 
[1971] have developed algorithms for min- 
imum-redundancy prefix coding in the case 
of arbitrary symbol cost and equal code- 
word probability. The assumption of equal 
probabilities mitigates the difficulty pre- 
sented by the variable symbol cost. For the 
more general unequal letter costs and un- 
equal probabilities model, Karp [1961] has 
proposed an integer linear programming 
approach. There have been several approx- 
imation algorithms proposed for this more 
difficult problem [Krause 1962; Cot 1977; 
Mehlhorn 19801. 

When data are compressed, the goal is 
to reduce redundancy, leaving only the 
informational content. The measure of 
information of a source message oi (in 
bits) is -log p(ai), where log denotes the 
base 2 logarithm and p(ai) denotes the 
probability of occurrence of the message 
oi.2 This definition has intuitive appeal; in 
the case in which p(ai) = 1, it is clear that 
ai is not at all informative since it had to 
occur. Similarly, the smaller the value of 
p(ai), the more unlikely ai is to appear, and 
hence the larger its information content. 
The reader is referred to Abramson [1963, 
pp. 6-131 for a longer, more elegant discus- 
sion of the legitimacy of this technical 
definition of the concept of information. 
The average information content over the 
source alphabet can be computed by 
weighting the information content of each 
source letter by its probability of occur- 
rence, yielding the expression xi”=1 
[-p(oi)log p(ai)]. This quantity is referred 
to as the entropy of a source letter or the 
entropy of the source and is denoted by H. 
Since the length of a codeword for message 
oi must be sufficient to carry the informa- 
tion content of oi, entropy imposes a lower 
bound on the number of bits required for 
the coded message. The total number of 

* Note that throughout this paper all logarithms are 
to the base 2. 
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bits must be at least as large as the product 
of H and the length of the source ensemble. 
Since the value of H is generally not an 
integer, variable-length codewords must be 
used if the lower bound is to be achieved. 
Given that message EXAMPLE is to be 
encoded one letter at a time, the entropy of 
its source can be calculated using the prob- 
abilities given in Figure 3: H = 2.894, so 
that the minimum number of bits con- 
tained in an encoding of EXAMPLE is 116. 
The Huffman code given in Section 1.2 does 
not quite achieve the theoretical minimum 
in this case. 

Both of these definitions of information 
content are due to Shannon [ 19491. A der- 
ivation of the concept of entropy as it re- 
lates to information theory is presented by 
Shannon [1949]. A simpler, more intuitive 
explanation of entropy is offered by Ash 
[1965]. 

The most common notion of a “good” 
code is one that is optimal in the sense of 
having minimum redundancy. Redundancy 
can be defined as c p(ai)Zi - 2 [-p(ai)log 
p(oi)], where li is the length of the codeword 
representing message oi. The expression 
z p(ai)Zi represents the lengths of the code- 
words weighted by their probabilities of 
occurrence, that is, the average codeword 
length. The expression z [-p(ai)log p(oi)] 
is entropy H. Thus, redundancy is a mea- 
sure of the difference between average 
codeword length and average information 
content. If a code has minimum average 
codeword length for a given discrete prob- 
ability distribution, it is said to be a mini- 
mum redundancy code. 

We define the term local redundancy to 
capture the notion of redundancy caused 
by local properties of a message ensemble, 
rather than its global characteristics. Al- 
though the model used for analyzing 
general-purpose coding techniques assumes 
a random distribution of the source mes- 
sages, this may not actually be the case. In 
particular applications the tendency for 
messages to cluster in predictable patterns 
may be known. The existence of predictable 
patterns may be exploited to minimize local 
redundancy. Examples of applications in 
which local redundancy is common and 

methods for dealing with local redundancy 
are discussed in Sections 2 and 6.2. 

Huffman uses average message length, 
2 p(ai)Zi, as a measure of the efficiency of 
a code. Clearly, the meaning of this term is 
the average length of a coded message. We 
use the term average codeword length to 
represent this quantity. Since redundancy 
is defined to be average codeword length 
minus entropy and entropy is constant 
for a given probability distribution, mini- 
mizing average codeword length minimizes 
redundancy. 

A code is asymptotically optimal if it 
has the property that for a given probability 
distribution, the ratio of average codeword 
length to entropy approaches 1 as entropy 
tends to infinity. That is, asymptotic opti- 
mality guarantees that average codeword 
length approaches the theoretical mini- 
mum (entropy represents information 
content, which imposes a lower bound on 
codeword length). 

The amount of compression yielded by a 
coding scheme can be measured by a 
compression ratio. Compression ratio has 
been defined in several ways. The defini- 
tion C = (average message length)/(average 
codeword length) captures the common 
meaning, which is a comparison of the 
length of the coded message to the length 
of the original ensemble [Cappellini 19851. 
If we think of the characters of the ensem- 
ble EXAMPLE as 6-bit ASCII characters, 
then the average message length is 6 bits. 
The Huffman code of Section 1.2 repre- 
sents EXAMPLE in 117 bits, or 2.9 bits 
per character. This yields a compression 
ratio of 612.9, representing compression by 
a factor of more than 2. Alternatively, we 
may say that Huffman encoding produces 
a file whose size is 49% of the original 
ASCII file, or that 49% compression has 
been achieved. 

A somewhat different definition of 
compression ratio by Rubin [1976], C = 
(S - 0 - OR)/S, includes the representa- 
tion of the code itself in the transmission 
cost. In this definition, S represents the 
length of the source ensemble, 0 the length 
of the output (coded message), and OR the 
size of the “output representation” (e.g., the 
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number of bits required for the encoder to 
transmit the code mapping to the decoder). 
The quantity OR constitutes a “charge* to 
an algorithm for transmission of informa- 
tion about the coding scheme. The inten- 
tion is to measure the total size of the 
transmission (or file to be stored). 

1.4 Motivation 

As discussed in the Introduction, data 
compression has wide application in terms 
of information storage, including represen- 
tation of the abstract data type string 
[Standish 19801 and file compression. 
Huffman coding is used for compression in 
several file archival systems [ARC 1986; 
PKARC 19871, as is Lempel-Ziv coding, 
one of the adaptive schemes to be discussed 
in Section 5. An adaptive Huffman coding 
technique is the basis for the compact com- 
mand of the UNIX operating system, and 
the UNIX compress utility employs the 
Lempel-Ziv approach [UNIX 19841. 

In the area of data transmission, Huff- 
man coding has been passed over for years 
in favor of block-block codes, notably 
ASCII. The advantage of Huffman coding 
is in the average number of bits per char- 
acter transmitted, which may be much 
smaller than the log n bits per character 
(where n is the source alphabet size) of a 
block-block system. The primary difficulty 
associated with variable-length codewords 
is that the rate at which bits are presented 
to the transmission channel will fluctuate, 
depending on the relative frequencies of the 
source messages. This fluctuation requires 
buffering between the source and the chan- 
nel. Advances in technology have both 
overcome this difficulty and contributed to 
the appeal of variable-length codes. Cur- 
rent data networks allocate communication 
resources to sources on the basis of need 
and provide buffering as part of the system. 
These systems require significant amounts 
of protocol, and fixed-length codes are quite 
inefficient for applications such as packet 
headers. In addition, communication costs 
are beginning to dominate storage and 
processing costs, so that variable-length 
coding schemes that reduce communication 
costs are attractive even if they are more 
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complex. For these reasons, one could ex- 
pect to see even greater use of variable- 
length coding in the future. 

It is interesting to note that the Huffman 
coding algorithm, originally developed for 
the efficient transmission of data, also has 
a wide variety of applications outside the 
sphere of data compression. These include 
construction of optimal search trees [Zim- 
merman 1959; Hu and Tucker 1971; Itai 
19761, list merging [Brent and Kung 19781, 
and generating optimal evaluation trees in 
the compilation of expressions [Parker 
19801. Additional applications involve 
search for jumps in a monotone function of 
a single variable, sources of pollution along 
a river, and leaks in a pipeline [Glassey and 
Karp 19761. The fact that this elegant com- 
binatorial algorithm has influenced so 
many diverse areas underscores its impor- 
tance. 

2. SEMANTIC-DEPENDENT METHODS 

Semantic-dependent data compression 
techniques are designed to respond to spe- 
cific types of local redundancy occurring in 
certain applications. One area in which 
data compression is of great importance 
is image representation and processing. 
There are two major reasons for this. The 
first is that digitized images contain a large 
amount of local redundancy. An image is 
usually captured in the form of an array of 
pixels, whereas methods that exploit the 
tendency for pixels of like color or intensity 
to cluster together may-be more efficient. 
The second reason for the abundance of 
research in this area is volume. Digital im- 
ages usually require a very large number of 
bits, and many uses of digital images in- 
volve large collections of images. 

One technique used for compression of 
image data is run-length encoding. In a 
common version of run-length encoding, 
the sequence of image elements along a 
scan line (row) x1, x2, . . . , xn is mapped 
into a sequence of pairs (cl, II), (cp, f$), . . . 
(ck, lh), where ci represents an intensity or 
color and li the length of the ith run (se- 
quence of pixels of equal intensity). For 
pictures such as weather maps, run-length 
encoding can save a significant number of 
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with database files. The method, which is 
part of IBM’s Information Management 
System (IMS), compresses individual rec- 
ords and is invoked each time a record is 
stored in the database tile; expansion is 
performed each time a record is retrieved. 
Since records may be retrieved in any order, 
context information used by the compres- 
sion routine is limited to a single record. In 
order for the routine to be applicable to any 
database, it must be able to adapt to the 
format of the record. The fact that database 
records are usually heterogeneous collec- 
tions of small fields indicates that the local 
properties of the data are more impor- 
tant than their global characteristics. The 
compression routine in IMS is a hybrid 
method that attacks this local redundancy 
by using different coding schemes for dif- 
ferent types of fields. The identified field 
types in IMS are letters of the alphabet, 
numeric digits, packed decimal digit pairs, 
blank, and other. When compression be- 
gins, a default code is used to encode the 
fust character of the record For each 
subsequent character, the type of the pre- 
vious character determines the code to 
be used. For example, if the record 
“01870bABCD bb LMN” were encoded with 
the letter code as default, the leading zero 
would be coded using the letter code; the 1, 
8, 7, 0 and the first blank (b) would be 
coded by the numeric code. The A would be 
coded by the blank code; B, C, D, and the 
next blank by the letter code; the next blank 
and the L by the blank code; and the M and 
N by the letter code. Clearly, each code 
must define a codeword for every character; 
the letter code would assign the shortest 
codewords to letters, the numeric code 
would favor the digits, and so on. In the 
system Cormack describes, the types of the 
characters are stored in the encode/decode 
data structures. When a character c is re- 
ceived, the decoder checks type(c) to detect 
which code table will be used in transmit- 
ting the next character. The compression 
algorithm might be more efficient if a spe- 
cial bit string were used to alert the receiver 
to a change in code table. Particularly 
if fields were reasonably long, decoding 
would be more rapid and the extra bits in 
the transmission would not be excessive. 

bits over the image element sequence [Gon- 
zalez and Wintz 19771. 

Another data compression technique 
specific to the area of image data is differ- 
ence mapping, in which the image is rep- 
resented as an array of differences in 
brightness (or color) between adjacent 
pixels rather than the brightness values 
themselves. Difference mapping was used 
to encode the pictures of Uranus transmit- 
ted by Voyager 2. The 8 bits per pixel 
needed to represent 256 brightness levels 
was reduced to an average of 3 bits per pixel 
when difference values were transmitted 
[Laeser et al. 19861. In spacecraft applica- 
tions, image fidelity is a major concern 
because of the effect of the distance from 
the spacecraft to Earth on transmission 
reliability. Difference mapping was com- 
bined with error-correcting codes to pro- 
vide both compression and data integrity 
in the Voyager 2 project. Another method 
that takes advantage of the tendency for 
images to contain large areas of constant 
intensity is the use of the quadtree data 
structure [Samet 19841. Additional exam- 
ples of coding techniques used in image 
processing can be found in Wilkins and 
Wintz [1971] and in Cappellini [1985]. 

