
Data Compression

DEBRA A. LELEWER and DANIEL S. HIRSCHBERG

Department of Information and Computer Science, University of California, Irvine, California 92717

This paper surveys a variety of data compression methods spanning almost 40 years of
research, from the work of Shannon, Fano, and Huffman in the late 1940s to a technique
developed in 1986. The aim of data compression is to reduce redundancy in stored or
communicated data, thus increasing effective data density. Data compression has
important application in the areas of file storage and distributed systems. Concepts from
information theory as they relate to the goals and evaluation of data compression
methods are discussed briefly. A framework for evaluation and comparison of methods is
constructed and applied to the algorithms presented. Comparisons of both theoretical and
empirical natures are reported, and possibilities for future research are suggested

Categories and Subject Descriptors: E.4 [Data]: Coding and Information Theory-data
compaction and compression

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adaptive coding, adaptive Huffman codes, coding,
coding theory, tile compression, Huffman codes, minimum-redundancy codes, optimal
codes, prefix codes, text compression

INTRODUCTION

Data compression is often referred to as
coding, where coding is a general term en-
compassing any special representation of
data that satisfies a given need. Informa-
tion theory is defined as the study of
efficient coding and its consequences in
the form of speed of transmission and
probability of error [Ingels 19711. Data com-
pression may be viewed as a branch of
information theory in which the primary
objective is to minimize the amount of data
to be transmitted. The purpose of this pa-
per is to present and analyze a variety of
data compression algorithms.

A simple characterization of data
compression is that it involves transform-
ing a string of characters in some represen-
tation (such as ASCII) into a new string
(e.g., of bits) that contains the same infor-

mation but whose length is as small as
possible. Data compression has important
application in the areas of data transmis-
sion and data storage. Many data process-
ing applications require storage of large
volumes of data, and the number of such
applications is constantly increasing as the
use of computers extends to new disci-
plines. At the same time, the proliferation
of computer communication networks is
resulting in massive transfer of data over
communication links. Compressing data to
be stored or transmitted reduces storage
and/or communication costs. When the
amount of data to be transmitted is re-
duced, the effect is that of increasing the
capacity of the communication channel.
Similarly, compressing a file to half of its
original size is equivalent to doubling the
capacity of the storage medium. It may then
become feasible to store the data at a

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
0 1966 ACM 0360-0300/87/0900-0261$1.50

ACM Computing SUWSYS, Vol. 19, No. 3, September 1987

262 . D. A. Lelewer and D. S. Hirschberg

CONTENTS been reported to reduce a file to anywhere
from 12.1 to 73.5% of its original size [Wit-
ten et al. 1987 1. Cormack reports that data
compression programs based on Huffman
coding (Section 3.2) reduced the size of a
large student-record database by 42.1%
when only some of the information was
compressed. As a consequence of this size
reduction, the number of disk operations
required to load the database was reduced
by 32.7% [Cormack 19851. Data com-
pression routines developed with specific
applications in mind have achieved com-
pression factors as high as 98% [Severance
19831.

Although coding for purposes of data se-
curity (cryptography) and codes that guar-
antee a certain level of data integrity (error
detection/correction) are topics worthy of
attention, they do not fall under the
umbrella of data compression. With the
exception of a brief discussion of the sus-
ceptibility to error of the methods surveyed
(Section 7), a discrete noiseless channel is
assumed. That is, we assume a system in
which a sequence of symbols chosen from
a finite alphabet can be transmitted from
one point to another without the possibility
of error. Of course, the coding schemes
described here may be combined with data
security or error-correcting codes.

INTRODUCTION
1. FUNDAMENTAL CONCEPTS

1.1 Definitions
1.2 Classification of Methods
1.3 A Data Compression Model
1.4 Motivation

2. SEMANTIC DEPENDENT METHODS
3. STATIC DEFINED-WORD SCHEMES

3.1 Shannon-Fan0 Code
3.2 Static Huffman Coding
3.3 Universal Codes and Representations of the

Integers
3.4 Arithmetic Coding

4. ADAPTIVE HUFFMAN CODING
4.1 Algorithm FGK
4.2 Algorithm V

5. OTHER ADAPTIVE METHODS
5.1 Lempel-Ziv Codes
5.2 Algorithm BSTW

6. EMPIRICAL RESULTS
7. SUSCEPTIBILITY TO ERROR

7.1 Static Codes
7.2 Adaptive Codes

8. NEW DIRECTIONS
9. SUMMARY
REFERENCES

higher, thus faster, level of the storage hi-
erarchy and reduce the load on the input/
output channels of the computer system.

Many of the methods discussed in this
paper are implemented in production
systems. The UNIX1 utilities compact
and compress are based on methods dis-
cussed in Sections 4 and 5, respectively
[UNIX 19841. Popular file archival systems
such as ARC and PKARC use techniques
presented in Sections 3 and 5 [ARC 1986;
PKARC 19871. The savings achieved by
data compression can be dramatic; reduc-
tion as high as 80% is not uncommon
[Reghbati 19811. Typical values of com-
pression provided by compact are text
(38%), Pascal source (43%), C source
(36%), and binary (19%). Compress gener-
ally achieves better compression (50-60%
for text such as source code and English)
and takes less time to compute [UNIX
19841. Arithmetic coding (Section 3.4) has

1 UNIX is a trademark of AT&T Bell Laboratories.

Much of the available literature on data
compression approaches the topic from the
point of view of data transmission. As noted
earlier, data compression is of value in data
storage as well. Although this discussion is
framed in the terminology of data trans-
mission, compression and decompression
of data files are essentially the same tasks
as sending and receiving data over a com-
munication channel. The focus of this
paper is on algorithms for data compres-
sion; it does not deal with hardware aspects
of data transmission. The reader is referred
to Cappellini [1985] for a discussion of
techniques with natural hardware imple-
mentation.

Background concepts in the form of ter-
minology and a model for the study of data
compression are provided in Section 1. Ap-
plications of data compression are also dis-
cussed in Section 1 to provide motivation
for the material that follows.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Data Compression l 263

Although the primary focus of this survey
is data compression methods of general
utility, Section 2 includes examples from
the literature in which ingenuity applied to
domain-specific problems has yielded inter-
esting coding techniques. These techniques
are referred to as semantic dependent since
they are designed to exploit the context
and semantics of the data to achieve re-
dundancy reduction. Semantic-dependent
techniques include the use of quadtrees,
run-length encoding, or difference mapping
for storage and transmission of image data
[Gonzalez and Wintz 1977; Samet 19841.

General-purpose techniques, which as-
sume no knowledge of the information
content of the data, are described in
Sections 3-5. These descriptions are suffi-
ciently detailed to provide an understand-
ing of the techniques. The reader will need
to consult the references for implementa-
tion details. In most cases only worst-case
analyses of the methods are feasible. To
provide a more realistic picture of their
effectiveness, empirical data are presented
in Section 6. The susceptibility to error of
the algorithms surveyed is discussed in Sec-
tion 7, and possible directions for future
research are considered in Section 8.

1. FUNDAMENTAL CONCEPTS

A brief introduction to information theory
is provided in this section. The definitions
and assumptions necessary to a compre-
hensive discussion and evaluation of data
compression methods are discussed. The
following string of characters is used to
illustrate the concepts defined: EXAMPLE
= “au bbb cccc ddddd eeeeee fffffffgggggggg”.

1.1 Definitions

A code is a mapping of source messages
(words from the source alphabet a) into
codewords (words of the code alphabet 0).
The source messages are the basic units
into which the string to be represented is
partitioned. These basic units may be single
symbols from the source alphabet, or they
may be strings of symbols. For string
EXAMPLE, cy = (a, b, c, d, e, f, g, space).
For purposes of explanation, /3 is taken to

Source message Codeword

a 000
b 001
ii 011 010

7 100 101
g 110

space 111

Figure 1. A block-block code for EXAMPLE.

Source message Codeword

;ib 0 1
cccc 10
ddddd 11
eeeeee 100
fffffff 101
&%%Nmz! 110
space 111

Figure 2. A variable-variable code for EXAMPLE.

be (0,l). Codes can be categorized as block-
block, block-variable, variable-block, or
variable-variable, where block-block in-
dicates that the source messages and
codewords are of fixed length and variable-
variable codes map variable-length source
messages into variable-length codewords. A
block-block code for EXAMPLE is shown
in Figure 1, and a variable-variable code is
given in Figure 2. If the string EXAMPLE
were coded using the Figure 1 code, the
length of the coded message would be 120;
using Figure 2 the length would be 30.

The oldest and most widely used codes,
ASCII and EBCDIC, are examples of
block-block codes, mapping an alphabet of
64 (or 256) single characters onto 6-bit (or
8-bit) codewords. These are not discussed,
since they do not provide compression.
The codes featured in this survey are of
the block-variable, variable-variable, and
variable-block types.

When source messages of variable length
are allowed, the question of how a mes-
sage ensemble (sequence of messages) is
parsed into individual messages arises.
Many of the algorithms described here are
defined-word schemes. That is, the set of
source messages is determined before the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

264 . D. A. Lelewer and D. S. Hirschberg

invocation of the coding scheme. For
example, in text file processing, each
character may constitute a message, or
messages may be defined to consist
of alphanumeric and nonalphanumeric
strings. In Pascal source code, each token
may represent a message. All codes involv-
ing fixed-length source messages are, by
default, defined-word codes. In free-parse
methods, the coding algorithm itself parses
the ensemble into variable-length se-
quences of symbols. Most of the known
data compression methods are defined-
word schemes; the free-parse model differs
in a fundamental way from the classical
coding paradigm.

A code is distinct if each codeword is
distinguishable from every other (i.e., the
mapping from source messages to code-
words is one to one). A distinct code is
uniquely decodable if every codeword is
identifiable when immersed in a sequence
of codewords. Clearly, each of these fea-
tures is desirable. The codes of Figures 1
and 2 are both distinct, but the code of
Figure 2 is not uniquely decodable. For
example, the coded message 11 could be
decoded as either “ddddd” or “bbbbbb”. A
uniquely decodable code is a prefix code (or
prefix-free code) if it has the prefix prop-
erty, which requires that no codeword be a
proper prefix of any other codeword. All
uniquely decodable block-block and vari-
able-block codes are prefix codes. The code
with codewords (1, 100000, 00) is an ex-
ample of a code that is uniquely decodable
but that does not have the prefix property.
Prefix codes are instantaneously decodable;
that is, they have the desirable property
that the coded message can be parsed into
codewords without the need for lookahead.
In order to decode a message encoded using
the codeword set (1, 100000, 001, lookahead
is required. For example, the first codeword
of the message 1000000001 is 1, but this
cannot be determined until the last (tenth)
symbol of the message is read (if the string
of zeros had been of odd length, the first
codeword would have been 100000).