Data compression is of interest in busi- 
ness data processing, because of both the 
cost savings it offers and the large volume 
of data manipulated in many business ap- 
plications. The types of local redundancy 
present in business data files include runs 
of zeros in numeric fields, sequences of 
blanks in alphanumeric fields, and fields 
that are present in some records and null 
in others. Run-length encoding can be used 
to compress sequences of zeros or blanks. 
Null suppression can be accomplished 
through the use of presence bits [Ruth and 
Kreutzer 19721. Another class of methods 
exploits cases in which only a limited set of 
attribute values exist. Dictionary substitu- 
tion entails replacing alphanumeric repre- 
sentations of information such as bank 
account type, insurance policy type, sex, 
and month by the few bits necessary to 
represent the limited number of possible 
attribute values [Reghbati 19811. 

Cormack [1985] describes a data 
compression system that is designed for use 
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Cormack reports that the performance of 
the IMS compression routines is very good; 
at least 50 sites are currently using the 
system. He cites a case of a database con- 
taining student records whose size was 
reduced by 42.1%, and as a side effect 
the number of disk operations required to 
load the database was reduced by 32.7% 
[ Cormack 19851. 

A variety of approaches to data compres- 
sion designed with text tiles in mind in- 
cludes use of a dictionary representing 
either all of the words in the file so that the 
file itself is coded as a list of pointers to the 
dictionary [Hahn 19741, or common words 
and word endings so that the file consists 
of pointers to the dictionary and encodings 
of the less common words [Tropper 19821. 
Hand selection of common phrases [Wag- 
ner 19731, programmed selection of prefixes 
and suffixes [Fraenkel et al. 19831, and 
programmed selection of common charac- 
ter pairs [Cortesi 1982; Snyderman and 
Hunt 19701 have also been investigated. 

This discussion of semantic-dependent 
data compression techniques represents a 
limited sample of a very large body of re- 
search. These methods and others of a like 
nature are interesting and of great value in 
their intended domains. Their obvious 
drawback lies in their limited utility. It 
should be noted, however, that much of the 
efficiency gained through the use of seman- 
tic-dependent techniques can be achieved 
through more general methods, albeit to a 
lesser degree. For example, the dictionary 
approaches can be implemented through 
either Huffman coding (Sections 3.2 and 4) 
or Lempel-Ziv codes (Section 5.1). Cor- 
mack’s database scheme is a special case of 
the codebook approach (Section 3.2), and 
run-length encoding is one of the effects of 
Lempel-Ziv codes. 

3. STATIC DEFINED-WORDS SCHEMES 

The classic defined-word scheme was 
developed over 30 years ago in Huff- 
man’s well-known paper on minimum- 
redundancy coding [ Huffman 19521. 
Huffman’s algorithm provided the first 
solution to the problem of constructing 
minimum-redundancy codes. Many people 
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believe that Huffman coding cannot be im- 
proved upon; that is, that it is guaranteed 
to achieve the best possible compression 
ratio. This is only true, however, under the 
constraints that each source message is 
mapped to a unique codeword and that the 
compressed text is the concatenation of the 
codewords for the source messages. An ear- 
lier algorithm, due independently to Shan- 
non and Fano [Shannon and Weaver 1949; 
Fano 19491, is not guaranteed to provide 
optimal codes but approaches optimal be- 
havior as the number of messages ap- 
proaches infinity. The Huffman algorithm 
is also of importance because it has pro- 
vided a foundation upon which other data 
compression techniques have been built 
and a benchmark to which they may be 
compared. We classify the codes generated 
by the Huffman and Shannon-Fan0 algo- 
rithms as variable-variable and note that 
they include block-variable codes as a spe- 
cial case, depending on how the source mes- 
sages are defined. Shannon-Fan0 coding is 
discussed in Section 3.1; Huffman coding 
in Section 3.2. 

In Section 3.3 codes that map the inte- 
gers onto binary codewords are discussed. 
Since any finite alphabet may be enumer- 
ated, this type of code has general-purpose 
utility. However, a more common use of 
these codes (called universal codes) is in 
conjunction with an adaptive scheme. This 
connection is discussed in Section 5.2. 

Arithmetic coding, presented in Sec- 
tion 3.4, takes a significantly different ap- 
proach to data compression from that of 
the other static methods. It does not con- 
struct a code, in the sense of a mapping 
from source messages to codewords. In- 
stead, arithmetic coding replaces the source 
ensemble by a code string that, unlike all 
the other codes discussed here, is not the 
concatenation of codewords corresponding 
to individual source messages. Arithmetic 
coding is capable of achieving compression 
results that are arbitrarily close to the en- 
tropy of the source. 

3.1 Shannon-Fan0 Coding 

The Shannon-Fan0 technique has as an 
advantage its simplicity. The code is con- 
structed as follows: The source messages ai 
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is the same as that achieved by the Huff- 
man code (see Figure 3). That the Shan- 
non-Fan0 algorithm is not guaranteed to 
produce an optimal code is demonstrated 
by the following set of probabilities: (.35, 
.17, .17, .16, .15,). The Shannon-Fan0 code 
for this distribution is compared with the 
Huffman code in Section 3.2. 

al 112 0 de” 1 

a3 118 110 .&.“l 

l/16 1110 step 1 

a6 l/32 11110 “ten 5 

aG l/32 11111 

Figure 5. A Shannon-Fan0 code. 

g a/40 00 step 2 

f 7/40 010 h-p3 

e 6140 011 step 1 

d 5140 100 Sal 6 

space 

c 

5140 101 .tep 1 

4140 110 .tsn R 

b 3140 1110 step 7 

a 2/40 1111 

Figure6. A Shannon-Fan0 code for EXAMPLE 
(code length = 117). 

and their probabilities p(ai) are listed in 
order of nonincreasing probability. This list 
is then divided in such a way as to form 
two groups of as nearly equal total proba- 
bilities as possible. Each message in the 
first group receives 0 as the first digit of its 
codeword; the messages in the second half 
have codewords beginning with 1. Each of 
these groups is then divided according to 
the same criterion, and additional code dig- 
its are appended. The process is continued 
until each subset contains only one mes- 
sage. Clearly, the Shannon-Fan0 algorithm 
yields a minimal prefix code. 

Figure 5 shows the application of the 
method to a particularly simple probability 
distribution. The length of each codeword 
is equal to -log p(ai). This is true as long 
as it is possible to divide the list into 
subgroups of exactly equal probability. 
When this is not possible, some code- 
words may be of length -logp(ai) + 1. The 
Shannon-Fan0 algorithm yields an average 
codeword length S that satisfies H 5 S 5 
H + 1. In Figure 6, the Shannon-Fan0 code 
for ensemble EXAMPLE is given. As is 
often the case, the average codeword length 

3.2 Static Huffman Coding 

Huffman’s algorithm, expressed graphi- 
cally, takes as input a list of nonnegative 
weights (wi, . . . , w,J and constructs a full 
binary tree3 whose leaves are labeled with 
the weights. When the Huffman algorithm 
is used to construct a code, the weights 
represent the probabilities associated with 
the source letters. Initially, there is a set of 
singleton trees, one for each weight in the 
list. At each step in the algorithm the trees 
corresponding to the two smallest weights, 
wi and wj, are merged into a new tree whose 
weight is wi + Wj and whose root has two 
children that are the subtrees represented 
by wi and Wj. The weights Wi and Wj are 
removed from the list, and wi + wj is in- 
serted into the list. This process continues 
until the weight list contains a single value. 
If, at any time, there is more than one way 
to choose a smallest pair of weights, any 
such pair may be chosen. In Huffman’s 
paper the process begins with a nonincreas- 
ing list of weights. This detail is not impor- 
tant to the correctness of the algorithm, 
but it does provide a more efficient imple- 
mentation [Huffman 19521. The Huffman 
algorithm is demonstrated in Figure 7. 

The Huffman algorithm determines the 
lengths of the codewords to be mapped to 
each of the source letters oi. There are 
many alternatives for specifying the actual 
digits; it is necessary only that the code 
have the prefix property. The usual assign- 
ment entails labeling the edge from each 
parent to its left child with the digit 0 and 
the edge to the right child with 1. The 
codeword for each source letter is the se- 
quence of labels along the path from the 
root to the leaf node representing that 
letter. The codewords for the source of 

3 A binary tree is full if every node has either zero or 
two children. 
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a1 .25 .25 .25 .33 A2 
az .20 .20 .22 .25 .33 :3’.” 
a3 .15 .18 .20 .22 .25 
a .12 .15 .18 .20 
as .lO .12 .15 JJ 

as .lO .lO 
a7 .08 0 

(a) 

(b) 

Figure 7. The Huffman process: (a) The list; (b) the 
tree. 

Figure 7, in order of decreasing probability, 
are (01, 11, 001, 100, 101, 0000, 0001). 
Clearly, this process yields a minimal prefix 
code. Further, the algorithm is guaranteed 
to produce an optimal (minimum redun- 
dancy) code [Huffman 19521. Gallager 
[1978] has proved an upper bound on the 
redundancy of a Huffman code of pn + 
log[(2 log e)/e] = p,, f 0.086, where pn is 
the probability of the least likely source 
message. In a recent paper, Capocelli et al. 
[1986] have provided new bounds that are 
tighter than those of Gallager for some 
probability distributions. Figure 8 shows a 
distribution for which the Huffman code is 
optimal while the Shannon-Fan0 code is 
not. 

In addition to the fact that there are 
many ways of forming codewords of appro- 
priate lengths, there are cases in which the 
Huffman algorithm does not uniquely 
determine these lengths owing to the 
arbitrary choice among equal minimum 
weights. As an example, codes with code- 
word lengths of (1,2, 3,4,41 and ]2,2, 2, 3, 
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S-F Huffman 

a1 0.35 00 1 

az 0.17 01 011 

a3 0.17 10 010 

a4 0.16 110 001 

a5 0.15 111 000 

Average codeword length 2.31 2.30 

Figure 8. Comparison of Shannon-Fan0 and Huff- 
man codes. 

3) both yield the same average codeword 
length for a source with probabilities (.4, -2, 
.2, -1, .l). Schwartz [1964] defines a varia- 
tion of the Huffman algorithm that per- 
forms “bottom merging”, that is, that 
orders a new parent node above existing 
nodes of the same weight and always 
merges the last two weights in the list. The 
code constructed is the Huffman code with 
minimum values of maximum codeword 
length (max( & 1) and total codeword length 
(c li). Schwartz and Kallick [1964] describe 
an implementation of Huffman’s algorithm 
with bottom merging. The Schwartz- 
Kallick algorithm and a later algorithm 
by Connell [ 19731 use Huffman’s procedure 
to determine the lengths of the codewords, 
and actual digits are assigned so that the 
code has the numerical sequence property; 
that is, codewords of equal length form a 
consecutive sequence of binary numbers. 
Shannon-Fan0 codes also have the numer- 
ical sequence property. This property can 
be exploited to achieve a compact represen- 
tation of the code and rapid encoding and 
decoding. 

Both the Huffman and the Shannon- 
Fano mappings can be generated in O(n) 
time, where n is the number of messages in 
the source ensemble (assuming that the 
weights have been presorted). Each of 
these algorithms maps a source message ai 
with probability p to a codeword of length 
1 (-log p I 1 I - log p + 1). Encoding and 
decoding times depend on the representa- 
tion of the mapping. If the mapping is 
stored as a binary tree, then decoding the 
codeword for ai involves following a path of 
length 1 in the tree. A table indexed by the 
source messages could be used for encoding; 
the code for ai would be stored in position 
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he or she is using. This requires only log k 
bits of overhead. Assuming that classes of 
transmission with relatively stable charac- 
teristics could be identified, this hybrid 
approach would greatly reduce the redun- 
dancy due to overhead without significantly 
increasing expected codeword length. In ad- 
dition, the cost of computing the mapping 
would be amortized over all files of a given 
class. That is, the mapping would be com- 
puted once on a statistically significant 
sample and then used on a great number of 
files for which the sample is representative. 
There is clearly a substantial risk associ- 
ated with assumptions about file character- 
istics, and great care would be necessary in 
choosing both the sample from which the 
mapping is to be derived and the categories 
into which to partition transmissions. An 
extreme example of the risk associated 
with the codebook approach is provided by 
Ernest V. Wright who wrote the novel 
Gadsby (1939) containing no occurrences of 
the letter E. Since E is the most commonly 
used letter in the English language, an en- 
coding based on a sample from Gadsby 
would be disastrous if used with “normal” 
examples of English text. Similarly, the 
“normal” encoding would provide poor 
compression of Gadsby. 

McIntyre and Pechura [1985] describe 
an experiment in which the codebook ap- 
proach is compared to static Huffman cod- 
ing. The sample used for comparison is a 
collection of 530 source programs in four 
languages. The codebook contains a Pascal 
code tree, a FORTRAN code tree, a 
COBOL code tree, a PL/I code tree, and an 
ALL code tree. The Pascal code tree is the 
result of applying the static Huffman al- 
gorithm to the combined character frequen- 
cies of all of the Pascal programs in the 
sample. The ALL code tree is based on the 
combined character frequencies for all of 
the programs. The experiment involves en- 
coding each of the programs using the five 
codes in the codebook and the static Huff- 
man algorithm. The data reported for each 
of the 530 programs consist of the size of 
the coded program for each of the five 
predetermined codes and the size of the 
coded program plus the size of the mapping 
(in table form) for the static Huffman 

i of the table and encoding time would be 
O(Z). Connell’s algorithm makes use of the 
index of the Huffman code, a representa- 
tion of the distribution of codeword lengths, 
to encode and decode in O(c) time, where c 
is the number of different codeword 
lengths. Tanaka [1987] presents an imple- 
mentation of Huffman coding based on 
finite-state machines that can be realized 
efficiently in either hardware or software. 

As noted earlier, the redundancy bound 
for Shannon-Fan0 codes is 1 and the bound 
for the Huffman method is p,, + 0.086, 
where p,, is the probability of the least likely 
source message (so p,, is less than or equal 
to 5, and generally much less). It is impor- 
tant to note that in defining redundancy to 
be average codeword length minus entropy, 
the cost of transmitting the code mapping 
computed by these algorithms is ignored. 
The overhead cost for any method in which 
the source alphabet has not been estab- 
lished before transmission includes n log n 
bits for sending the n source letters. For a 
Shannon-Fan0 code, a list of codewords 
ordered so as to correspond to the source 
letters could be transmitted. The additional 
time required is then c Zi, where the Zi are 
the lengths of the codewords. For Huffman 
coding, an encoding of the shape of the 
code tree might be transmitted. Since any 
full binary tree may be a legal Huffman 
code tree, encoding tree shape may require 
as many as log 4” = 2n bits. In most cases 
the message ensemble is very large, so that 
the number of bits of overhead is minute 
by comparison to the total length of the 
encoded transmission. However, it is im- 
prudent to ignore this cost. 

If a less-than-optimal code is acceptable, 
the overhead costs can be avoided through 
a prior agreement by sender and receiver 
as to the code mapping. Instead of a Huff- 
man code based on the characteristics of 
the current message ensemble, the code 
used could be based on statistics for a class 
of transmissions to which the current en- 
semble is assumed to belong. That is, both 
sender and receiver could have access to a 
codebook with k mappings in it: one for 
Pascal source, one for English text, and so 
on. The sender would then simply alert the 
receiver as to which of the common codes 
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method. In every case the code tree for the 
language class to which the program be- 
longs generates the most compact encoding. 
Although using the Huffman algorithm on 
the program itself yields an optimal map- 
ping, the overhead cost is greater than the 
added redundancy incurred by the less- 
than-optimal code. In many cases, the ALL 
code tree also generates a more compact 
encoding than the static Huffman algo- 
rithm. In the worst case an encoding con- 
structed from the codebook is only 6.6% 
larger than that constructed by the Huff- 
man algorithm. These results suggest that, 
for files of source code, the codebook ap- 
proach may be appropriate. 

Gilbert [1971] discusses the construction 
of Huffman codes based on inaccurate 
source probabilities. A simple solution to 
the problem of incomplete knowledge of the 
source is to avoid long codewords, thereby 
minimizing the error of badly underesti- 
mating the probability of a message. The 
problem becomes one of constructing the 
optimal binary tree subject to a height re- 
striction (see [Knuth 1971; Hu and Tan 
1972; Garey 19741). Another approach in- 
volves collecting statistics for several 
sources and then constructing a code based 
on some combined criterion. This approach 
could be applied to the problem of designing 
a single code for use with English, French, 
German, and so on, sources. To accomplish 
this, Huffman’s algorithm could be used to 
minimize either the average codeword 
length for the combined source probabili- 
ties or the average codeword length for 
English, subject to constraints on average 
codeword lengths for the other sources. 

3.3 Universal Codes and Representations of 
the Integers 

A code is universal if it maps source mes- 
sages to codewords so that the resulting 
average codeword length is bounded by 
clH + c2. That is, given an arbitrary 
source with nonzero entropy, a universal 
code achieves average codeword length that 
is at most a constant times the optimal 
possible for that source. The potential 
compression offered by a universal code 
clearly depends on the magnitudes of the 
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constants cl and c2. We recall the definition 
of an asymptotically optimal code as one 
for which average codeword length ap- 
proaches entropy and remark that a uni- 
versal code with cl = 1 is asymptotically 
optimal. 

An advantage of universal codes over 
Huffman codes is that it is not necessary 
to know the exact probabilities with which 
the source messages appear. Whereas Huff- 
man coding is not applicable unless the 
probabilities are known, with universal 
coding it is sufficient to know the probabil- 
ity distribution only to the extent that the 
source messages can be ranked in probabil- 
ity order. By mapping messages in order of 
decreasing probability to codewords in or- 
der of increasing length, universality can 
be achieved. Another advantage to univer- 
sal codes is that the codeword sets are fixed. 
It is not necessary to compute a codeword 
set based on the statistics of an ensemble; 
any universal codeword set will suffice as 
long as the source messages are ranked. 
The encoding and decoding processes are 
thus simplified. Although universal codes 
can be used instead of Huffman codes as 
general-purpose static schemes, the more 
common application is as an adjunct to a 
dynamic scheme. This type of application 
is demonstrated in Section 5. 

Since the ranking of source messages is 
the essential parameter in universal coding, 
we may think of a universal code as repre- 
senting an enumeration of the source 
messages or as representing the integers, 
which provide an enumeration. Elias [ 19751 
defines a sequence of universal coding 
schemes that maps the set of positive in- 
tegers onto the set of binary codewords. 

The first Elias code is one that is simple 
but not optimal. This code, y, maps an 
integer x onto the binary value of x prefaced 
by Llog x 1 zeros. The binary value of n is 
expressed in as few bits as possible and 
therefore begins with a 1, which serves to 
delimit the prefix. The result is an instan- 
taneously decodable code since the total 
length of a codeword is exactly one greater 
than twice the number of zeros in the 
prefix; therefore, as soon as the first 1 
of a codeword is encountered, its length 
is known. The code is not a minimum 
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Source Frequency Rank Codeword 
message 1 

2 
3 
4 
5 
6 
7 
8 

16 
17 
32 

1 
010 
011 
00100 
00101 
00110 
00111 
0001000 
000010000 
000010001 
00000100000 

Figure 9. Elias codes. 

redundancy code since the ratio of expected 
codeword length to entropy goes to 2 as 
entropy approaches infinity. The second 
code, 6, maps an integer x to a codeword 
consisting of r(Llog xl + 1) followed by 
the binary value of x with the leading 1 de- 
leted. The resulting codeword has length 
Llog XJ + 2Llog(l + Llog xJ)J + 1. This con- 
cept can be applied recursively to shorten 
the codeword lengths, but the benefits 
decrease rapidly. The code 6 is asymptoti- 
cally optimal since the limit of the ratio of 
expected codeword length to entropy is 1. 
Figure 9 lists the values of y and 6 for a 
sampling of the integers. Figure 10 shows 
an Elias code for string EXAMPLE. The 
number of bits transmitted using this map- 
ping would be 161, which does not compare 
well with the 117 bits transmitted by the 
Huffman code of Figure 3. Huffman coding 
is optimal under the static mapping model. 
Even an asymptotically optimal universal 
code cannot compare with static Huffman 
coding on a source for which the probabil- 
ities of the messages are known. 

A second sequence of universal coding 
schemes, based on the Fibonacci numbers, 
is defined by Apostolico and Fraenkel 
[1985]. Although the Fibonacci codes are 
not asymptotically optimal, they compare 
well to the Elias codes as long as the num- 
ber of source messages is not too large. 
Fibonacci codes have the additional attrib- 
ute of robustness, which manifests itself by 
the local containment of errors. This aspect 
of Fibonacci codes is discussed further in 
Section 7. 

The sequence of Fibonacci codes de- 
scribed by Apostolico and Fraenkel is based 

e 
d 
space 

s 
a 

a(1) = 1 
S(2) = 0100 
6(3) = 0101 
6(4) = 01100 
6(5) = 01101 
a(6) = 01110 
6(7) = 01111 
s(8) = 00100000 

Figure 10. An Elias code for EXAMPLE (code 
length = 161). 

on the Fibonacci numbers of order m 2 2, 
where the Fibonacci numbers of order 2 are 
the standard Fibonacci numbers: 1, 1, 2, 3, 
5,8,13,. . . . In general, the Fibonacci num- 
bers of order m are defined by the recur- 
rence: Fibonacci numbers F-,+1 through F,, 
are equal to 1; the kth number for iz L 1 is 
the sum of the preceding m numbers. We 
describe only the order-2 Fibonacci code; 
the extension to higher orders is straight- 
forward. 

Every nonnegative integer N has pre- 
cisely one binary representation of the form 
R(N) = Cf=o diFi (where di E (0, 11, k 5 N, 
and the Fi are the order-2 Fibonacci num- 
bers as defined above) such that there are 
no adjacent ones in the representation. The 
Fibonacci representations for a small 
sampling of the integers are shown in 
Figure 11, using the standard bit sequence 
from high order to low. The bottom row of 
the figure gives the values of the bit posi- 
tions. It is immediately obvious that this 
Fibonacci representation does not consti- 
tute a prefix code. The order-2 Fibonacci 
code for N is defined as F(N) = D 1, where 
D = d,,d,dz . -. dk (the di defined above). 
That is, the Fibonacci representation is 
reversed and 1 is appended. The Fibonacci 
code values for a small subset of the inte- 
gers are given in Figure 11. These binary 
codewords form a prefix code since every 
codeword now terminates in two consecu- 
tive ones, which cannot appear anywhere 
else in a codeword. 

Fraenkel and Klein [ 19851 prove that the 
Fibonacci code of order 2 is universal, with 
cl = 2 and c2 = 3. It is not asymptotically 
optimal since cl > 1. Fraenkel and Klein 
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N R(N) WV 

1 1 11 
2 10 011 
3 10 0 0011 
4 1 0 1 1011 
5 1 0 0 0 00011 
6 10 0 1 10011 
7 10 1 0 01011 
8 10 0 0 0 000011 

16 100100 0010011 
32 1010100 00101011 

21 13 8 5 3 2 1 

Figure 11. Fibonacci representations and Fibonacci 
codes. 

Source Frequency Rank 
message 

Codeword 

l? 8 1 F(1) = 11 
f 7 2 F(2) = 011 

s 6 5 3 4 F(3) F(4) = = 0011 1011 
space 5 5 F(5) = 00011 

; 4 3 6 7 F(6) F(7) = = 10011 01011 
a 2 8 F(8) = 000011 

Figure 12. A Fibonacci code for EXAMPLE (code 
length = 153). 

also show that Fibonacci codes of higher 
order compress better than the order-2 code 
if the source language is large enough 
(i.e., the number of distinct source mes- 
sages is large) and the probability distri- 
bution is nearly uniform. However, no 
Fibonacci code is asymptotically optimal. 
The Elias codeword 6 (N) is asymptotically 
shorter than any Fibonacci codeword for 
N, but the integers in a very large initial 
range have shorter Fibonacci codewords. 
For m = 2, for example, the transition point 
is N = 514,228 [Apostolico and Fraenkel 
19851. Thus, a Fibonacci code provides bet- 
ter compression than the Elias code until 
the size of the source language becomes 
very large. Figure 12 shows a Fibonacci 
code for string EXAMPLE. The number of 
bits transmitted using this mapping would 
be 153, which is an improvement over the 
Elias code of Figure 10, but still compares 
poorly with the Huffman code of Figure 3. 
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Source 
Probability 

Cumulative 
message probability Raze 

A .2 .2 w, 2) 
B .4 .6 1.2, .6) 
c .l .7 L.6, .7) 
D .2 .9 f.7, .9) 
# .l 1.0 [.9, 1.0) 

Figure 13. The arithmetic coding model. 