A minimal prefix code is a prefix code
such that, if x is a proper prefix of some
codeword, then xu is either a codeword or
a proper prefix of a codeword for each letter

ACM Computing Surveys, Vol. 19, No. 3, September 1987

u in ,B. The set of codewords (00, 01, 10) is
an example of a prefix code that is not
minimal. The fact that 1 is a proper prefix
of the codeword 10 requires that 11 be
either a codeword or a proper prefix of a
codeword, and it is neither. Intuitively, the
minimality constraint prevents the use of
codewords that are longer than necessary.
In the above example the codeword 10 could
be replaced by the codeword 1, yielding a
minimal prefix code with shorter code-
words. The codes discussed in this paper
are all minimal prefix codes.

In this section a code has been defined
to be a mapping from a source alphabet
to a code alphabet; we now define related
terms. The process of transforming a source
ensemble into a coded message is coding or
encoding. The encoded message may be re-
ferred to as an encoding of the source en-
semble. The algorithm that constructs the
mapping and uses it to transform the source
ensemble is called the encoder. The decoder
performs the inverse operation, restoring
the coded message to its original form.

1.2 Classification of Methods

Not only are data compression schemes
categorized with respect to message and
codeword lengths, but they are also classi-
fied as either static or dynamic. A static
method is one in which the mapping from
the set of messages to the set of codewords
is fixed before transmission begins, so that
a given message is represented by the same
codeword every time it appears in the mes-
sage ensemble. The classic static defined-
word scheme is Huffman coding [Huffman
19521. In Huffman coding, the assignment
of codewords to source messages is based
on the probabilities with which the source
messages appear in the message ensemble.
Messages that appear frequently are rep-
resented by short codewords; messages with
smaller probabilities map to longer code-
words. These probabilities are determined
before transmission begins. A Huffman
code for the ensemble EXAMPLE is given
in Figure 3. If EXAMPLE were coded using
this Huffman mapping, the length of the
coded message would be 117. Static Huff-
man coding is discussed in Section 3.2;

Data Compression l 265

Source message Probability Codeword

a 216 10
b 3/6 0

space l/6 11

Figure 4. A dynamic Huffman code table for the
prefix “an bbb” of message EXAMPLE.

Source message Probability Codeword

; 2140 3140

i 4140 5/40
e 6140
f 7/40
g a/40

space 5140

1001
1000
011
010
111
110
00
101

Figure 3. A Huffman code for the message EXAM-
PLE (code length = 117).

other static schemes are discussed in Sec-
tions 2 and 3.

A code is dynamic if the mapping from
the set of messages to the set of codewords
changes over time. For example, dynamic
Huffman coding involves computing an ap-
proximation to the probabilities of occur-
rence “on the fly,” as the ensemble is being
transmitted. The assignment of codewords
to messages is based on the values of the
relative frequencies of occurrence at each
point in time. A message x may be repre-
sented by a short codeword early in the
transmission because it occurs frequently
at the beginning of the ensemble, even
though its probability of occurrence over
the total ensemble is low. Later, when the
more probable messages begin to occur with
higher frequency, the short codeword will
be mapped to one of the higher probability
messages, and x will be mapped to a longer
codeword. As an illustration, Figure 4
presents a dynamic Huffman code table
corresponding to the prefix “aa bbb ” of
EXAMPLE. Although the frequency of
space over the entire message is greater
than that of b, at this point b has higher
frequency and therefore is mapped to the
shorter codeword.

Dynamic codes are also referred to in the
literature as adaptive, in that they adapt to
changes in ensemble characteristics over
time, The term adaptive is used for the
remainder of this paper; the fact that these
codes adapt to changing characteristics is
the source of their appeal. Some adaptive
methods adapt to changing patterns in the
source [Welch 19841, whereas others ex-
ploit locality of reference [Bentley et al.
19861. Locality of reference is the tendency,

common in a wide variety of text types, for
a particular word to occur frequently for
short periods of time and then fall into
disuse for long periods.

All of the adaptive methods are one-pass
methods; only one scan of the ensemble is
required. Static Huffman coding requires
two passes: one pass to compute probabili-
ties and determine the mapping, and a sec-
ond pass for transmission. Thus, as long as
the encoding and decoding times of an
adaptive method are not substantially
greater than those of a static method, the
fact that an initial scan is not needed im-
plies a speed improvement in the adaptive
case. In addition, the mapping determined
in ,the first pass of a static coding scheme
must be transmitted by the encoder to the
decoder. The mapping may preface each
transmission (i.e., each file sent), or a single
mapping may be agreed upon and used for
multiple transmissions. In one-pass meth-
ods the encoder defines and redefines the
mapping dynamically during transmission.
The decoder must define and redefine the
mapping in sympathy, in essence “learn-
ing” the mapping as codewords are re-
ceived. Adaptive methods are discussed in
Sections 4 and 5.

An algorithm may also be a hybrid,
neither completely static nor completely
dynamic. In a simple hybrid scheme, sender
and receiver maintain identical codebooks
containing lz static codes. For each trans-
mission, the sender must choose one of the
k previously agreed upon codes and inform
the receiver of the choice (by transmitting
first the “name” or number of the chosen
code). Hybrid methods are discussed fur-
ther in Sections 2 and 3.2.

1.3 A Data Compression Model

In order to discuss the relative merits of
data compression techniques, a framework

ACM Computing Surveys, Vol. 19, No. 3, September 1987

266 . D. A. Lelewer and D. S. Hirschberg

for comparison must be established. There
are two dimensions along which each of
the schemes discussed here may be mea-
sured: algorithm complexity and amount of
compression. When data compression is
used in a data transmission application, the
goal is speed. Speed of transmission de-
pends on the number of bits sent, the time
required for the encoder to generate the
coded message, and the time required for
the decoder to recover the original ensem-
ble. In a data storage application, although
the degree of compression is the primary
concern, it is nonetheless necessary that
the algorithm be efficient in order for the
scheme to be practical. For a static scheme,
there are three algorithms to analyze: the
map construction algorithm, the encoding
algorithm, and the decoding algorithm. For
a dynamic scheme, there are just two algo-
rithms: the encoding algorithm and the
decoding algorithm.

Several common measures of compres-
sion have been suggested: redundancy
[Shannon and Weaver 19491, average mes-
sage length [Huffman 19521, and compres-
sion ratio [Rubin 1976; Ruth and Kreutzer
19721. These measures are defined below.
Related to each of these measures are
assumptions about the characteristics
of the source. It is generally assumed in
information theory that all statistical
parameters of a message source are known
with perfect accuracy [Gilbert 19711. The
most common model is that of a discrete
memoryless source; a source whose output
is a sequence of letters (or messages), each
letter being a selection from some fixed
alphabet al, - - - , a,,. The letters are taken
to be random, statistically independent se-
lections from the alphabet, the selection
being made according to some fixed prob-
ability assignment p(al), . . ., p(a,) [Gal-
lager 19681. Without loss of generality, the
code alphabet is assumed to be (0, 1)
throughout this paper. The modifications
necessary for larger code alphabets are
straightforward.

We assume that any cost associated
with the code letters is uniform. This is a
reasonable assumption, although it omits
applications like telegraphy where the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

code symbols are of different durations.
The assumption is also important, since
the problem of constructing optimal
codes over unequal code letter costs is
a significantly different and more diffi-
cult problem. Perl et al. [1975] and Varn
[1971] have developed algorithms for min-
imum-redundancy prefix coding in the case
of arbitrary symbol cost and equal code-
word probability. The assumption of equal
probabilities mitigates the difficulty pre-
sented by the variable symbol cost. For the
more general unequal letter costs and un-
equal probabilities model, Karp [1961] has
proposed an integer linear programming
approach. There have been several approx-
imation algorithms proposed for this more
difficult problem [Krause 1962; Cot 1977;
Mehlhorn 19801.

When data are compressed, the goal is
to reduce redundancy, leaving only the
informational content. The measure of
information of a source message oi (in
bits) is -log p(ai), where log denotes the
base 2 logarithm and p(ai) denotes the
probability of occurrence of the message
oi.2 This definition has intuitive appeal; in
the case in which p(ai) = 1, it is clear that
ai is not at all informative since it had to
occur. Similarly, the smaller the value of
p(ai), the more unlikely ai is to appear, and
hence the larger its information content.
The reader is referred to Abramson [1963,
pp. 6-131 for a longer, more elegant discus-
sion of the legitimacy of this technical
definition of the concept of information.
The average information content over the
source alphabet can be computed by
weighting the information content of each
source letter by its probability of occur-
rence, yielding the expression xi”=1
[-p(oi)log p(ai)]. This quantity is referred
to as the entropy of a source letter or the
entropy of the source and is denoted by H.
Since the length of a codeword for message
oi must be sufficient to carry the informa-
tion content of oi, entropy imposes a lower
bound on the number of bits required for
the coded message. The total number of

* Note that throughout this paper all logarithms are
to the base 2.

Data Compression l 267

bits must be at least as large as the product
of H and the length of the source ensemble.
Since the value of H is generally not an
integer, variable-length codewords must be
used if the lower bound is to be achieved.
Given that message EXAMPLE is to be
encoded one letter at a time, the entropy of
its source can be calculated using the prob-
abilities given in Figure 3: H = 2.894, so
that the minimum number of bits con-
tained in an encoding of EXAMPLE is 116.
The Huffman code given in Section 1.2 does
not quite achieve the theoretical minimum
in this case.

Both of these definitions of information
content are due to Shannon [19491. A der-
ivation of the concept of entropy as it re-
lates to information theory is presented by
Shannon [1949]. A simpler, more intuitive
explanation of entropy is offered by Ash
[1965].