3.4 Arithmetic Coding 

The method of arithmetic coding was sug- 
gested by Elias and presented by Abramson 
[1963] in his text on information theory. 
Implementations of Elias’ technique were 
developed by Risssanen [1976], Pasco 
[1976], Rubin [1979], and, most recently, 
Witten et al. [ 19871. We present the con- 
cept of arithmetic coding first and follow 
with a discussion of implementation details 
and performance. 

In arithmetic coding a source ensemble 
is represented by an interval between 0 
and 1 on the real number line. Each symbol 
of the ensemble narrows this interval. 
As the interval becomes smaller, the num- 
ber of bits needed to specify it grows. 
Arithmetic coding assumes an explicit 
probabilistic model of the source. It 
is a defined-word scheme that uses the 
probabilities of the source messages to 
successively narrow the interval used to 
represent the ensemble. A high-probability 
message narrows the interval less than a 
low-probability message, so that high- 
probability messages contribute fewer bits 
to the coded message. The method begins 
with an unordered list of source messages 
and their probabilities. The number line is 
partitioned into subintervals on the basis 
of cumulative probabilities. 

A small example is used to illustrate the 
idea of arithmetic coding. Given source 
messages (A, B, C, D, #) with probabilities 
(.2, .4, .l, .2, .l], Figure 13 demonstrates the 
initial partitioning of the number line. The 
symbol A corresponds to the first 5 of the 
interval [0, 1); B the next g; D the subin- 
terval of size 5, which begins 70% of the 
way from the left endpoint to the right. 
When encoding begins, the source ensem- 
ble is represented by the entire interval 
10, 1). For the ensemble AADB#, the first 
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A reduces the interval to [0, .2) and the 
second A to [0, .04) (the first 2 of the 
previous interval). The D further narrows 
the interval to [.028, .036)(; of the previous 
size, beginning 70% of the distance from 
left to right). The B narrows the interval 
to [.0296, .0328), and the # yields a final 
interval of [.03248, .0328). The interval, or 
alternatively any number i within the in- 
terval, may now be used to represent the 
source ensemble. 

Two equations may be used to define the 
narrowing process described above: 

newleft = prevleft + msgleft * prevsize (1) 
newsize = prevsize * msgsize (2) 

Equation (1) states that the left endpoint 
of the new interval is calculated from the 
previous interval and the current source 
message. The left endpoint of the range 
associated with the current message speci- 
fies what percent of the previous interval 
to remove from the left in order to form the 
new interval. For D in the above example, 
the new left endpoint is moved over by 
.7 X .04 (70% of the size of the previous 
interval). Equation (2) computes the size of 
the new interval from the previous interval 
size and the probability of the current mes- 
sage (which is equivalent to the size of its 
associated range). Thus, the size of the 
interval determined by D is .04 x .2, and 
the right endpoint is .028 + .008 = .036 
(left endpoint + size). 

The size of the final subinterval deter- 
mines the number of bits needed to specify 
a number in that range. The number of bits 
needed to specify a subinterval of [0, 1) of 
size s is -log a. Since the size of the final 
subinterval is the product of the probabili- 
ties of the source messages in the ensemble 
(i.e., s = nZ1 p(source message i), where 
N is the length of the ensemble), we have 
-log s = - z Zi log p (source message i) = 
- xr==, p(aJlog p(oJ, where n is the number 
of unique source messages al, a2, . . . , a,. 
Thus, the number of bits generated by the 
arithmetic coding technique is exactly 
equal to entropy H. This demonstrates 
the fact that arithmetic coding achieves 
compression that is almost exactly that 
predicted by the entropy of the source. 

In order to recover the original ensemble, 
the decoder must know the model of the 
source used by the encoder (e.g., the source 
messages and associated ranges) and a sin- 
gle number within the interval determined 
by the encoder. Decoding consists of a se- 
ries of comparisons of the number i to the 
ranges representing the source messages. 
For this example, i might be .0325 (.03248, 
.0326, or .0327 would all do just as well). 
The decoder uses i to simulate the actions 
of the encoder. Since i lies between 0 and 
.2, the decoder deduces that the first letter 
was A (since the range [0, .2) corresponds 
to source message A). This narrows the 
interval to [0, .2). The decoder can now 
deduce that the next message will further 
narrow the interval in one of the following 
ways: to [0, .04) for A, to [.04, .12) for 23, to 
[.l2, .l4) for C, to [.14, .18) for D, or to 
[.18, .2) for #. Since i falls into the interval 
[0, .04), the decoder knows that the second 
message is again A. This process continues 
until the entire ensemble has been re- 
covered. 

Several difliculties become evident when 
implementation of arithmetic coding is 
attempted. The first is that the decoder 
needs some way of knowing when to stop. 
As evidence of this, the number 0 could 
represent any of the source ensembles A, 
AA, AAA, and so forth. Two solutions to 
this problem have been suggested. One is 
that the encoder transmit the size of the 
ensemble as part of the description of 
the model. Another is that a special symbol 
be included in the model for the purpose of 
signaling end of message. The # in the 
above example serves this purpose. The 
second alternative is preferable for several 
reasons. First, sending the size of the en- 
semble requires a two-pass process and 
precludes the use of arithmetic coding as 
part of a hybrid codebook scheme (see 
Sections 1.2 and 3.2). Second, adaptive 
methods of arithmetic coding are easily 
developed, and a first pass to determine 
ensemble size is inappropriate in an on- 
line adaptive scheme. 

A second issue left unresolved by the 
fundamental concept of arithmetic coding 
is that of incremental transmission and 
reception. It appears from the above 
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discussion that the encoding algorithm 
transmits nothing until the final interval is 
determined. However, this delay is not nec- 
essary. As the interval narrows, the leading 
bits of the left and right endpoints become 
the same. Any leading bits that are the 
same may be transmitted immediately, 
since they will not be affected by further 
narrowing. A third issue is that of precision. 
From the description of arithmetic coding 
it appears that the precision required grows 
without bound as the length of the ensem- 
ble grows. Witten et al. [1987] and Rubin 
[1979] address this issue. Fixed precision 
registers may be used as long as underflow 
and overflow are detected and managed. 
The degree of compression achieved by an 
implementation of arithmetic coding is not 
exactly H, as implied by the concept of 
arithmetic coding. Both the use of a mes- 
sage terminator and the use of fixed-length 
arithmetic reduce coding effectiveness. 
However, it is clear that an end-of-message 
symbol will not have a significant effect on 
a large source ensemble. Witten et al. 
[1987] approximate the overhead due to 
the use of fixed precision at lo-* bits per 
source message, which is also negligible. 

The arithmetic coding model for ensem- 
ble EXAMPLE is given in Figure 14. The 
final interval size is p(a)” X p(b)3 X p(c)” X 

pk05 X p(eY X p(f17 X p(g)’ X pbpd5. 
The number of bits needed to specify 
a value in the interval is -log(1.44 x 
10-35) = 115.7. So excluding overhead, ar- 
ithmethic coding transmits EXAMPLE in 
116 bits, one less bit than static Huffman 
coding. 

Witten et al. [1987] provide an imple- 
mentation of arithmetic coding, written in 
C, which separates the model of the source 
from the coding process (where the coding 
process is defined by eqs. (1) and (2)). The 
model is in a separate program module and 
is consulted by the encoder and the decoder 
at every step in the processing. The fact 
that the model can be separated so easily 
renders the classification static/adaptive 
irrelevant for this technique. Indeed, the 
fact that the coding method provides 
compression efficiency nearly equal to the 
entropy of the source under any model al- 
lows arithmetic coding to be coupled with 

ACM Computing Surveys, Vol. 19, No. 3, September 1987 

Source Cumulative 
message 

Probability probabi,ity Raw 

i 
.05 .05 PI .05) 
.075 .125 [.05, .125) 

Tl 
.l .225 [.125, .225) 
.125 .35 [.225, .35) 

; 

.15 .5 [.35, .5) 

.175 .675 [.5, .675) 
g .2 .a75 [.675, .875) 

space .125 1.0 [.875, 1.0) 

Figure 14. The arithmetic coding model of EXAM- 
PLE. 

any static or adaptive method for comput- 
ing the probabilities (or frequencies) of the 
source messages. Witten et al. [1987] im- 
plement an adaptive model similar to the 
techniques described in Section 4. The 
performance of this implementation is 
discussed in Section 6. 

4. ADAPTIVE HUFFMAN CODING 

Adaptive Huffman coding was first con- 
ceived independently by Faller [1973] and 
Gallager [ 19781. Knuth [ 19851 contributed 
improvements to the original algorithm, 
and the resulting algorithm is referred to 
as algorithm FGK. A more recent version 
of adaptive Huffman coding is described by 
Vitter [ 19871. All of these methods are 
defined-word schemes that determine the 
mapping from source messages to code- 
words on the basis of a running estimate of 
the source message probabilities. The code 
is adaptive, changing so as to remain opti- 
mal for the current estimates. In this way, 
the adaptive Huffman codes respond to 
locality. In essence, the encoder is “learn- 
ing” the characteristics of the source. The 
decoder must learn along with the encoder 
by continually updating the Huffman tree 
so as to stay in synchronization with the 
encoder. 

Another advantage of these systems is 
that they require only one pass over the 
data. Of course, one-pass methods are not 
very interesting if the number of bits they 
transmit is significantly greater than that 
of the two-pass scheme. Interestingly, the 
performance of these methods, in terms of 
number of bits transmitted, can be better 
than that of static Huffman coding. This 
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that is the new O-node. Again, the tree is 
recomputed. In this case, the code for the 
O-node is sent; in addition, the receiver 
must be told which of the n - k unused 
messages has appeared. In Figure 15, a sim- 
ple example is given. At each node a count 
of occurrences of the corresponding mes- 
sage is stored. Nodes are numbered indi- 
cating their position in the sibling property 
ordering. The updating of the tree can be 
done in a single traversal from the a,+, node 
to the root. This traversal must increment 
the count for the a,+l node and for each of 
its ancestors. Nodes may be exchanged to 
maintain the sibling property, but all of 
these exchanges involve a node on the path 
from a,+l to the root. Figure 16 shows the 
final code tree formed by this process on 
the ensemble EXAMPLE. 

Disregarding overhead, the number of 
bits transmitted by algorithm FGK for the 
EXAMPLE is 129. The static Huffman 
algorithm would transmit 117 bits in pro- 
cessing the same data. The overhead asso- 
ciated with the adaptive method is actually 
less than that of the static algorithm. In 
the adaptive case the only overhead is the 
n log n bits needed to represent each of the 
n different source messages when they ap- 
pear for the first time. (This is in fact 
conservative; instead of transmitting a 
unique code for each of the n source mes- 
pages, the sender could transmit the 
message’s position in the list of remaining 
messages and save a few bits in the average 
case.) In the static case, the source mes- 
sages need to be sent as does the shape of 
the code tree. As discussed in Section 3.2, 
an efficient representation of the tree shape 
requires 2n bits. Algorithm FGK com- 
pares well with static Huffman coding on 
this ensemble when overhead is taken 
into account. Figure 17 illustrates an 
example on which algorithm FGK per- 
forms better than static Huffman coding 
even without taking overhead into account. 
Algorithm FGK transmits 47 bits for this 
ensemble, whereas the static Huffman code 
requires 53. 

Vitter [1987] has proved that the total 
number of bits transmitted by algorithm 
FGK for a message ensemble of length t 
containing n distinct messages is bounded 

does not contradict the optimality of the 
static method, since the static method is 
optimal only over all methods that assume 
a time-invariant mapping. The perform- 
ance of the adaptive methods can also be 
worse than that of the static method. Upper 
bounds on the redundancy of these meth- 
ods are presented in this section. As dis- 
cussed in the Introduction, the adaptive 
method of Faller [1973], Gallager [1978], 
and Knuth [ 19851 is the basis for the UNIX 
utility compact. The performance of com- 
pact is quite good, providing typical 
compression factors of 30-40%. 

4.1 Algorithm FGK 

The basis for algorithm FGK is the sibling 
property, defined by Gallager [1978]: A 
binary code tree has the sibling property 
if each node (except the root) has a sibling 
and if the nodes can be listed in order of 
nonincreasing weight with each node adja- 
cent to its sibling. Gallager proves that a 
binary prefix code is a Huffman code if and 
only if the code tree has the sibling prop- 
erty. In algorithm FGK, both sender and 
receiver maintain dynamically changing 
Huffman code trees. The leaves of the 
code tree represent the source messages, 
and the weights of the leaves represent 
frequency counts for the messages. At any 
particular time, k of the n possible source 
messages have occurred in the message 
ensemble. 

Initially, the code tree consists of a single 
leaf node, called the O-node. The O-node is 
a special node used to represent the n - k 
unused messages. For each message trans- 
mitted, both parties must increment the 
corresponding weight and recompute the 
code tree to maintain the sibling property. 
At the point in time when t messages have 
been transmitted, k of them distinct, and 
k < n, the tree is a legal Huffman code 
tree with k + 1 leaves, one for each of 
the k messages and one for the O-node. If 
the (t + 1)st message is one of the k already 
seen, the algorithm transmits at+l’s current 
code, increments the appropriate counter, 
and recomputes the tree. If an unused mes- 
sage occurs, the O-node is split to create a 
pair of leaves, one for a,+l, and a sibling 
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space 
(b) 

space 

(4 

(4 

Figure 15. Algorithm FGK processing the ensemble EXAMPLE--(a) Tree 
after processing LLaa bb”; 11 will be transmitted for the next b. (b) After 
encoding the third b; 101 will be transmitted for the next spuce; the form of 
the tree will not change-only the frequency counts will be updated; 100 will 
be transmitted for the first c. (c) Tree after update following first c. 

below by S - n + 1, where S is the perform- 
ance of the static method, and bounded 
above by 2s + t - 4n + 2. So the perform- 
ance of algorithm FGK is never much worse 
than twice optimal. Knuth [1985] provides 
a complete implementation of algorithm 
FGK and a proof that the time required for 
each encoding or decoding operation is 
O(l), where 1 is the current length of the 
codeword. It should be noted that since the 
mapping is defined dynamically, (during 
transmission) the encoding and decoding 
algorithms stand alone; there is no addi- 
tional algorithm to determine the mapping 
as in static methods. 

4.2 Algorithm V 

The adaptive Huffman algorithm of Vitter 
(algorithm V) incorporates two improve- 
ments over algorithm FGK. First, the num- 
ber of interchanges in which a node is 
moved upward in the tree during a recom- 
putation is limited to one. This number is 
bounded in algorithm FGK only by l/2, 
where 1 is the length of the codeword for 
a,+l when the recomputation begins. Sec- 
ond, Vitter’s method minimizes the values 
of z li and max(li] subject to the require- 
ment of minimizing 2 wili. The intuitive 
explanation of algorithm V’s advantage 
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a 

Figure 17. Tree formed by algorithm 
FGK for ensemble “e eae de eabe eae dcf”. 

Figure 16. Tree formed by algorithm 
FGK for ensemble EXAMPLE. 

f 

over algorithm FGK is as follows: As in rately represent the symbol probabilities 
algorithm FGK, the code tree constructed over the entire message. Therefore, the fact 
by algorithm V is the Huffman code tree that algorithm V guarantees a tree of min- 
for the prefix of the ensemble seen so far. imum height (height = max(Zi)) and mini- 
The adaptive methods do not assume that mum external path length (Z li) implies 
the relative frequencies of a prefix accu- that it is better suited for coding the next 
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Figure 18. FGK tree with nonlevel order numbering. 

message of the ensemble, given that any of 
the leaves of the tree may represent that 
next message. 

These improvements are accomplished 
through the use of a new system for num- 
bering nodes. The numbering, called an 
implicit numbering, corresponds to a level 
ordering of the nodes (from bottom to top 
and left to right). Figure 18 illustrates that 
the numbering of algorithm FGK is not 
always a level ordering. The following in- 
variant is maintained in Vitter’s algorithm: 
For each weight w, all leaves of weight w 
precede (in the implicit numbering) all in- 
ternal nodes of weight w. Vitter [1987] 
proves that this invariant enforces the de- 
sired bound on node promotions. The in- 
variant also implements bottom merging, 
as discussed in Section 3.2, to minimize 
z li and max(Zi ). The difference between 
Vitter’s method and algorithm FGK is in 
the way the tree is updated between 
transmissions. In order to understand the 
revised update operation, the following 
definition of a block of nodes is necessary: 
Blocks are equivalence classes of nodes de- 
fined by u = v iff weight(u) = weight(v), 
and u and v are either both leaves or both 
internal nodes. The leader of a block is the 
highest numbered (in the implicit number- 
ing) node in the block. Blocks are ordered 

ACM Computing Surveys, Vol. 19, No. 3, September 1987 

1 

c 

Figure 19. Algorithm V processing the ensemble “UQ 
bbb c”. 

by increasing weight with the convention 
that a leaf block always precedes an inter- 
nal block of the same weight. When an 
exchange of nodes is required to maintain 
the sibling property, algorithm V requires 
that the node being promoted be moved to 
the position currently occupied by the high- 
est numbered node in the target block. 

In Figure 19, the Vitter tree correspond- 
ing to Figure 15~ is shown. This is the 
first point in EXAMPLE at which algo- 
rithm FGK and algorithm V differ signifi- 
cantly. At this point, the Vitter tree has 
height 3 and external path length 12, 
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c b 

whereas the FGK tree has height 4 and 
external path length 14. Algorithm V trans- 
mits codeword 001 for the second c; FGK 
transmits 1101. This demonstrates the in- 
tuition given earlier that algorithm V is 
better suited for coding the next message. 
The Vitter tree corresponding to Figure 16, 
representing the final tree produced in 
processing EXAMPLE, is only different 
from Figure 16 in that the internal node of 
weight 5 is to the right of both leaf nodes 
of weight 5. Algorithm V transmits 124 bits 
in processing EXAMPLE, as compared 
with the 129 bits of algorithm FGK and 
117 bits of static Huffman coding. It should 
be noted that these figures do not include 
overhead and, as a result, disadvantage the 
adaptive methods. 

Figure 20 illustrates the tree built by 
Vitter’s method for the ensemble of Fig- 
ure 17. Both C li and maxI& 1 are smaller in 
the tree of Figure 20. The number of bits 
transmitted during the processing of the 
sequence is 47, the same used by algorithm 
FGK. However, if the transmission contin- 
ues with d, b, c, f, or an unused letter, the 
cost of algorithm V will be less than that 
of algorithm FGK. This again illustrates 
the benefit of minimizing the external path 
length (C li) and the height (max(Zi)). 

It should be noted again that the strategy 
of minimizing external path length and 
height is optimal under the assumption 
that any source letter is equally likely to 
occur next. Other reasonable strategies in- 
clude one that assumes locality. To take 
advantage of locality, the ordering of tree 

e 

Figure 20. Tree formed by algorithm V for 
the ensemble of Figure 17. 

nodes with equal weights could be deter- 
mined on the basis of recency. Another 
reasonable assumption about adaptive cod- 
ing is that the weights in the current tree 
correspond closely to the probabilities as- 
sociated with the source. This assumption 
becomes more reasonable as the length of 
the ensemble increases. Under this assump- 
tion, the expected cost of transmitting the 
next letter is C pi& z x wili, SO that neither 
algorithm FGK nor algorithm V has any 
advantage. 

Vitter [1987] proves that the perform- 
ance of his algorithm is bounded by S - n 
+ 1 from below and S + t - 2n + 1 from 
above. At worst then, Vitter’s adaptive 
method may transmit one more bit per 
codeword than the static Huffman method. 
The improvements made by Vitter do not 
change the complexity of the algorithm; 
algorithm V encodes and decodes in 0 (1) 
time, as does algorithm FGK. 

5. OTHER ADAPTIVE METHODS 

Two more adaptive data compression 
methods, algorithm BSTW and Lempel- 
Ziv coding, are discussed in this section. 
Like the adaptive Huffman coding tech- 
niques, these methods do not require a first 
pass to analyze the characteristics of the 
source. Thus they provide coding and 
transmission in real time. However, these 
schemes diverge from the fundamental 
Huffman coding approach to a greater 
degree than the methods discussed in Sec- 
tion 4. Algorithm BSTW is a defined-word 
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scheme that attempts to exploit locality. 
Lempel-Ziv coding is a free-parse method; 
that is, the words of the source alphabet 
are defined dynamically as the encoding is 
performed. Lempel-Ziv coding is the basis 
for the UNIX utility compress. Algorithm 
BSTW is a variable-variable scheme, 
whereas Lempel-Ziv coding is variable- 
block. 

5.1 Lempel-Ziv Codes 

Lempel-Ziv coding represents a departure 
from the classic view of a code as a mapping 
from a fixed set of source messages (letters, 
symbols, or words) to a fixed set of code- 
words. We coin the term free-parse to char- 
acterize this type of code, in which the set 
of source messages and the codewords to 
which they are mapped are defined as the 
algorithm executes. Whereas all adaptive 
methods create a set of codewords dynam- 
ically, defined-word schemes have a fixed 
set of source messages, defined by context 
(e.g., in text file processing the source mes- 
sages might be single letters; in Pascal 
source file processing the source messages 
might be tokens). Lempel-Ziv coding de- 
fines the set of source messages as it parses 
the ensemble. 

The Lempel-Ziv algorithm consists of a 
rule for parsing strings of symbols from a 
finite alphabet into substrings or words 
whose lengths do not exceed a prescribed 
integer L, and a coding scheme that maps 
these substrings sequentially into uniquely 
decipherable codewords of fixed length Lz 
[Ziv and Lempel 19771. The strings are 
selected so that they have very nearly equal 
probability of occurrence. As a result, fre- 
quently occurring symbols are grouped 
into longer strings, whereas infrequent 
symbols appear in short strings. This strat- 
egy is effective at exploiting redundancy 
due to symbol frequency, character repeti- 
tion, and high-usage patterns. Figure 21 
shows a small Lempel-Ziv code table. Low- 
frequency letters such as Z are assigned 
individually to fixed-length codewords (in 
this case, 12-bit binary numbers repre- 
sented in base 10 for readability). 
Frequently occurring symbols, such as 
blank (represented by b) and zero, appear 
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Symbol string Code 

A 1 
T 2 
AN 3 
TH 4 
THE 5 
AND 6 
AD 7 
b 8 
bb 9 
bbb 10 
0 11 
00 12 
000 13 
0000 14 
Z 15 

### 4095 

Figure 21. A Lempel-Ziv code table. 

in long strings. Effective compression is 
achieved when a long string is replaced by 
a single 12-bit code. 

The Lempel-Ziv method is an incremen- 
tal parsing strategy in which the coding 
process is interlaced with a learning process 
for varying source characteristics [Ziv and 
Lempel19771. In Figure 21, run-length en- 
coding of zeros and blanks is being learned. 

The Lempel-Ziv algorithm parses the 
source ensemble into a collection of seg- 
ments of gradually increasing length. At 
each encoding step, the longest prefix of 
the remaining source ensemble that 
matches an existing table entry ((Y) is 
parsed off, along with the character (c) 
following this prefix in the ensemble. The 
new source message, (YC, is added to the 
code table. The new table entry is coded as 
(i, c), where i is the codeword for the exist- 
ing table entry and c is the appended 
character. For example, the ensemble 
010100010 is parsed into (0, 1, 01, 00, 010) 
and is coded as ((0, 0), (0, l), (1, l), (1, 0), 
(3, 0)). The table built for the message 
ensemble EXAMPLE is shown in Fig- 
ure 22. The coded ensemble has the form 
((0, a), (1, space), (0, b), (3, b), to, space), 
(0, 4, (6, 4, (6, space), (0, d), (9, d), 
(10, w=e), to, 4, (12, 4, (13, 4, (5, f), 
(0, f), (1% f), (17, f), (0, g), (1% g), (20, g), 
(20)). The string table is represented in a 
more efficient manner than in Figure 21; 
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good performance briefly, and fail to make 
any gains once the table is full and mes- 
sages can no longer be added. If the ensem- 
ble’s characteristics vary over time, the 
method may be “stuck with” the behavior 
it has learned and may be unable to con- 
tinue to adapt. 