The most common notion of a “good”
code is one that is optimal in the sense of
having minimum redundancy. Redundancy
can be defined as c p(ai)Zi - 2 [-p(ai)log
p(oi)], where li is the length of the codeword
representing message oi. The expression
z p(ai)Zi represents the lengths of the code-
words weighted by their probabilities of
occurrence, that is, the average codeword
length. The expression z [-p(ai)log p(oi)]
is entropy H. Thus, redundancy is a mea-
sure of the difference between average
codeword length and average information
content. If a code has minimum average
codeword length for a given discrete prob-
ability distribution, it is said to be a mini-
mum redundancy code.

We define the term local redundancy to
capture the notion of redundancy caused
by local properties of a message ensemble,
rather than its global characteristics. Al-
though the model used for analyzing
general-purpose coding techniques assumes
a random distribution of the source mes-
sages, this may not actually be the case. In
particular applications the tendency for
messages to cluster in predictable patterns
may be known. The existence of predictable
patterns may be exploited to minimize local
redundancy. Examples of applications in
which local redundancy is common and

methods for dealing with local redundancy
are discussed in Sections 2 and 6.2.

Huffman uses average message length,
2 p(ai)Zi, as a measure of the efficiency of
a code. Clearly, the meaning of this term is
the average length of a coded message. We
use the term average codeword length to
represent this quantity. Since redundancy
is defined to be average codeword length
minus entropy and entropy is constant
for a given probability distribution, mini-
mizing average codeword length minimizes
redundancy.

A code is asymptotically optimal if it
has the property that for a given probability
distribution, the ratio of average codeword
length to entropy approaches 1 as entropy
tends to infinity. That is, asymptotic opti-
mality guarantees that average codeword
length approaches the theoretical mini-
mum (entropy represents information
content, which imposes a lower bound on
codeword length).

The amount of compression yielded by a
coding scheme can be measured by a
compression ratio. Compression ratio has
been defined in several ways. The defini-
tion C = (average message length)/(average
codeword length) captures the common
meaning, which is a comparison of the
length of the coded message to the length
of the original ensemble [Cappellini 19851.
If we think of the characters of the ensem-
ble EXAMPLE as 6-bit ASCII characters,
then the average message length is 6 bits.
The Huffman code of Section 1.2 repre-
sents EXAMPLE in 117 bits, or 2.9 bits
per character. This yields a compression
ratio of 612.9, representing compression by
a factor of more than 2. Alternatively, we
may say that Huffman encoding produces
a file whose size is 49% of the original
ASCII file, or that 49% compression has
been achieved.

A somewhat different definition of
compression ratio by Rubin [1976], C =
(S - 0 - OR)/S, includes the representa-
tion of the code itself in the transmission
cost. In this definition, S represents the
length of the source ensemble, 0 the length
of the output (coded message), and OR the
size of the “output representation” (e.g., the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

260 l D. A. Lelewer and D. S. Hirschberg

number of bits required for the encoder to
transmit the code mapping to the decoder).
The quantity OR constitutes a “charge* to
an algorithm for transmission of informa-
tion about the coding scheme. The inten-
tion is to measure the total size of the
transmission (or file to be stored).

1.4 Motivation

As discussed in the Introduction, data
compression has wide application in terms
of information storage, including represen-
tation of the abstract data type string
[Standish 19801 and file compression.
Huffman coding is used for compression in
several file archival systems [ARC 1986;
PKARC 19871, as is Lempel-Ziv coding,
one of the adaptive schemes to be discussed
in Section 5. An adaptive Huffman coding
technique is the basis for the compact com-
mand of the UNIX operating system, and
the UNIX compress utility employs the
Lempel-Ziv approach [UNIX 19841.

In the area of data transmission, Huff-
man coding has been passed over for years
in favor of block-block codes, notably
ASCII. The advantage of Huffman coding
is in the average number of bits per char-
acter transmitted, which may be much
smaller than the log n bits per character
(where n is the source alphabet size) of a
block-block system. The primary difficulty
associated with variable-length codewords
is that the rate at which bits are presented
to the transmission channel will fluctuate,
depending on the relative frequencies of the
source messages. This fluctuation requires
buffering between the source and the chan-
nel. Advances in technology have both
overcome this difficulty and contributed to
the appeal of variable-length codes. Cur-
rent data networks allocate communication
resources to sources on the basis of need
and provide buffering as part of the system.
These systems require significant amounts
of protocol, and fixed-length codes are quite
inefficient for applications such as packet
headers. In addition, communication costs
are beginning to dominate storage and
processing costs, so that variable-length
coding schemes that reduce communication
costs are attractive even if they are more

ACM Computing Surveys, Vol. 19, No. 3, September 1987

complex. For these reasons, one could ex-
pect to see even greater use of variable-
length coding in the future.

It is interesting to note that the Huffman
coding algorithm, originally developed for
the efficient transmission of data, also has
a wide variety of applications outside the
sphere of data compression. These include
construction of optimal search trees [Zim-
merman 1959; Hu and Tucker 1971; Itai
19761, list merging [Brent and Kung 19781,
and generating optimal evaluation trees in
the compilation of expressions [Parker
19801. Additional applications involve
search for jumps in a monotone function of
a single variable, sources of pollution along
a river, and leaks in a pipeline [Glassey and
Karp 19761. The fact that this elegant com-
binatorial algorithm has influenced so
many diverse areas underscores its impor-
tance.

2. SEMANTIC-DEPENDENT METHODS

Semantic-dependent data compression
techniques are designed to respond to spe-
cific types of local redundancy occurring in
certain applications. One area in which
data compression is of great importance
is image representation and processing.
There are two major reasons for this. The
first is that digitized images contain a large
amount of local redundancy. An image is
usually captured in the form of an array of
pixels, whereas methods that exploit the
tendency for pixels of like color or intensity
to cluster together may-be more efficient.
The second reason for the abundance of
research in this area is volume. Digital im-
ages usually require a very large number of
bits, and many uses of digital images in-
volve large collections of images.

One technique used for compression of
image data is run-length encoding. In a
common version of run-length encoding,
the sequence of image elements along a
scan line (row) x1, x2, . . . , xn is mapped
into a sequence of pairs (cl, II), (cp, f$), . . .
(ck, lh), where ci represents an intensity or
color and li the length of the ith run (se-
quence of pixels of equal intensity). For
pictures such as weather maps, run-length
encoding can save a significant number of

Data Compression 9 269

with database files. The method, which is
part of IBM’s Information Management
System (IMS), compresses individual rec-
ords and is invoked each time a record is
stored in the database tile; expansion is
performed each time a record is retrieved.
Since records may be retrieved in any order,
context information used by the compres-
sion routine is limited to a single record. In
order for the routine to be applicable to any
database, it must be able to adapt to the
format of the record. The fact that database
records are usually heterogeneous collec-
tions of small fields indicates that the local
properties of the data are more impor-
tant than their global characteristics. The
compression routine in IMS is a hybrid
method that attacks this local redundancy
by using different coding schemes for dif-
ferent types of fields. The identified field
types in IMS are letters of the alphabet,
numeric digits, packed decimal digit pairs,
blank, and other. When compression be-
gins, a default code is used to encode the
fust character of the record For each
subsequent character, the type of the pre-
vious character determines the code to
be used. For example, if the record
“01870bABCD bb LMN” were encoded with
the letter code as default, the leading zero
would be coded using the letter code; the 1,
8, 7, 0 and the first blank (b) would be
coded by the numeric code. The A would be
coded by the blank code; B, C, D, and the
next blank by the letter code; the next blank
and the L by the blank code; and the M and
N by the letter code. Clearly, each code
must define a codeword for every character;
the letter code would assign the shortest
codewords to letters, the numeric code
would favor the digits, and so on. In the
system Cormack describes, the types of the
characters are stored in the encode/decode
data structures. When a character c is re-
ceived, the decoder checks type(c) to detect
which code table will be used in transmit-
ting the next character. The compression
algorithm might be more efficient if a spe-
cial bit string were used to alert the receiver
to a change in code table. Particularly
if fields were reasonably long, decoding
would be more rapid and the extra bits in
the transmission would not be excessive.

bits over the image element sequence [Gon-
zalez and Wintz 19771.

Another data compression technique
specific to the area of image data is differ-
ence mapping, in which the image is rep-
resented as an array of differences in
brightness (or color) between adjacent
pixels rather than the brightness values
themselves. Difference mapping was used
to encode the pictures of Uranus transmit-
ted by Voyager 2. The 8 bits per pixel
needed to represent 256 brightness levels
was reduced to an average of 3 bits per pixel
when difference values were transmitted
[Laeser et al. 19861. In spacecraft applica-
tions, image fidelity is a major concern
because of the effect of the distance from
the spacecraft to Earth on transmission
reliability. Difference mapping was com-
bined with error-correcting codes to pro-
vide both compression and data integrity
in the Voyager 2 project. Another method
that takes advantage of the tendency for
images to contain large areas of constant
intensity is the use of the quadtree data
structure [Samet 19841. Additional exam-
ples of coding techniques used in image
processing can be found in Wilkins and
Wintz [1971] and in Cappellini [1985].

Data compression is of interest in busi-
ness data processing, because of both the
cost savings it offers and the large volume
of data manipulated in many business ap-
plications. The types of local redundancy
present in business data files include runs
of zeros in numeric fields, sequences of
blanks in alphanumeric fields, and fields
that are present in some records and null
in others. Run-length encoding can be used
to compress sequences of zeros or blanks.
Null suppression can be accomplished
through the use of presence bits [Ruth and
Kreutzer 19721. Another class of methods
exploits cases in which only a limited set of
attribute values exist. Dictionary substitu-
tion entails replacing alphanumeric repre-
sentations of information such as bank
account type, insurance policy type, sex,
and month by the few bits necessary to
represent the limited number of possible
attribute values [Reghbati 19811.

Cormack [1985] describes a data
compression system that is designed for use

ACM Computing Surveys, Vol. 19, No. 3, September 1987

270 l D. A. Ldewer and D. S. Hirschberg

Cormack reports that the performance of
the IMS compression routines is very good;
at least 50 sites are currently using the
system. He cites a case of a database con-
taining student records whose size was
reduced by 42.1%, and as a side effect
the number of disk operations required to
load the database was reduced by 32.7%
[Cormack 19851.