Lempel-Ziv coding is asymptotically 
optimal, meaning that the redundancy ap- 
proaches zero as the length of the source 
ensemble tends to infinity. However, for 
particular finite sequences, the compres- 
sion achieved may be far from optimal 
[Storer and Szymanski 19821. When the 
method begins, each source symbol is coded 
individually. In the case of 6- or B-bit source 
symbols and 12-bit codewords, the method 
yields as much as 50% expansion during 
initial encoding. This initial inefficiency 
can be mitigated somewhat by initializing 
the string table to contain all of the source 
characters. Implementation issues are par- 
ticularly important in Lempel-Ziv meth- 
ods. A straightforward implementation 
takes O(n*) time to process a string of n 
symbols; for each encoding operation, the 
existing table must be scanned for the long- 
est message occurring as a prefix of the 
remaining ensemble. Rodeh et al. [1981] 
address the issue of computational com- 
plexity by defining a linear implementation 
of Lempel-Ziv coding based on suffix trees. 
The Rodeh et al. scheme is asymptotically 
optimal, but an input must be very long in 
order to allow efficient compression, and 
the memory requirements of the scheme 
are large, O(n) where n is the length of the 
source ensemble. It should also be men- 
tioned that the method of Rodeh et al. 
constructs a variable-variable code; the 
pair (i, c) is coded using a representation 
of the integers, such as the Elias codes, for 
i and for c (a letter c can always be coded 
as the kth member of the source alphabet 
for some k). 

The other major implementation consid- 
eration involves the way in which the string 
table is stored and accessed. Welch [1984] 
suggests that the table be indexed by the 
codewords (integers 1 . . . 2L, where L is the 
maximum codeword length) and that the 
table entries be fixed-length, (codeword- 
extension) character pairs. Hashing is 

Message 

a 
lspace 
b 
3b 
space 

C 

6c 

d- 
9d 
lOspace 
e 
12e 
13e 
5f 

i6f 

17f 
g 
1% 
2ol2 

Codeword 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

Figure 22. Lempel-Ziv table for the message ensem- 
ble EXAMPLE (code length = 173). 

the string is represented by its prefix code- 
word followed by the extension character, 
so that the table entries have fixed length. 
The Lempel-Ziv strategy is simple, but 
greedy. It simply parses off the longest rec- 
ognized string each time instead of search- 
ing for the best way to parse the ensemble. 

The Lempel-Ziv method specifies fixed- 
length codewords. The size of the table and 
the maximum source message length are 
determined by the length of the codewords. 
It should be clear from the definition of the 
algorithm that Lempel-Ziv codes tend to 
be quite inefficient during the initial por- 
tion of the message ensemble. For example, 
even if we assume 3-bit codewords for char- 
acters a-g and space and &bit codewords 
for table indexes, the Lempel-Ziv algo- 
rithm transmits 173 bits for ensemble 
EXAMPLE. This compares poorly with 
the other methods discussed in this survey. 
The ensemble must be sufficiently long for 
the procedure to build up enough symbol 
frequency experience to achieve good 
compression over the full ensemble. 

If the codeword length is not sufficiently 
large, Lempel-Ziv codes may also rise 
slowly to reasonable efficiency, maintain 
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proposed to assist in encoding. Decoding 
becomes a recursive operation in which the 
codeword yields the final character of the 
substring and another codeword. The de- 
coder must continue to consult the table 
until the retrieved codeword is 0. Unfortu- 
nately, this strategy peels off extension 
characters in reverse order, and some type 
of stack operation must be used to reorder 
the source. 

Storer and Szymanski [1982] present a 
general model for data compression that 
encompasses Lempel-Ziv coding. Their 
broad theoretical work compares classes of 
macro schemes, where macro schemes in- 
clude all methods that factor out duplicate 
occurrences of data and replace them by 
references either to the source ensemble 
or to a code table. They also contribute 
a linear-time Lempel-Ziv-like algorithm 
with better performance than the standard 
Lempel-Ziv method. 

Rissanen [ 19831 extends the Lempel-Ziv 
incremental parsing approach. Abandoning 
the requirement that the substrings parti- 
tion the ensemble, the Rissanen method 
gathers “contexts” in which each symbol of 
the string occurs. The contexts are sub- 
strings of the previously encoded string (as 
in Lempel-Ziv), have varying size, and are 
in general overlapping. The Rissanen 
method hinges on the identification of a 
design parameter capturing the concept of 
“relevant” contexts. The problem of finding 
the best parameter is undecidable, and Ris- 
sanen suggests estimating the parameter 
experimentally, 

As mentioned earlier, Lempel-Ziv coding 
is the basis for the UNIX utility compress 
and is one of the methods commonly used 
in file archival programs. The archival sys- 
tem PKARC uses Welch’s implementation, 
as does compress. The compression pro- 
vided by compress is generally much better 
than that achieved by compact (the UNIX 
utility based on algorithm FGK) and takes 
less time to compute [UNIX 19841. Typical 
compression values attained by compress 
are in the range of 50-60%. 

5.2 Algorithm BSTW 

The most recent of the algorithms surveyed 
here is due to Bentley, Sleator, Tarjan, 
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and Wei [1986]. This method, algorithm 
BSTW, possesses the advantage that it re- 
quires only one pass over the data to be 
transmitted and yet has performance that 
compares well to that of the static two-pass 
method along the dimension of number of 
bits per word transmitted. This number of 
bits is never much larger than the number 
of bits transmitted by static Huffman cod- 
ing (in fact, it is usually quite close) and 
can be significantly better. Algorithm 
BSTW incorporates the additional benefit 
of taking advantage of locality of reference, 
the tendency for words to occur frequently 
for short periods of time and then fall into 
long periods of disuse. The algorithm uses 
a self-organizing list as an auxiliary data 
structure and shorter encodings for words 
near the front of this list. There are many 
strategies for maintaining self-organizing 
lists [Hester and Hirschberg 19851; algo- 
rithm BSTW uses move to front. 

A simple example serves to outline the 
method of algorithm BSTW. As in other 
adaptive schemes, sender and receiver 
maintain identical representations of the 
code, in this case message lists that are 
updated at each transmission using the 
move-to-front heuristic. These lists are in- 
itially empty. When message a, is transmit- 
ted, if a, is on the sender’s list, the sender 
transmits its current position. The sender 
then updates his or her list by moving at to 
position 1 and shifting each of the other 
messages down one position. The receiver 
similarly alters his or her word list. If a, is 
being transmitted for the first time, then k 
+ 1 is the “position” transmitted, where k 
is the number of distinct messages trans- 
mitted so far. Some representation of the 
message itself must be transmitted as well, 
but just this first time. Again, a, is moved 
to position 1 by both sender and receiver 
subsequent to its transmission. For the en- 
semble “abcadeabfd “, the transmission 
wouldbela2b3c34d5e356f5(for 
ease of presentation, list positions are rep- 
resented in base ten). 

As the example shows, algorithm BSTW 
transmits each source message once; the 
rest of its transmission consists of encod- 
ings of list positions. Therefore, an 
essential feature of algorithm BSTW is a 
reasonable scheme for representation of 
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An implementation of algorithm BSTW 
is described in great detail in Bentley et al. 
[ 19861. In this implementation, encoding 
an integer consists of a table lookup; the 
codewords for the integers from 1 to n + 1 
are stored in an array indexed from 1 to 
n + 1. A binary trie is used to store the 
inverse mapping from codewords to inte- 
gers. Decoding an Elias codeword to find 
the corresponding integer involves follow- 
ing a path in the trie. Two interlinked data 
structures, a binary trie and a binary tree, 
are used to maintain the word list. The trie 
is based on the binary encodings of the 
source words. Mapping a source message oi 
to its list position p involves following a 
path in the trie, following a link to the tree, 
and then computing the symmetric order 
position of the tree node. Finding the 
source message Ui in position p is accom- 
plished by finding the symmetric order po- 
sition p in the tree and returning the word 
stored there. Using this implementation, 
the work done by sender and receiver is 
O(kngth(ai) + length(w)), where oi is the 
message being transmitted and w the code- 
word representing oi’s position in the list. 
If the source alphabet consists of single 
characters, then the complexity of algo- 
rithm BSTW is just O(length(w)). 

The “move-to-front” scheme of Bentley 
et al. was independently developed by Elias 
in his paper on interval encoding and re- 
cency rank encoding [Elias 19871. Recency 
rank encoding is equivalent to algorithm 
BSTW. The name emphasizes the fact, 
mentioned above, that the codeword for a 
source message represents the number of 
distinct messages that have occurred since 
its most recent occurrence. Interval encod- 
ing represents a source message by the total 
number of messages that have occurred 
since its last occurrence (equivalently, the 
length of the interval since the last previous 
occurrence of the current message). It is 
obvious that the length of the interval since 
the last occurrence of a message a, is at 
least as great as its recency rank, so that 
recency rank encoding never uses more, 
and generally uses fewer, symbols per mes- 
sage than interval encoding. The advantage 
to interval encoding is that it has a very 
simple implementation and can encode and 
decode selections from a very large alphabet 

the integers. The methods discussed by 
Bentley et al. are the Elias codes presented 
in Section 3.3. The simple scheme, code y, 
involves prefixing the binary representa- 
tion of the integer i with Llog iJ zeros. This 
yields a prefix code with the length of the 
codeword for i equal to 2Llog i J + 1. Greater 
compression can be gained through use of 
the more sophisticated scheme 6, which 
encodes an integer i in 1 + Llog i J + 21 (log(1 
+ Llog il)l bits. 

A message ensemble on which algorithm 
BSTW is particularly efficient, described 
by Bentley et al., is formed by repeating 
each of n messages n times; for example, 
In2n3” . . . nne Disregarding overhead, a 
static Huffman code uses n’log n bits (or 
log n bits per message), whereas algorithm 
BSTW uses n2 + 2 CL Llog iJ (which is 
less than or equal to nz + 2n log n or O(1) 
bits per message). The overhead for algo- 
rithm BSTW consists of just the n log n 
bits needed to transmit each source letter 
once. As discussed in Section 3.2, the over- 
head for static Huffman coding includes an 
additional 2n bits. The locality present in 
ensemble EXAMPLE is similar to that in 
the above example. The transmission ef- 
fected by algorithm BSTW is 1 a 1 2 space 
3b1124c11125d111126ellll 
127f1111118glllllll.Using3 
bits for each source letter (a-g and space) 
and the Elias code 6 for list positions, the 
number of bits used is 81, which is a great 
improvement over all of the other methods 
discussed (only 69% of the length used by 
static Huffman coding). This could be im- 
proved further by the use of Fibonacci 
codes for list positions. 

In Bentley et al. [1986] a proof is given 
that with the simple scheme for encoding 
integers, the performance of algorithm 
BSTW is bounded above by 2S + 1, where 
S is the cost of the static Huffman coding 
scheme. Using the more sophisticated 
integer encoding scheme, the bound is 
1 + S + 2 log( 1 + S). A key idea in the 
proofs given by Bentley et al. is the fact 
that, using the move-to-front heuristic, the 
integer transmitted for a message a, will be 
one more than the number of different 
words transmitted since the last occurrence 
of a,. Bentley et al. also prove that algo- 
rithm BSTW is asymptotically optimal. 
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(a million letters, for example) at a micro- 
second rate [Elias 19871. The use of inter- 
val encoding might be justified in a data 
transmission setting, where speed is the 
essential factor. 

Ryabko [1987] also comments that the 
work of Bentley et al. coincides with many 
of the results in a paper in which he con- 
siders data compression by means of a 
“book stack” (the books represent the 
source messages, and as a “book” occurs it 
is taken from the stack and placed on top). 
Horspool and Cormack [1987] have consid- 
ered “move-to-front,” as well as several 
other list organization heuristics, in con- 
nection with data compression. 