A variety of approaches to data compres-
sion designed with text tiles in mind in-
cludes use of a dictionary representing
either all of the words in the file so that the
file itself is coded as a list of pointers to the
dictionary [Hahn 19741, or common words
and word endings so that the file consists
of pointers to the dictionary and encodings
of the less common words [Tropper 19821.
Hand selection of common phrases [Wag-
ner 19731, programmed selection of prefixes
and suffixes [Fraenkel et al. 19831, and
programmed selection of common charac-
ter pairs [Cortesi 1982; Snyderman and
Hunt 19701 have also been investigated.

This discussion of semantic-dependent
data compression techniques represents a
limited sample of a very large body of re-
search. These methods and others of a like
nature are interesting and of great value in
their intended domains. Their obvious
drawback lies in their limited utility. It
should be noted, however, that much of the
efficiency gained through the use of seman-
tic-dependent techniques can be achieved
through more general methods, albeit to a
lesser degree. For example, the dictionary
approaches can be implemented through
either Huffman coding (Sections 3.2 and 4)
or Lempel-Ziv codes (Section 5.1). Cor-
mack’s database scheme is a special case of
the codebook approach (Section 3.2), and
run-length encoding is one of the effects of
Lempel-Ziv codes.

3. STATIC DEFINED-WORDS SCHEMES

The classic defined-word scheme was
developed over 30 years ago in Huff-
man’s well-known paper on minimum-
redundancy coding [Huffman 19521.
Huffman’s algorithm provided the first
solution to the problem of constructing
minimum-redundancy codes. Many people

ACM Computing Surveys, Vol. 19, No. 3, September 1987

believe that Huffman coding cannot be im-
proved upon; that is, that it is guaranteed
to achieve the best possible compression
ratio. This is only true, however, under the
constraints that each source message is
mapped to a unique codeword and that the
compressed text is the concatenation of the
codewords for the source messages. An ear-
lier algorithm, due independently to Shan-
non and Fano [Shannon and Weaver 1949;
Fano 19491, is not guaranteed to provide
optimal codes but approaches optimal be-
havior as the number of messages ap-
proaches infinity. The Huffman algorithm
is also of importance because it has pro-
vided a foundation upon which other data
compression techniques have been built
and a benchmark to which they may be
compared. We classify the codes generated
by the Huffman and Shannon-Fan0 algo-
rithms as variable-variable and note that
they include block-variable codes as a spe-
cial case, depending on how the source mes-
sages are defined. Shannon-Fan0 coding is
discussed in Section 3.1; Huffman coding
in Section 3.2.

In Section 3.3 codes that map the inte-
gers onto binary codewords are discussed.
Since any finite alphabet may be enumer-
ated, this type of code has general-purpose
utility. However, a more common use of
these codes (called universal codes) is in
conjunction with an adaptive scheme. This
connection is discussed in Section 5.2.

Arithmetic coding, presented in Sec-
tion 3.4, takes a significantly different ap-
proach to data compression from that of
the other static methods. It does not con-
struct a code, in the sense of a mapping
from source messages to codewords. In-
stead, arithmetic coding replaces the source
ensemble by a code string that, unlike all
the other codes discussed here, is not the
concatenation of codewords corresponding
to individual source messages. Arithmetic
coding is capable of achieving compression
results that are arbitrarily close to the en-
tropy of the source.

3.1 Shannon-Fan0 Coding

The Shannon-Fan0 technique has as an
advantage its simplicity. The code is con-
structed as follows: The source messages ai

Data Compression l 271

is the same as that achieved by the Huff-
man code (see Figure 3). That the Shan-
non-Fan0 algorithm is not guaranteed to
produce an optimal code is demonstrated
by the following set of probabilities: (.35,
.17, .17, .16, .15,). The Shannon-Fan0 code
for this distribution is compared with the
Huffman code in Section 3.2.

al 112 0 de” 1

a3 118 110 .&.“l

l/16 1110 step 1

a6 l/32 11110 “ten 5

aG l/32 11111

Figure 5. A Shannon-Fan0 code.

g a/40 00 step 2

f 7/40 010 h-p3

e 6140 011 step 1

d 5140 100 Sal 6

space

c

5140 101 .tep 1

4140 110 .tsn R

b 3140 1110 step 7

a 2/40 1111

Figure6. A Shannon-Fan0 code for EXAMPLE
(code length = 117).

and their probabilities p(ai) are listed in
order of nonincreasing probability. This list
is then divided in such a way as to form
two groups of as nearly equal total proba-
bilities as possible. Each message in the
first group receives 0 as the first digit of its
codeword; the messages in the second half
have codewords beginning with 1. Each of
these groups is then divided according to
the same criterion, and additional code dig-
its are appended. The process is continued
until each subset contains only one mes-
sage. Clearly, the Shannon-Fan0 algorithm
yields a minimal prefix code.

Figure 5 shows the application of the
method to a particularly simple probability
distribution. The length of each codeword
is equal to -log p(ai). This is true as long
as it is possible to divide the list into
subgroups of exactly equal probability.
When this is not possible, some code-
words may be of length -logp(ai) + 1. The
Shannon-Fan0 algorithm yields an average
codeword length S that satisfies H 5 S 5
H + 1. In Figure 6, the Shannon-Fan0 code
for ensemble EXAMPLE is given. As is
often the case, the average codeword length

3.2 Static Huffman Coding

Huffman’s algorithm, expressed graphi-
cally, takes as input a list of nonnegative
weights (wi, . . . , w,J and constructs a full
binary tree3 whose leaves are labeled with
the weights. When the Huffman algorithm
is used to construct a code, the weights
represent the probabilities associated with
the source letters. Initially, there is a set of
singleton trees, one for each weight in the
list. At each step in the algorithm the trees
corresponding to the two smallest weights,
wi and wj, are merged into a new tree whose
weight is wi + Wj and whose root has two
children that are the subtrees represented
by wi and Wj. The weights Wi and Wj are
removed from the list, and wi + wj is in-
serted into the list. This process continues
until the weight list contains a single value.
If, at any time, there is more than one way
to choose a smallest pair of weights, any
such pair may be chosen. In Huffman’s
paper the process begins with a nonincreas-
ing list of weights. This detail is not impor-
tant to the correctness of the algorithm,
but it does provide a more efficient imple-
mentation [Huffman 19521. The Huffman
algorithm is demonstrated in Figure 7.

The Huffman algorithm determines the
lengths of the codewords to be mapped to
each of the source letters oi. There are
many alternatives for specifying the actual
digits; it is necessary only that the code
have the prefix property. The usual assign-
ment entails labeling the edge from each
parent to its left child with the digit 0 and
the edge to the right child with 1. The
codeword for each source letter is the se-
quence of labels along the path from the
root to the leaf node representing that
letter. The codewords for the source of

3 A binary tree is full if every node has either zero or
two children.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

272 8 D. A. Ldewer and D. S. Hirschberg

a1 .25 .25 .25 .33 A2
az .20 .20 .22 .25 .33 :3’.”
a3 .15 .18 .20 .22 .25
a .12 .15 .18 .20
as .lO .12 .15 JJ

as .lO .lO
a7 .08 0

(a)

(b)

Figure 7. The Huffman process: (a) The list; (b) the
tree.

Figure 7, in order of decreasing probability,
are (01, 11, 001, 100, 101, 0000, 0001).
Clearly, this process yields a minimal prefix
code. Further, the algorithm is guaranteed
to produce an optimal (minimum redun-
dancy) code [Huffman 19521. Gallager
[1978] has proved an upper bound on the
redundancy of a Huffman code of pn +
log[(2 log e)/e] = p,, f 0.086, where pn is
the probability of the least likely source
message. In a recent paper, Capocelli et al.
[1986] have provided new bounds that are
tighter than those of Gallager for some
probability distributions. Figure 8 shows a
distribution for which the Huffman code is
optimal while the Shannon-Fan0 code is
not.

In addition to the fact that there are
many ways of forming codewords of appro-
priate lengths, there are cases in which the
Huffman algorithm does not uniquely
determine these lengths owing to the
arbitrary choice among equal minimum
weights. As an example, codes with code-
word lengths of (1,2, 3,4,41 and]2,2, 2, 3,

ACM Computing Surveys, Vol. 19, No. 3, September 1987

S-F Huffman

a1 0.35 00 1

az 0.17 01 011

a3 0.17 10 010

a4 0.16 110 001

a5 0.15 111 000

Average codeword length 2.31 2.30

Figure 8. Comparison of Shannon-Fan0 and Huff-
man codes.

3) both yield the same average codeword
length for a source with probabilities (.4, -2,
.2, -1, .l). Schwartz [1964] defines a varia-
tion of the Huffman algorithm that per-
forms “bottom merging”, that is, that
orders a new parent node above existing
nodes of the same weight and always
merges the last two weights in the list. The
code constructed is the Huffman code with
minimum values of maximum codeword
length (max(& 1) and total codeword length
(c li). Schwartz and Kallick [1964] describe
an implementation of Huffman’s algorithm
with bottom merging. The Schwartz-
Kallick algorithm and a later algorithm
by Connell [19731 use Huffman’s procedure
to determine the lengths of the codewords,
and actual digits are assigned so that the
code has the numerical sequence property;
that is, codewords of equal length form a
consecutive sequence of binary numbers.
Shannon-Fan0 codes also have the numer-
ical sequence property. This property can
be exploited to achieve a compact represen-
tation of the code and rapid encoding and
decoding.

Both the Huffman and the Shannon-
Fano mappings can be generated in O(n)
time, where n is the number of messages in
the source ensemble (assuming that the
weights have been presorted). Each of
these algorithms maps a source message ai
with probability p to a codeword of length
1 (-log p I 1 I - log p + 1). Encoding and
decoding times depend on the representa-
tion of the mapping. If the mapping is
stored as a binary tree, then decoding the
codeword for ai involves following a path of
length 1 in the tree. A table indexed by the
source messages could be used for encoding;
the code for ai would be stored in position

Data Compression l 273

he or she is using. This requires only log k
bits of overhead. Assuming that classes of
transmission with relatively stable charac-
teristics could be identified, this hybrid
approach would greatly reduce the redun-
dancy due to overhead without significantly
increasing expected codeword length. In ad-
dition, the cost of computing the mapping
would be amortized over all files of a given
class. That is, the mapping would be com-
puted once on a statistically significant
sample and then used on a great number of
files for which the sample is representative.
There is clearly a substantial risk associ-
ated with assumptions about file character-
istics, and great care would be necessary in
choosing both the sample from which the
mapping is to be derived and the categories
into which to partition transmissions. An
extreme example of the risk associated
with the codebook approach is provided by
Ernest V. Wright who wrote the novel
Gadsby (1939) containing no occurrences of
the letter E. Since E is the most commonly
used letter in the English language, an en-
coding based on a sample from Gadsby
would be disastrous if used with “normal”
examples of English text. Similarly, the
“normal” encoding would provide poor
compression of Gadsby.

McIntyre and Pechura [1985] describe
an experiment in which the codebook ap-
proach is compared to static Huffman cod-
ing. The sample used for comparison is a
collection of 530 source programs in four
languages. The codebook contains a Pascal
code tree, a FORTRAN code tree, a
COBOL code tree, a PL/I code tree, and an
ALL code tree. The Pascal code tree is the
result of applying the static Huffman al-
gorithm to the combined character frequen-
cies of all of the Pascal programs in the
sample. The ALL code tree is based on the
combined character frequencies for all of
the programs. The experiment involves en-
coding each of the programs using the five
codes in the codebook and the static Huff-
man algorithm. The data reported for each
of the 530 programs consist of the size of
the coded program for each of the five
predetermined codes and the size of the
coded program plus the size of the mapping
(in table form) for the static Huffman

i of the table and encoding time would be
O(Z). Connell’s algorithm makes use of the
index of the Huffman code, a representa-
tion of the distribution of codeword lengths,
to encode and decode in O(c) time, where c
is the number of different codeword
lengths. Tanaka [1987] presents an imple-
mentation of Huffman coding based on
finite-state machines that can be realized
efficiently in either hardware or software.

As noted earlier, the redundancy bound
for Shannon-Fan0 codes is 1 and the bound
for the Huffman method is p,, + 0.086,
where p,, is the probability of the least likely
source message (so p,, is less than or equal
to 5, and generally much less). It is impor-
tant to note that in defining redundancy to
be average codeword length minus entropy,
the cost of transmitting the code mapping
computed by these algorithms is ignored.
The overhead cost for any method in which
the source alphabet has not been estab-
lished before transmission includes n log n
bits for sending the n source letters. For a
Shannon-Fan0 code, a list of codewords
ordered so as to correspond to the source
letters could be transmitted. The additional
time required is then c Zi, where the Zi are
the lengths of the codewords. For Huffman
coding, an encoding of the shape of the
code tree might be transmitted. Since any
full binary tree may be a legal Huffman
code tree, encoding tree shape may require
as many as log 4” = 2n bits. In most cases
the message ensemble is very large, so that
the number of bits of overhead is minute
by comparison to the total length of the
encoded transmission. However, it is im-
prudent to ignore this cost.

If a less-than-optimal code is acceptable,
the overhead costs can be avoided through
a prior agreement by sender and receiver
as to the code mapping. Instead of a Huff-
man code based on the characteristics of
the current message ensemble, the code
used could be based on statistics for a class
of transmissions to which the current en-
semble is assumed to belong. That is, both
sender and receiver could have access to a
codebook with k mappings in it: one for
Pascal source, one for English text, and so
on. The sender would then simply alert the
receiver as to which of the common codes

ACM Computing Surveys, Vol. 19, No. 3, September 1987

274 . D. A. Lekwer and D. S. Hirschberg

method. In every case the code tree for the
language class to which the program be-
longs generates the most compact encoding.
Although using the Huffman algorithm on
the program itself yields an optimal map-
ping, the overhead cost is greater than the
added redundancy incurred by the less-
than-optimal code. In many cases, the ALL
code tree also generates a more compact
encoding than the static Huffman algo-
rithm. In the worst case an encoding con-
structed from the codebook is only 6.6%
larger than that constructed by the Huff-
man algorithm. These results suggest that,
for files of source code, the codebook ap-
proach may be appropriate.

Gilbert [1971] discusses the construction
of Huffman codes based on inaccurate
source probabilities. A simple solution to
the problem of incomplete knowledge of the
source is to avoid long codewords, thereby
minimizing the error of badly underesti-
mating the probability of a message. The
problem becomes one of constructing the
optimal binary tree subject to a height re-
striction (see [Knuth 1971; Hu and Tan
1972; Garey 19741). Another approach in-
volves collecting statistics for several
sources and then constructing a code based
on some combined criterion. This approach
could be applied to the problem of designing
a single code for use with English, French,
German, and so on, sources. To accomplish
this, Huffman’s algorithm could be used to
minimize either the average codeword
length for the combined source probabili-
ties or the average codeword length for
English, subject to constraints on average
codeword lengths for the other sources.

3.3 Universal Codes and Representations of
the Integers

A code is universal if it maps source mes-
sages to codewords so that the resulting
average codeword length is bounded by
clH + c2. That is, given an arbitrary
source with nonzero entropy, a universal
code achieves average codeword length that
is at most a constant times the optimal
possible for that source. The potential
compression offered by a universal code
clearly depends on the magnitudes of the

ACM Computing Surveys, Vol. 19, No. 3, September 1987

constants cl and c2. We recall the definition
of an asymptotically optimal code as one
for which average codeword length ap-
proaches entropy and remark that a uni-
versal code with cl = 1 is asymptotically
optimal.

An advantage of universal codes over
Huffman codes is that it is not necessary
to know the exact probabilities with which
the source messages appear. Whereas Huff-
man coding is not applicable unless the
probabilities are known, with universal
coding it is sufficient to know the probabil-
ity distribution only to the extent that the
source messages can be ranked in probabil-
ity order. By mapping messages in order of
decreasing probability to codewords in or-
der of increasing length, universality can
be achieved. Another advantage to univer-
sal codes is that the codeword sets are fixed.
It is not necessary to compute a codeword
set based on the statistics of an ensemble;
any universal codeword set will suffice as
long as the source messages are ranked.
The encoding and decoding processes are
thus simplified. Although universal codes
can be used instead of Huffman codes as
general-purpose static schemes, the more
common application is as an adjunct to a
dynamic scheme. This type of application
is demonstrated in Section 5.

Since the ranking of source messages is
the essential parameter in universal coding,
we may think of a universal code as repre-
senting an enumeration of the source
messages or as representing the integers,
which provide an enumeration. Elias [19751
defines a sequence of universal coding
schemes that maps the set of positive in-
tegers onto the set of binary codewords.

The first Elias code is one that is simple
but not optimal. This code, y, maps an
integer x onto the binary value of x prefaced
by Llog x 1 zeros. The binary value of n is
expressed in as few bits as possible and
therefore begins with a 1, which serves to
delimit the prefix. The result is an instan-
taneously decodable code since the total
length of a codeword is exactly one greater
than twice the number of zeros in the
prefix; therefore, as soon as the first 1
of a codeword is encountered, its length
is known. The code is not a minimum

Data Compression l 275

Source Frequency Rank Codeword
message 1

2
3
4
5
6
7
8

16
17
32

1
010
011
00100
00101
00110
00111
0001000
000010000
000010001
00000100000

Figure 9. Elias codes.

redundancy code since the ratio of expected
codeword length to entropy goes to 2 as
entropy approaches infinity. The second
code, 6, maps an integer x to a codeword
consisting of r(Llog xl + 1) followed by
the binary value of x with the leading 1 de-
leted. The resulting codeword has length
Llog XJ + 2Llog(l + Llog xJ)J + 1. This con-
cept can be applied recursively to shorten
the codeword lengths, but the benefits
decrease rapidly. The code 6 is asymptoti-
cally optimal since the limit of the ratio of
expected codeword length to entropy is 1.
Figure 9 lists the values of y and 6 for a
sampling of the integers. Figure 10 shows
an Elias code for string EXAMPLE. The
number of bits transmitted using this map-
ping would be 161, which does not compare
well with the 117 bits transmitted by the
Huffman code of Figure 3. Huffman coding
is optimal under the static mapping model.
Even an asymptotically optimal universal
code cannot compare with static Huffman
coding on a source for which the probabil-
ities of the messages are known.

A second sequence of universal coding
schemes, based on the Fibonacci numbers,
is defined by Apostolico and Fraenkel
[1985]. Although the Fibonacci codes are
not asymptotically optimal, they compare
well to the Elias codes as long as the num-
ber of source messages is not too large.
Fibonacci codes have the additional attrib-
ute of robustness, which manifests itself by
the local containment of errors. This aspect
of Fibonacci codes is discussed further in
Section 7.

The sequence of Fibonacci codes de-
scribed by Apostolico and Fraenkel is based

e
d
space

s
a

a(1) = 1
S(2) = 0100
6(3) = 0101
6(4) = 01100
6(5) = 01101
a(6) = 01110
6(7) = 01111
s(8) = 00100000

Figure 10. An Elias code for EXAMPLE (code
length = 161).

on the Fibonacci numbers of order m 2 2,
where the Fibonacci numbers of order 2 are
the standard Fibonacci numbers: 1, 1, 2, 3,
5,8,13,. . . . In general, the Fibonacci num-
bers of order m are defined by the recur-
rence: Fibonacci numbers F-,+1 through F,,
are equal to 1; the kth number for iz L 1 is
the sum of the preceding m numbers. We
describe only the order-2 Fibonacci code;
the extension to higher orders is straight-
forward.

Every nonnegative integer N has pre-
cisely one binary representation of the form
R(N) = Cf=o diFi (where di E (0, 11, k 5 N,
and the Fi are the order-2 Fibonacci num-
bers as defined above) such that there are
no adjacent ones in the representation. The
Fibonacci representations for a small
sampling of the integers are shown in
Figure 11, using the standard bit sequence
from high order to low. The bottom row of
the figure gives the values of the bit posi-
tions. It is immediately obvious that this
Fibonacci representation does not consti-
tute a prefix code. The order-2 Fibonacci
code for N is defined as F(N) = D 1, where
D = d,,d,dz . -. dk (the di defined above).
That is, the Fibonacci representation is
reversed and 1 is appended. The Fibonacci
code values for a small subset of the inte-
gers are given in Figure 11. These binary
codewords form a prefix code since every
codeword now terminates in two consecu-
tive ones, which cannot appear anywhere
else in a codeword.