6. EMPIRICAL RESULTS 

Empirical tests of the efficiencies of the 
algorithms presented here are reported 
in Bentley et al. [1986], Knuth [1985], 
Schwartz and Kallick [ 19641, Vitter [ 19871, 
and Welch [ 19841. These experiments com- 
pare the number of bits per word required; 
processing time is not reported. Although 
theoretical considerations bound the per- 
formance of the various algorithms, exper- 
imental data are invaluable in providing 
additional insight. It is clear that the per- 
formance of each of these methods is de- 
pendent on the characteristics of the source 
ensemble. 

Schwartz and Kallick [1964] test an im- 
plementation of static Huffman coding in 
which bottom merging is used to determine 
codeword lengths and all codewords of a 
given length are sequential binary numbers. 
The source alphabet in the experiment 
consists of 5114 frequently used English 
words, 27 geographical names, 10 numerals, 
14 symbols, and 43 suffixes. The entropy of 
the document is 8.884 binary digits per 
message, and the average codeword con- 
structed has length 8.920. The same docu- 
ment is also coded one character at a time. 
In this case the entropy of the source is 
4.03, and the coded ensemble contains an 
average of 4.09 bits per letter. The redun- 
dancy is low in both cases. However, the 
relative redundancy (i.e., redundancy/ 
entropy) is lower when the document is 
encoded by words. 
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Knuth [ 19851 describes algorithm FGK’s 
performance on three types of data: a file 
containing the text of Grimm’s first 10 fairy 
tales, text of a technical book, and a file of 
graphical data. For the first two files, the 
source messages are individual characters 
and the alphabet size is 128. The same data 
are coded using pairs of characters so that 
the alphabet size is 1968. For the graphical 
data, the number of source messages is 343. 
In the case of the fairy tales the perform- 
ance of FGK is very close to optimum, 
although performance degrades with in- 
creasing file size. Performance on the tech- 
nical book is not as good, but it is still 
respectable. The graphical data prove 
harder yet to compress, but again FGK 
performs reasonably well. In the latter two 
cases the trend of performance degradation 
with file size continues. Defining source 
messages to consist of character pairs re- 
sults in slightly better compression, but the 
difference would not appear to justify the 
increased memory requirement imposed by 
the larger alphabet. 

Vitter [1987] tests the performance of 
algorithms V and FGK against that of 
static Huffman coding. Each method is run 
on data that include Pascal source code, the 
TEX source of the author’s thesis, and elec- 
tronic mail files. Figure 23 summarizes the 
results of the experiment for a small file of 
text. The performance of each algorithm is 
measured by the number of bits in the 
coded ensemble, and overhead costs are not 
included. Compression achieved by each 
algorithm is represented by the size of the 
file it creates, given as a percentage of the 
original file size. Figure 24 presents data 
for Pascal source code. For the TEX source, 
the alphabet consists of 128 individual 
characters; for the other two file types, no 
more than 97 characters appear. For each 
experiment, when the overhead costs are 
taken into account, algorithm V outper- 
forms static Huffman coding as long as the 
size of the message ensemble (number of 
characters) is no more than 104. Algorithm 
FGK displays slightly higher costs, but 
never more than 100.4% of the static algo- 
rithm. 

Witten et al. [1987] compare adaptive 
arithmetic coding with adaptive Huffman 



Data Compression l 289 

for experiments that compare the perform- 
ance of algorithm BSTW to static Huffman 
coding. Here the defined words consist of 
two disjoint classes, sequence of alpha- 
numeric characters and sequences of non- 
alphanumeric characters. The performance 
of algorithm BSTW is very close to that of 
static Huffman coding in all cases. The 
experiments reported by Bentley et al. are 
of particular interest in that they incorpo- 
rate another dimension, the possibility that 
in the move-to-front scheme one might 
want to limit the size of the data structure 
containing the codes to include only the m 
most recent words, for some m. The tests 
consider cache sizes of 8, 16, 32, 64, 128, 
and 256. Although performance tends to 
increase with cache size, the increase is 
erratic, with some documents exhibiting 
nonmonotonicity (performance that in- 
creases with cache size to a point and then 
decreases when cache size is further in- 
creased). 

Welch [ 19841 reports simulation results 
for Lempel-Ziv codes in terms of compres- 
sion ratios. His definition of compression 
ratio is the one given in Section 1.3, C = 
(average message length)/(average code- 
word length). The ratios reported are 1.8 
for English text, 2-6 for COBOL data files, 
1.0 for floating-point arrays, 2.1 for for- 
matted scientific data, 2.6 for system log 
data, 2.3 for source code, and 1.5 for object 
code. The tests involving English text files 
showed that long individual documents did 
not compress better than groups of short 
documents. This observation is somewhat 
surprising in that it seems to refute the 
intuition that redundancy is due at least in 
part to correlation in content. For purposes 
of comparison, Welch cites results of 
Pechura and Rubin. Pechura [1982] 
achieved a 1.5 compression ratio using 
static Huffman coding on files of English 
text. Rubin reports a 2.4 ratio for Eng- 
lish text when using a complex technique 
for choosing the source messages to which 
Huffman coding is applied [Rubin 19761. 
These results provide only a very weak 
basis for comparison, since the character- 
istics of the files used by the three authors 
are unknown. It is very likely that a single 
algorithm may produce compression ratios 

n k Static Algorithm V Algorithm FGK 

100 96 83.0 71.1 82.4 
500 96 83.0 80.8 83.5 
961 97 83.5 82.3 83.7 

Figure23. Simulation results for a small text file 
[Vitter 19871: n, file size in 8-bit bytes; k, number of 
distinct messages. 

n k Static Algorithm V Algorithm FGK 

100 32 57.4 56.2 58.9 
500 49 61.5 62.2 63.0 

1000 57 61.3 61.8 62.4 
10000 73 59.8 59.9 60.0 
12067 78 59.6 59.8 59.9 

Figure 24. Simulation results for Pascal source code 
[Vitter 19871: n, file size in bytes; k, number of distinct 
messages. 

coding. The version of arithmetic coding 
tested employs single-character adaptive 
frequencies and is a mildly optimized C 
implementation. Witten et al. compare the 
results provided by this version of arith- 
metic coding with the results achieved by 
the UNIX compact program (compact is 
based on algorithm FGK). On three large 
files that typify data compression applica- 
tions, compression achieved by arithmetic 
coding is better than that provided by com- 
pact, but only slightly better (average file 
size is 98% of the compacted size). A file 
over a three-character alphabet, with very 
skewed symbol probabilities, is encoded by 
arithmetic coding in less than 1 bit per 
character; the resulting file size is 74% of 
the size of the file generated by compact. 
Witten et al. also report encoding and de- 
coding times. The encoding time of arith- 
metic coding is generally half the time 
required by the adaptive Huffman coding 
method. Decode time averages 65% of the 
time required by compact. Only in the 
case of the skewed file are the time statis- 
tics quite different. Arithmetic coding again 
achieves faster encoding, 67% of the time 
required by compact. However, compact de- 
codes more quickly, using only 78% of the 
time of the arithmetic method. 

Bentley et al. [1986] use C and Pascal 
source files, TROFF source files, and a 
terminal session transcript of several hours 
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ranging from 1.5 to 2.4, depending on the 
source to which it is applied. 

7. SUSCEPTIBILITY TO ERROR 

The discrete noiseless channel is, unfortu- 
nately, not a very realistic model of a 
communication system. Actual data trans- 
mission systems are prone to two types of 
error: phase error, in which a code symbol 
is lost or gained, and amplitude error, in 
which a code symbol is corrupted [Neu- 
mann 19621. The degree to which channel 
errors degrade transmission is an impor- 
tant parameter in the choice of a data 
compression method. The susceptibility to 
error of a coding algorithm depends heavily 
on whether the method is static or adaptive. 

7.1 Static Codes 

The effect of amplitude errors is dem- 
onstrated in Figure 26. The format of 
the illustration is the same as that in Fig- 
ure 25. This time bits 1, 2, and 4 are 
inverted rather than lost. Again synchro- 
nization is regained almost immediately. 
When bit 1 or bit 2 is changed, only the 
first three bits (the first character of the 
ensemble) are disturbed. Inversion of bit 4 
causes loss of synchronization through the 
ninth bit. A very simple explanation of the 
self-synchronization present in these ex- 
amples can be given. Since many of the 
codewords end in the same sequence of 
digits, the decoder is likely to reach a leaf 
of the Huffman code tree at one of the 
codeword boundaries of the original coded 
ensemble. When this happens, the decoder 
is back in synchronization with the en- 
coder. 

It is generally known that Huffman codes 
tend to be self-correcting [Standish 19801; 
that is, a transmission error tends not to 
propagate too far. The codeword in which 
the error occurs is incorrectly received, and 
it is likely that several subsequent code- 
words are misinterpreted, but before too 
long the receiver is back in synchronization 
with the sender. In a static code, synchro- 
nization means simply that both sender and 
receiver identify the beginnings of the code- 
words in the same way. In Figure 25 an 
example is used to illustrate the ability of 
a Huffman code to recover from phase er- 
rors. The message ensemble “BCDAEB ” is 
encoded using the Huffman code of Figure 
8 where the source letters al . . . a5 repre- 
sent A . . . E, respectively, yielding the 
coded ensemble “0110100011000011”. Fig- 
ure 25 demonstrates the impact of loss of 
the first bit, the second bit, or the fourth 
bit. The dots show the way in which each 
line is parsed into codewords. The loss of 
the first bit results in resynchronization 
after the third bit so that only the first 
source message (B) is lost (replaced by AA). 
When the second bit is lost, the first eight 
bits of the coded ensemble are misinter- 
preted and synchronization is regained by 
bit 9. Dropping the fourth bit causes the 
same degree of disturbance as dropping the 
second. 

So that self-synchronization may be dis- 
cussed more carefully, the following defi- 
nitions are presented. (It should be noted 
that these definitions hold for arbitrary 
prefix codes so that the discussion includes 
all of the codes described in Section 3.) Ifs 
is a suffix of some codeword and there exist 
sequences of codewords r and A such that 
s I? = A, then I’ is said to be a synchronizing 
sequence for s. For example, in the Huffman 
code used above, 1 is a synchronizing se- 
quence for the suffix 01, whereas both 
000001 and 011 are synchronizing se- 
quences for the suffix 10. If every suffix (of 
every codeword) has a synchronizing se- 
quence, then the code is completely self- 
synchronizing. If some or none of the proper 
suffixes have synchronizing sequences, 
then the code is, respectively, partially or 
never self-synchronizing. Finally, if there 
exists a sequence l? that is a synchronizing 
sequence for every suffix, r is defined to be 
a universal synchronizing sequence. The 
code used in the examples above is com- 
pletely self-synchronizing and has univer- 
sal synchronizing sequence 00000011000. 
Gilbert and Moore [1959] prove that the 
existence of a universal synchronizing se- 
quence is a necessary as well as a sufficient 
condition for a code to be completely self- 
synchronizing. They also state that any 
prefix code that is completely self- 
synchronizing will synchronize itself with 
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011.010.001.1.000.011. Coded ensemble BCDAEB 
1.1.010.001.1.000.011. Bit 1 is lost, interpreted as AACDAEB 
010.1.000.1.1.000.011. Bit 2 is lost, interpreted as CAEAAEB 
011.1.000.1.1.000.011. Bit 4 is lost, interpreted as BAEAAEB 

Figure 25. Recovery from phase errors. 

0 1 1.0 1 0.00 1.1.000.011 Coded ensemble BCDAEB 
1.1.1.0 10.00 1.1.000.011 Bit 1 is inverted, interpreted as DCDAEB 
0 0 1.0 10.00 1.1.000.011 Bit 2 is inverted, interpreted as AAACDAEB 
0 11.1.1.0 00.1.1.000.011 Bit 4 is inverted, interpreted as BAAEAAEB 

Figure 26. Recovery from amplitude errors. 

probability 1 if the source ensemble con- self-synchronize, this is not guaranteed, 
sists of successive messages independently and when self-synchronization is assured, 
chosen with any given set of probabilities. there is no bound on the propagation of the 
This is true since the probability of occur- error. An additional difficulty is that self- 
rence of the universal synchronizing se- synchronization provides no indication 
quence at any given time is positive. that an error has occurred. 