Fraenkel and Klein [19851 prove that the
Fibonacci code of order 2 is universal, with
cl = 2 and c2 = 3. It is not asymptotically
optimal since cl > 1. Fraenkel and Klein

ACM Computing Surveys, Vol. 19, No. 3, September 1987

276 l D. A. Lelewer and D. S. Hirschberg

N R(N) WV

1 1 11
2 10 011
3 10 0 0011
4 1 0 1 1011
5 1 0 0 0 00011
6 10 0 1 10011
7 10 1 0 01011
8 10 0 0 0 000011

16 100100 0010011
32 1010100 00101011

21 13 8 5 3 2 1

Figure 11. Fibonacci representations and Fibonacci
codes.

Source Frequency Rank
message

Codeword

l? 8 1 F(1) = 11
f 7 2 F(2) = 011

s 6 5 3 4 F(3) F(4) = = 0011 1011
space 5 5 F(5) = 00011

; 4 3 6 7 F(6) F(7) = = 10011 01011
a 2 8 F(8) = 000011

Figure 12. A Fibonacci code for EXAMPLE (code
length = 153).

also show that Fibonacci codes of higher
order compress better than the order-2 code
if the source language is large enough
(i.e., the number of distinct source mes-
sages is large) and the probability distri-
bution is nearly uniform. However, no
Fibonacci code is asymptotically optimal.
The Elias codeword 6 (N) is asymptotically
shorter than any Fibonacci codeword for
N, but the integers in a very large initial
range have shorter Fibonacci codewords.
For m = 2, for example, the transition point
is N = 514,228 [Apostolico and Fraenkel
19851. Thus, a Fibonacci code provides bet-
ter compression than the Elias code until
the size of the source language becomes
very large. Figure 12 shows a Fibonacci
code for string EXAMPLE. The number of
bits transmitted using this mapping would
be 153, which is an improvement over the
Elias code of Figure 10, but still compares
poorly with the Huffman code of Figure 3.

ACM Computing Surveys, Vol. 19, No. 3, September 198’7

Source
Probability

Cumulative
message probability Raze

A .2 .2 w, 2)
B .4 .6 1.2, .6)
c .l .7 L.6, .7)
D .2 .9 f.7, .9)
.l 1.0 [.9, 1.0)

Figure 13. The arithmetic coding model.

3.4 Arithmetic Coding

The method of arithmetic coding was sug-
gested by Elias and presented by Abramson
[1963] in his text on information theory.
Implementations of Elias’ technique were
developed by Risssanen [1976], Pasco
[1976], Rubin [1979], and, most recently,
Witten et al. [19871. We present the con-
cept of arithmetic coding first and follow
with a discussion of implementation details
and performance.

In arithmetic coding a source ensemble
is represented by an interval between 0
and 1 on the real number line. Each symbol
of the ensemble narrows this interval.
As the interval becomes smaller, the num-
ber of bits needed to specify it grows.
Arithmetic coding assumes an explicit
probabilistic model of the source. It
is a defined-word scheme that uses the
probabilities of the source messages to
successively narrow the interval used to
represent the ensemble. A high-probability
message narrows the interval less than a
low-probability message, so that high-
probability messages contribute fewer bits
to the coded message. The method begins
with an unordered list of source messages
and their probabilities. The number line is
partitioned into subintervals on the basis
of cumulative probabilities.

A small example is used to illustrate the
idea of arithmetic coding. Given source
messages (A, B, C, D, #) with probabilities
(.2, .4, .l, .2, .l], Figure 13 demonstrates the
initial partitioning of the number line. The
symbol A corresponds to the first 5 of the
interval [0, 1); B the next g; D the subin-
terval of size 5, which begins 70% of the
way from the left endpoint to the right.
When encoding begins, the source ensem-
ble is represented by the entire interval
10, 1). For the ensemble AADB#, the first

Data Compression l 277

A reduces the interval to [0, .2) and the
second A to [0, .04) (the first 2 of the
previous interval). The D further narrows
the interval to [.028, .036)(; of the previous
size, beginning 70% of the distance from
left to right). The B narrows the interval
to [.0296, .0328), and the # yields a final
interval of [.03248, .0328). The interval, or
alternatively any number i within the in-
terval, may now be used to represent the
source ensemble.

Two equations may be used to define the
narrowing process described above:

newleft = prevleft + msgleft * prevsize (1)
newsize = prevsize * msgsize (2)

Equation (1) states that the left endpoint
of the new interval is calculated from the
previous interval and the current source
message. The left endpoint of the range
associated with the current message speci-
fies what percent of the previous interval
to remove from the left in order to form the
new interval. For D in the above example,
the new left endpoint is moved over by
.7 X .04 (70% of the size of the previous
interval). Equation (2) computes the size of
the new interval from the previous interval
size and the probability of the current mes-
sage (which is equivalent to the size of its
associated range). Thus, the size of the
interval determined by D is .04 x .2, and
the right endpoint is .028 + .008 = .036
(left endpoint + size).

The size of the final subinterval deter-
mines the number of bits needed to specify
a number in that range. The number of bits
needed to specify a subinterval of [0, 1) of
size s is -log a. Since the size of the final
subinterval is the product of the probabili-
ties of the source messages in the ensemble
(i.e., s = nZ1 p(source message i), where
N is the length of the ensemble), we have
-log s = - z Zi log p (source message i) =
- xr==, p(aJlog p(oJ, where n is the number
of unique source messages al, a2, . . . , a,.
Thus, the number of bits generated by the
arithmetic coding technique is exactly
equal to entropy H. This demonstrates
the fact that arithmetic coding achieves
compression that is almost exactly that
predicted by the entropy of the source.

In order to recover the original ensemble,
the decoder must know the model of the
source used by the encoder (e.g., the source
messages and associated ranges) and a sin-
gle number within the interval determined
by the encoder. Decoding consists of a se-
ries of comparisons of the number i to the
ranges representing the source messages.
For this example, i might be .0325 (.03248,
.0326, or .0327 would all do just as well).
The decoder uses i to simulate the actions
of the encoder. Since i lies between 0 and
.2, the decoder deduces that the first letter
was A (since the range [0, .2) corresponds
to source message A). This narrows the
interval to [0, .2). The decoder can now
deduce that the next message will further
narrow the interval in one of the following
ways: to [0, .04) for A, to [.04, .12) for 23, to
[.l2, .l4) for C, to [.14, .18) for D, or to
[.18, .2) for #. Since i falls into the interval
[0, .04), the decoder knows that the second
message is again A. This process continues
until the entire ensemble has been re-
covered.

Several difliculties become evident when
implementation of arithmetic coding is
attempted. The first is that the decoder
needs some way of knowing when to stop.
As evidence of this, the number 0 could
represent any of the source ensembles A,
AA, AAA, and so forth. Two solutions to
this problem have been suggested. One is
that the encoder transmit the size of the
ensemble as part of the description of
the model. Another is that a special symbol
be included in the model for the purpose of
signaling end of message. The # in the
above example serves this purpose. The
second alternative is preferable for several
reasons. First, sending the size of the en-
semble requires a two-pass process and
precludes the use of arithmetic coding as
part of a hybrid codebook scheme (see
Sections 1.2 and 3.2). Second, adaptive
methods of arithmetic coding are easily
developed, and a first pass to determine
ensemble size is inappropriate in an on-
line adaptive scheme.

A second issue left unresolved by the
fundamental concept of arithmetic coding
is that of incremental transmission and
reception. It appears from the above

ACM Computing Surveys, Vol. 19, No. 3, September 1987

278 . D. A. Lelewer and D. S. Hirschberg

discussion that the encoding algorithm
transmits nothing until the final interval is
determined. However, this delay is not nec-
essary. As the interval narrows, the leading
bits of the left and right endpoints become
the same. Any leading bits that are the
same may be transmitted immediately,
since they will not be affected by further
narrowing. A third issue is that of precision.
From the description of arithmetic coding
it appears that the precision required grows
without bound as the length of the ensem-
ble grows. Witten et al. [1987] and Rubin
[1979] address this issue. Fixed precision
registers may be used as long as underflow
and overflow are detected and managed.
The degree of compression achieved by an
implementation of arithmetic coding is not
exactly H, as implied by the concept of
arithmetic coding. Both the use of a mes-
sage terminator and the use of fixed-length
arithmetic reduce coding effectiveness.
However, it is clear that an end-of-message
symbol will not have a significant effect on
a large source ensemble. Witten et al.
[1987] approximate the overhead due to
the use of fixed precision at lo-* bits per
source message, which is also negligible.

The arithmetic coding model for ensem-
ble EXAMPLE is given in Figure 14. The
final interval size is p(a)” X p(b)3 X p(c)” X

pk05 X p(eY X p(f17 X p(g)’ X pbpd5.
The number of bits needed to specify
a value in the interval is -log(1.44 x
10-35) = 115.7. So excluding overhead, ar-
ithmethic coding transmits EXAMPLE in
116 bits, one less bit than static Huffman
coding.

Witten et al. [1987] provide an imple-
mentation of arithmetic coding, written in
C, which separates the model of the source
from the coding process (where the coding
process is defined by eqs. (1) and (2)). The
model is in a separate program module and
is consulted by the encoder and the decoder
at every step in the processing. The fact
that the model can be separated so easily
renders the classification static/adaptive
irrelevant for this technique. Indeed, the
fact that the coding method provides
compression efficiency nearly equal to the
entropy of the source under any model al-
lows arithmetic coding to be coupled with

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Source Cumulative
message

Probability probabi,ity Raw

i
.05 .05 PI .05)
.075 .125 [.05, .125)

Tl
.l .225 [.125, .225)
.125 .35 [.225, .35)

;

.15 .5 [.35, .5)

.175 .675 [.5, .675)
g .2 .a75 [.675, .875)

space .125 1.0 [.875, 1.0)

Figure 14. The arithmetic coding model of EXAM-
PLE.

any static or adaptive method for comput-
ing the probabilities (or frequencies) of the
source messages. Witten et al. [1987] im-
plement an adaptive model similar to the
techniques described in Section 4. The
performance of this implementation is
discussed in Section 6.

4. ADAPTIVE HUFFMAN CODING

Adaptive Huffman coding was first con-
ceived independently by Faller [1973] and
Gallager [19781. Knuth [19851 contributed
improvements to the original algorithm,
and the resulting algorithm is referred to
as algorithm FGK. A more recent version
of adaptive Huffman coding is described by
Vitter [19871. All of these methods are
defined-word schemes that determine the
mapping from source messages to code-
words on the basis of a running estimate of
the source message probabilities. The code
is adaptive, changing so as to remain opti-
mal for the current estimates. In this way,
the adaptive Huffman codes respond to
locality. In essence, the encoder is “learn-
ing” the characteristics of the source. The
decoder must learn along with the encoder
by continually updating the Huffman tree
so as to stay in synchronization with the
encoder.

Another advantage of these systems is
that they require only one pass over the
data. Of course, one-pass methods are not
very interesting if the number of bits they
transmit is significantly greater than that
of the two-pass scheme. Interestingly, the
performance of these methods, in terms of
number of bits transmitted, can be better
than that of static Huffman coding. This

Data Compression 8 279

that is the new O-node. Again, the tree is
recomputed. In this case, the code for the
O-node is sent; in addition, the receiver
must be told which of the n - k unused
messages has appeared. In Figure 15, a sim-
ple example is given. At each node a count
of occurrences of the corresponding mes-
sage is stored. Nodes are numbered indi-
cating their position in the sibling property
ordering. The updating of the tree can be
done in a single traversal from the a,+, node
to the root. This traversal must increment
the count for the a,+l node and for each of
its ancestors. Nodes may be exchanged to
maintain the sibling property, but all of
these exchanges involve a node on the path
from a,+l to the root. Figure 16 shows the
final code tree formed by this process on
the ensemble EXAMPLE.

Disregarding overhead, the number of
bits transmitted by algorithm FGK for the
EXAMPLE is 129. The static Huffman
algorithm would transmit 117 bits in pro-
cessing the same data. The overhead asso-
ciated with the adaptive method is actually
less than that of the static algorithm. In
the adaptive case the only overhead is the
n log n bits needed to represent each of the
n different source messages when they ap-
pear for the first time. (This is in fact
conservative; instead of transmitting a
unique code for each of the n source mes-
pages, the sender could transmit the
message’s position in the list of remaining
messages and save a few bits in the average
case.) In the static case, the source mes-
sages need to be sent as does the shape of
the code tree. As discussed in Section 3.2,
an efficient representation of the tree shape
requires 2n bits. Algorithm FGK com-
pares well with static Huffman coding on
this ensemble when overhead is taken
into account. Figure 17 illustrates an
example on which algorithm FGK per-
forms better than static Huffman coding
even without taking overhead into account.
Algorithm FGK transmits 47 bits for this
ensemble, whereas the static Huffman code
requires 53.

Vitter [1987] has proved that the total
number of bits transmitted by algorithm
FGK for a message ensemble of length t
containing n distinct messages is bounded

does not contradict the optimality of the
static method, since the static method is
optimal only over all methods that assume
a time-invariant mapping. The perform-
ance of the adaptive methods can also be
worse than that of the static method. Upper
bounds on the redundancy of these meth-
ods are presented in this section. As dis-
cussed in the Introduction, the adaptive
method of Faller [1973], Gallager [1978],
and Knuth [19851 is the basis for the UNIX
utility compact. The performance of com-
pact is quite good, providing typical
compression factors of 30-40%.

4.1 Algorithm FGK

The basis for algorithm FGK is the sibling
property, defined by Gallager [1978]: A
binary code tree has the sibling property
if each node (except the root) has a sibling
and if the nodes can be listed in order of
nonincreasing weight with each node adja-
cent to its sibling. Gallager proves that a
binary prefix code is a Huffman code if and
only if the code tree has the sibling prop-
erty. In algorithm FGK, both sender and
receiver maintain dynamically changing
Huffman code trees. The leaves of the
code tree represent the source messages,
and the weights of the leaves represent
frequency counts for the messages. At any
particular time, k of the n possible source
messages have occurred in the message
ensemble.

Initially, the code tree consists of a single
leaf node, called the O-node. The O-node is
a special node used to represent the n - k
unused messages. For each message trans-
mitted, both parties must increment the
corresponding weight and recompute the
code tree to maintain the sibling property.
At the point in time when t messages have
been transmitted, k of them distinct, and
k < n, the tree is a legal Huffman code
tree with k + 1 leaves, one for each of
the k messages and one for the O-node. If
the (t + 1)st message is one of the k already
seen, the algorithm transmits at+l’s current
code, increments the appropriate counter,
and recomputes the tree. If an unused mes-
sage occurs, the O-node is split to create a
pair of leaves, one for a,+l, and a sibling

ACM Computing Surveys, Vol. 19, No. 3, September 1987

280 D. A. Lelewer and D. S. Hirschberg

space
(b)

space

(4

(4

Figure 15. Algorithm FGK processing the ensemble EXAMPLE--(a) Tree
after processing LLaa bb”; 11 will be transmitted for the next b. (b) After
encoding the third b; 101 will be transmitted for the next spuce; the form of
the tree will not change-only the frequency counts will be updated; 100 will
be transmitted for the first c. (c) Tree after update following first c.

below by S - n + 1, where S is the perform-
ance of the static method, and bounded
above by 2s + t - 4n + 2. So the perform-
ance of algorithm FGK is never much worse
than twice optimal. Knuth [1985] provides
a complete implementation of algorithm
FGK and a proof that the time required for
each encoding or decoding operation is
O(l), where 1 is the current length of the
codeword. It should be noted that since the
mapping is defined dynamically, (during
transmission) the encoding and decoding
algorithms stand alone; there is no addi-
tional algorithm to determine the mapping
as in static methods.

4.2 Algorithm V

The adaptive Huffman algorithm of Vitter
(algorithm V) incorporates two improve-
ments over algorithm FGK. First, the num-
ber of interchanges in which a node is
moved upward in the tree during a recom-
putation is limited to one. This number is
bounded in algorithm FGK only by l/2,
where 1 is the length of the codeword for
a,+l when the recomputation begins. Sec-
ond, Vitter’s method minimizes the values
of z li and max(li] subject to the require-
ment of minimizing 2 wili. The intuitive
explanation of algorithm V’s advantage

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Data Compression l 281

a

Figure 17. Tree formed by algorithm
FGK for ensemble “e eae de eabe eae dcf”.

Figure 16. Tree formed by algorithm
FGK for ensemble EXAMPLE.

f

over algorithm FGK is as follows: As in rately represent the symbol probabilities
algorithm FGK, the code tree constructed over the entire message. Therefore, the fact
by algorithm V is the Huffman code tree that algorithm V guarantees a tree of min-
for the prefix of the ensemble seen so far. imum height (height = max(Zi)) and mini-
The adaptive methods do not assume that mum external path length (Z li) implies
the relative frequencies of a prefix accu- that it is better suited for coding the next

ACM Computing Surveys, Vol. 19, No. 3, September 1987

282 . D. A. Lelewer and D. S. Hirschberg

Figure 18. FGK tree with nonlevel order numbering.

message of the ensemble, given that any of
the leaves of the tree may represent that
next message.

These improvements are accomplished
through the use of a new system for num-
bering nodes. The numbering, called an
implicit numbering, corresponds to a level
ordering of the nodes (from bottom to top
and left to right). Figure 18 illustrates that
the numbering of algorithm FGK is not
always a level ordering. The following in-
variant is maintained in Vitter’s algorithm:
For each weight w, all leaves of weight w
precede (in the implicit numbering) all in-
ternal nodes of weight w. Vitter [1987]
proves that this invariant enforces the de-
sired bound on node promotions. The in-
variant also implements bottom merging,
as discussed in Section 3.2, to minimize
z li and max(Zi). The difference between
Vitter’s method and algorithm FGK is in
the way the tree is updated between
transmissions. In order to understand the
revised update operation, the following
definition of a block of nodes is necessary:
Blocks are equivalence classes of nodes de-
fined by u = v iff weight(u) = weight(v),
and u and v are either both leaves or both
internal nodes. The leader of a block is the
highest numbered (in the implicit number-
ing) node in the block. Blocks are ordered

ACM Computing Surveys, Vol. 19, No. 3, September 1987

1

c

Figure 19. Algorithm V processing the ensemble “UQ
bbb c”.

by increasing weight with the convention
that a leaf block always precedes an inter-
nal block of the same weight. When an
exchange of nodes is required to maintain
the sibling property, algorithm V requires
that the node being promoted be moved to
the position currently occupied by the high-
est numbered node in the target block.

In Figure 19, the Vitter tree correspond-
ing to Figure 15~ is shown. This is the
first point in EXAMPLE at which algo-
rithm FGK and algorithm V differ signifi-
cantly. At this point, the Vitter tree has
height 3 and external path length 12,

Data Compression l 283

c b

whereas the FGK tree has height 4 and
external path length 14. Algorithm V trans-
mits codeword 001 for the second c; FGK
transmits 1101. This demonstrates the in-
tuition given earlier that algorithm V is
better suited for coding the next message.
The Vitter tree corresponding to Figure 16,
representing the final tree produced in
processing EXAMPLE, is only different
from Figure 16 in that the internal node of
weight 5 is to the right of both leaf nodes
of weight 5. Algorithm V transmits 124 bits
in processing EXAMPLE, as compared
with the 129 bits of algorithm FGK and
117 bits of static Huffman coding. It should
be noted that these figures do not include
overhead and, as a result, disadvantage the
adaptive methods.

Figure 20 illustrates the tree built by
Vitter’s method for the ensemble of Fig-
ure 17. Both C li and maxI& 1 are smaller in
the tree of Figure 20. The number of bits
transmitted during the processing of the
sequence is 47, the same used by algorithm
FGK. However, if the transmission contin-
ues with d, b, c, f, or an unused letter, the
cost of algorithm V will be less than that
of algorithm FGK. This again illustrates
the benefit of minimizing the external path
length (C li) and the height (max(Zi)).

It should be noted again that the strategy
of minimizing external path length and
height is optimal under the assumption
that any source letter is equally likely to
occur next. Other reasonable strategies in-
clude one that assumes locality. To take
advantage of locality, the ordering of tree

e

Figure 20. Tree formed by algorithm V for
the ensemble of Figure 17.

nodes with equal weights could be deter-
mined on the basis of recency. Another
reasonable assumption about adaptive cod-
ing is that the weights in the current tree
correspond closely to the probabilities as-
sociated with the source. This assumption
becomes more reasonable as the length of
the ensemble increases. Under this assump-
tion, the expected cost of transmitting the
next letter is C pi& z x wili, SO that neither
algorithm FGK nor algorithm V has any
advantage.