It is important to realize that the fact 
that a completely self-synchronizing code 
will resynchronize with probability 1 does 
not guarantee recovery from error with 
bounded delay. In fact, for every completely 
self-synchronizing prefix code with more 
than two codewords, there are errors within 
one codeword that cause unbounded error 
propagation [Neumann 19621. In addition, 
prefix codes are not always completely self- 
synchronizing. Bobrow and Hakimi [ 19691 
state a necessary condition for a prefix code 
with codeword lengths l1 . . . 1, to be com- 
pletely self-synchronizing: the greatest 
common divisor of the Zi must be equal to 
1. The Huffman code (00, 01, 10, 
1100, 1101, 1110, 1111) is not completely 
self-synchronizing but is partially self- 
synchronizing since suffixes 00, 01, and 10 
are synchronized by any codeword. The 
Huffman code (000, 0010, 0011, 01, 100, 
1010, 1011, 100, 111) is never self-synchro- 
nizing. Examples of never self-synchro- 
nizing Huffman codes are difficult to 
construct, and the example above is the 
only one with fewer than 16 source mes- 
sages. Stiffler [1971] proves that a code is 
never self-synchronizing if and only if none 
of the proper suffixes of the codewords are 
themselves codewords. 

The conclusions that may be drawn from 
the above discussion are as follows: Al- 
though it is common for Huffman codes to 

The problem of error detection and cor- 
rection in connection with Huffman codes 
has not received a great deal of attention. 
Several ideas on the subject are reported 
here. Rudner [1971] states that synchroniz- 
ing sequences should be as short as possible 
to minimize resynchronization delay. In ad- 
dition, if a synchronizing sequence is used 
as the codeword for a high probability mes- 
sage, then resynchronization will be more 
frequent. A method for constructing a min- 
imum-redundancy code having the shortest 
possible synchronizing sequence is de- 
scribed by Rudner [ 19711. Neumann [ 19621 
suggests purposely adding some redun- 
dancy to Huffman codes in order to permit 
detection of certain types of errors. Clearly 
this has to be done carefully so as not to 
negate the redundancy reduction provided 
by Huffman coding. McIntyre and Pechura 
[1985] cite data integrity as an advantage 
of the codebook approach discussed in Sec- 
tion 3.2. When the code is stored separately 
from the coded data, the code may be 
backed up to protect it from perturbation. 
However, when the code is stored or trans- 
mitted with the data, it is susceptible to 
errors. An error in the code representation 
constitutes a drastic loss, and therefore ex- 
treme measures for protecting this part of 
the transmission are justified. 

The Elias codes of Section 3.3 are not at 
all robust. Each of the codes y and 6 can be 
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001 1 0.00 1 00.0 00100 0. Coded integers 6,4,8 
0 1 1.0 00 1 00 0.00100.0 Bit 2 is lost, interpreted as 3, 8, 2, etc. 

011.1.0 00 1 00 0.00100.0 Bit 2 is inverted, interpreted as 3, 1,8,4, etc. 

000 1 0 00.1.00 0 00100 0 Bit 3 is inverted, interpreted as 8, 1, etc. 

Figure 27. Effects of errors in Elias codes. 

000011.000011.00011.010 11.01011. Coded ensemble “au bb” 
00 011.000011.00011.010 11.01011. Bit 3 is lost, interpreted as “u bb” 
001011.000011.00011.010 11.01011. Bit 3 is inverted, interpreted as “?a bb” 
00001 000011.00011.010 11.01011. Bit 6 is lost, interpreted as “? bb” 
000010 000011.00011.010 11.01011. Bit 6 is inverted, interpreted as “? bb” 
000011.000011.00011.011.11.01011. Bit 20 is inverted, interpreted as “aa fgb” 

Figure 28. Effects of errors in Fibonacci codes. 

thought of as generating codewords that 
consist of a number of substrings such that 
each substring encodes the length of the 
subsequent substring. For code y we may 
think of each codeword y(x) as the conca- 
tenation of z, a string of n zeros, and b, 
a string of length n + 1 (n = Hog xJ). If 
one of the zeros in substring z is lost, syn- 
chronization will be lost since the last 
symbol of b will be pushed into the next 
codeword. 

Since the 1 at the front of substring b 
delimits the end of z, if a zero in z is changed 
to a 1, synchronization will be lost as sym- 
bols from b are pushed into the following 
codeword. Similarly, if ones at the front of 
b are inverted to zeros, synchronization will 
be lost since the codeword y(x) consumes 
symbols from the following codeword. Once 
synchronization is lost, it cannot normally 
be recovered. 

In Figure 27, codewords r(6), r(4), r(8) 
are used to illustrate the above ideas. In 
each case, synchronization is lost and never 
recovered. 

The Elias code 6 may be thought of as a 
three-part ramp, where 6(x) = zmb with z 
a string of n zeros, m a string of length 
n + 1 with binary value u, and b a string of 
length u - 1. For example, in 6(16) = 
00.101.0000, n = 2, u = 5, and the final 
substring is the binary value of 16 with the 
leading 1 removed so that it has length u - 
1 = 4. Again the fact that each substring 
determines the length of the subsequent 
substring means that an error in one of the 

first two substrings is disastrous, changing 
the way in which the rest of the codeword 
is to be interpreted. And, like code y, code 
6 has no properties that aid in regaining 
synchronization once it has been lost. 

The Fibonacci codes of Section 3.3, on 
the other hand, are quite robust. This ro- 
bustness is due to the fact that every code- 
word ends in the substring 11 and that 
substring can appear nowhere else in a 
codeword. If an error occurs anywhere 
other than in the 11 substring, the error is 
contained within that one codeword. It is 
possible that one codeword will become two 
(see the sixth line of Figure 28), but no 
other codewords will be distributed. If the 
last symbol of a codeword is lost or changed, 
the current codeword will be fused with its 
successor so that two codewords are lost. 
When the penultimate bit is disturbed, up 
to three codewords can be lost. For example 
the coded message 011.11.011 becomes 
0011.1011 if bit 2 is inverted. The maxi- 
mum disturbance resulting from either an 
amplitude error or a phase error is the 
disturbance of three codewords. 

In Figure 28, some illustrations based on 
the Fibonacci coding of ensemble EXAM- 
PLE as shown in Figure 12 are given. When 
bit 3 (which is not part of an 11 substring) 
is lost or changed, only a single codeword 
is degraded. When bit 6 (the final bit of the 
first codeword) is lost or changed, the first 
two codewords are incorrectly decoded. 
When bit 20 is changed, the first b is incor- 
rectly decoded as fg. 
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error flags. For adaptive methods it may be 
necessary for receiver and sender to verify 
the current code mapping periodically. 

For adaptive Huffman coding, Galla- 
ger [1978] suggests an “aging” scheme, 
whereby recent occurrences of a character 
contribute more to its frequency count than 
do earlier occurrences. This strategy intro- 
duces the notion of locality into the 
adaptive Huffman scheme. Cormack and 
Horspool [1984] describe an algorithm 
for approximating exponential aging. How- 
ever, the effectiveness of this algorithm 
has not been established. 

Both Knuth [1985] and Bentley et al. 
[1986] suggest the possibility of using the 
“cache” concept to exploit locality and 
minimize the effect of anomalous source 
messages. Preliminary empirical results in- 
dicate that this may be helpful. A problem 
related to the use of a cache is overhead 
time required for deletion. Strategies for 
reducing the cost of a deletion could be 
considered. Another possible extension to 
algorithm BSTW is to investigate other lo- 
cality heuristics. Bentley et al. [ 19861 prove 
that intermittent move-to-front (move-to- 
front after every k occurrences) is as effec- 
tive as move-to-front. It should be noted 
that there are many other self-organizing 
methods yet to be considered. Horspool and 
Cormack [ 19871 describe experimental re- 
sults that imply that the transpose heuris- 
tic performs as well as move-to-front and 
suggest that it is also easier to implement. 

Several aspects of free-parse methods 
merit further attention. Lempel-Ziv codes 
appear to be promising, although the 
absence of a worst-case bound on the 
redundancy of an individual finite source 
ensemble is a drawback. The variable- 
block type Lempel-Ziv codes have been 
implemented with some success [ARC 
19861, and the construction of a variable- 
variable Lempel-Ziv code has been 
sketched [Ziv and Lempel 19781. The effi- 
ciency of the variable-variable model 
should be investigated. In addition, an im- 
plementation of Lempel-Ziv coding that 
combines the time efficiency of the Rodeh 
et al. [ 19811 method with more efficient use 
of space is worthy of consideration. 

7.2 Adaptive Codes 

Adaptive codes are far more adversely af- 
fected by transmission errors than static 
codes. For example, in the case of an adap- 
tive Huffman code, even though the re- 
ceiver may resynchronize with the sender 
in terms of correctly locating the beginning 
of a codeword, the information lost repre- 
sents more than a few bits or a few char- 
acters of the source ensemble. The fact 
that sender and receiver are dynamically 
redefining the code indicates that by the 
time synchronization is regained, they may 
have radically different representations 
of the code. Synchronization as defined in 
Section 7.1 refers to synchronization of the 
bit stream, which is not sufficient for adap- 
tive methods. What is needed here is code 
synchronization, that is, synchronization of 
both the bit stream and the dynamic data 
structure representing the current code 
mapping. 

There is no evidence that adaptive meth- 
ods are self-synchronizing. Bentley et al. 
[1986] note that, in algorithm BSTW, loss 
of synchronization can be catastrophic, 
whereas this is not true with static Huff- 
man coding. Ziv and Lempel [1977] recog- 
nize that the major drawback of their 
algorithm is its susceptibility to error prop- 
agation. Welch [1984] also considers the 
problem of error tolerance of Lempel-Ziv 
codes and suggests that the entire ensemble 
be embedded in an error-detecting code. 
Neither static nor adaptive arithmetic cod- 
ing has the ability to tolerate errors. 

8. NEW DIRECTIONS 

Data compression is still very much an 
active research area. This section suggests 
possibilities for further study. 

The discussion of Section 7 illustrates 
the susceptibility to error of the codes pre- 
sented in this survey. Strategies for increas- 
ing the reliability of these codes while 
incurring only a moderate loss of effi- 
ciency would be of great value. This area 
appears to be largely unexplored. Possible 
approaches include embedding the entire 
ensemble in an error-correcting code or re- 
serving one or more codewords to act as 
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Another important research topic is the 
development of theoretical models for data 
compression that address the problem of 
local redundancy. Models based on Markov 
chains can be exploited to take advantage 
of interaction between groups of symbols. 
Entropy tends to be overestimated when 
symbol interaction is not considered. 
Models that exploit relationships between 
source messages may achieve better 
compression than predicted by an entropy 
calculation based only on symbol probabil- 
ities. The use of Markov modeling is 
considered by Llewellyn [1987] and by 
Langdon and Rissanen [1983]. 

9. SUMMARY 

Data compression is a topic of much im- 
portance and many applications. Methods 
of data compression have been studied for 
almost four decades. This paper has pro- 
vided an overview of data compression 
methods of general utility. The algorithms 
have been evaluated in terms of the amount 
of compression they provide, algorithm 
efficiency, and susceptibility to error. Al- 
though algorithm efficiency and suscepti- 
bility to error are relatively independent of 
the characteristics of the source ensemble, 
the amount of compression achieved de- 
pends on the characteristics of the source 
to a great extent. 

Semantic dependent data compression 
techniques, as discussed in Section 2, are 
special-purpose methods designed to ex- 
ploit local redundancy or context informa- 
tion. A semantic dependent scheme can 
usually be viewed as a special case of one 
or more general-purpose algorithms. It 
should also be noted that algorithm BSTW 
is a general-purpose technique that exploits 
locality of reference, a type of local redun- 
dancy. 

Susceptibility to error is the main draw- 
back of each of the algorithms presented 
here. Although channel errors are more 
devastating to adaptive algorithms than to 
static ones, it is possible for an error 
to propagate without limit even in the 
static case. Methods of limiting the effect 
of an error on the effectiveness of a 
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data compression algorithm should be 
investigated. 
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