Vitter [1987] proves that the perform-
ance of his algorithm is bounded by S - n
+ 1 from below and S + t - 2n + 1 from
above. At worst then, Vitter’s adaptive
method may transmit one more bit per
codeword than the static Huffman method.
The improvements made by Vitter do not
change the complexity of the algorithm;
algorithm V encodes and decodes in 0 (1)
time, as does algorithm FGK.

5. OTHER ADAPTIVE METHODS

Two more adaptive data compression
methods, algorithm BSTW and Lempel-
Ziv coding, are discussed in this section.
Like the adaptive Huffman coding tech-
niques, these methods do not require a first
pass to analyze the characteristics of the
source. Thus they provide coding and
transmission in real time. However, these
schemes diverge from the fundamental
Huffman coding approach to a greater
degree than the methods discussed in Sec-
tion 4. Algorithm BSTW is a defined-word

ACM Computing Surveys, Vol. 19, No. 3, September 1987

204 . D. A. Lelewer and D. S. Hirschberg

scheme that attempts to exploit locality.
Lempel-Ziv coding is a free-parse method;
that is, the words of the source alphabet
are defined dynamically as the encoding is
performed. Lempel-Ziv coding is the basis
for the UNIX utility compress. Algorithm
BSTW is a variable-variable scheme,
whereas Lempel-Ziv coding is variable-
block.

5.1 Lempel-Ziv Codes

Lempel-Ziv coding represents a departure
from the classic view of a code as a mapping
from a fixed set of source messages (letters,
symbols, or words) to a fixed set of code-
words. We coin the term free-parse to char-
acterize this type of code, in which the set
of source messages and the codewords to
which they are mapped are defined as the
algorithm executes. Whereas all adaptive
methods create a set of codewords dynam-
ically, defined-word schemes have a fixed
set of source messages, defined by context
(e.g., in text file processing the source mes-
sages might be single letters; in Pascal
source file processing the source messages
might be tokens). Lempel-Ziv coding de-
fines the set of source messages as it parses
the ensemble.

The Lempel-Ziv algorithm consists of a
rule for parsing strings of symbols from a
finite alphabet into substrings or words
whose lengths do not exceed a prescribed
integer L, and a coding scheme that maps
these substrings sequentially into uniquely
decipherable codewords of fixed length Lz
[Ziv and Lempel 19771. The strings are
selected so that they have very nearly equal
probability of occurrence. As a result, fre-
quently occurring symbols are grouped
into longer strings, whereas infrequent
symbols appear in short strings. This strat-
egy is effective at exploiting redundancy
due to symbol frequency, character repeti-
tion, and high-usage patterns. Figure 21
shows a small Lempel-Ziv code table. Low-
frequency letters such as Z are assigned
individually to fixed-length codewords (in
this case, 12-bit binary numbers repre-
sented in base 10 for readability).
Frequently occurring symbols, such as
blank (represented by b) and zero, appear

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Symbol string Code

A 1
T 2
AN 3
TH 4
THE 5
AND 6
AD 7
b 8
bb 9
bbb 10
0 11
00 12
000 13
0000 14
Z 15

4095

Figure 21. A Lempel-Ziv code table.

in long strings. Effective compression is
achieved when a long string is replaced by
a single 12-bit code.

The Lempel-Ziv method is an incremen-
tal parsing strategy in which the coding
process is interlaced with a learning process
for varying source characteristics [Ziv and
Lempel19771. In Figure 21, run-length en-
coding of zeros and blanks is being learned.

The Lempel-Ziv algorithm parses the
source ensemble into a collection of seg-
ments of gradually increasing length. At
each encoding step, the longest prefix of
the remaining source ensemble that
matches an existing table entry ((Y) is
parsed off, along with the character (c)
following this prefix in the ensemble. The
new source message, (YC, is added to the
code table. The new table entry is coded as
(i, c), where i is the codeword for the exist-
ing table entry and c is the appended
character. For example, the ensemble
010100010 is parsed into (0, 1, 01, 00, 010)
and is coded as ((0, 0), (0, l), (1, l), (1, 0),
(3, 0)). The table built for the message
ensemble EXAMPLE is shown in Fig-
ure 22. The coded ensemble has the form
((0, a), (1, space), (0, b), (3, b), to, space),
(0, 4, (6, 4, (6, space), (0, d), (9, d),
(10, w=e), to, 4, (12, 4, (13, 4, (5, f),
(0, f), (1% f), (17, f), (0, g), (1% g), (20, g),
(20)). The string table is represented in a
more efficient manner than in Figure 21;

Data Compression l 285

good performance briefly, and fail to make
any gains once the table is full and mes-
sages can no longer be added. If the ensem-
ble’s characteristics vary over time, the
method may be “stuck with” the behavior
it has learned and may be unable to con-
tinue to adapt.

Lempel-Ziv coding is asymptotically
optimal, meaning that the redundancy ap-
proaches zero as the length of the source
ensemble tends to infinity. However, for
particular finite sequences, the compres-
sion achieved may be far from optimal
[Storer and Szymanski 19821. When the
method begins, each source symbol is coded
individually. In the case of 6- or B-bit source
symbols and 12-bit codewords, the method
yields as much as 50% expansion during
initial encoding. This initial inefficiency
can be mitigated somewhat by initializing
the string table to contain all of the source
characters. Implementation issues are par-
ticularly important in Lempel-Ziv meth-
ods. A straightforward implementation
takes O(n*) time to process a string of n
symbols; for each encoding operation, the
existing table must be scanned for the long-
est message occurring as a prefix of the
remaining ensemble. Rodeh et al. [1981]
address the issue of computational com-
plexity by defining a linear implementation
of Lempel-Ziv coding based on suffix trees.
The Rodeh et al. scheme is asymptotically
optimal, but an input must be very long in
order to allow efficient compression, and
the memory requirements of the scheme
are large, O(n) where n is the length of the
source ensemble. It should also be men-
tioned that the method of Rodeh et al.
constructs a variable-variable code; the
pair (i, c) is coded using a representation
of the integers, such as the Elias codes, for
i and for c (a letter c can always be coded
as the kth member of the source alphabet
for some k).

The other major implementation consid-
eration involves the way in which the string
table is stored and accessed. Welch [1984]
suggests that the table be indexed by the
codewords (integers 1 . . . 2L, where L is the
maximum codeword length) and that the
table entries be fixed-length, (codeword-
extension) character pairs. Hashing is

Message

a
lspace
b
3b
space

C

6c

d-
9d
lOspace
e
12e
13e
5f

i6f

17f
g
1%
2ol2

Codeword

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

Figure 22. Lempel-Ziv table for the message ensem-
ble EXAMPLE (code length = 173).

the string is represented by its prefix code-
word followed by the extension character,
so that the table entries have fixed length.
The Lempel-Ziv strategy is simple, but
greedy. It simply parses off the longest rec-
ognized string each time instead of search-
ing for the best way to parse the ensemble.

The Lempel-Ziv method specifies fixed-
length codewords. The size of the table and
the maximum source message length are
determined by the length of the codewords.
It should be clear from the definition of the
algorithm that Lempel-Ziv codes tend to
be quite inefficient during the initial por-
tion of the message ensemble. For example,
even if we assume 3-bit codewords for char-
acters a-g and space and &bit codewords
for table indexes, the Lempel-Ziv algo-
rithm transmits 173 bits for ensemble
EXAMPLE. This compares poorly with
the other methods discussed in this survey.
The ensemble must be sufficiently long for
the procedure to build up enough symbol
frequency experience to achieve good
compression over the full ensemble.

If the codeword length is not sufficiently
large, Lempel-Ziv codes may also rise
slowly to reasonable efficiency, maintain

ACM Computing Surveys, Vol. 19, No. 3, September 1987

286 . D. A. Lelewer and D. S. Hirschberg

proposed to assist in encoding. Decoding
becomes a recursive operation in which the
codeword yields the final character of the
substring and another codeword. The de-
coder must continue to consult the table
until the retrieved codeword is 0. Unfortu-
nately, this strategy peels off extension
characters in reverse order, and some type
of stack operation must be used to reorder
the source.

Storer and Szymanski [1982] present a
general model for data compression that
encompasses Lempel-Ziv coding. Their
broad theoretical work compares classes of
macro schemes, where macro schemes in-
clude all methods that factor out duplicate
occurrences of data and replace them by
references either to the source ensemble
or to a code table. They also contribute
a linear-time Lempel-Ziv-like algorithm
with better performance than the standard
Lempel-Ziv method.

Rissanen [19831 extends the Lempel-Ziv
incremental parsing approach. Abandoning
the requirement that the substrings parti-
tion the ensemble, the Rissanen method
gathers “contexts” in which each symbol of
the string occurs. The contexts are sub-
strings of the previously encoded string (as
in Lempel-Ziv), have varying size, and are
in general overlapping. The Rissanen
method hinges on the identification of a
design parameter capturing the concept of
“relevant” contexts. The problem of finding
the best parameter is undecidable, and Ris-
sanen suggests estimating the parameter
experimentally,

As mentioned earlier, Lempel-Ziv coding
is the basis for the UNIX utility compress
and is one of the methods commonly used
in file archival programs. The archival sys-
tem PKARC uses Welch’s implementation,
as does compress. The compression pro-
vided by compress is generally much better
than that achieved by compact (the UNIX
utility based on algorithm FGK) and takes
less time to compute [UNIX 19841. Typical
compression values attained by compress
are in the range of 50-60%.

5.2 Algorithm BSTW

The most recent of the algorithms surveyed
here is due to Bentley, Sleator, Tarjan,

ACM Computing Surveys, Vol. 19, No. 3, September 1987

and Wei [1986]. This method, algorithm
BSTW, possesses the advantage that it re-
quires only one pass over the data to be
transmitted and yet has performance that
compares well to that of the static two-pass
method along the dimension of number of
bits per word transmitted. This number of
bits is never much larger than the number
of bits transmitted by static Huffman cod-
ing (in fact, it is usually quite close) and
can be significantly better. Algorithm
BSTW incorporates the additional benefit
of taking advantage of locality of reference,
the tendency for words to occur frequently
for short periods of time and then fall into
long periods of disuse. The algorithm uses
a self-organizing list as an auxiliary data
structure and shorter encodings for words
near the front of this list. There are many
strategies for maintaining self-organizing
lists [Hester and Hirschberg 19851; algo-
rithm BSTW uses move to front.

A simple example serves to outline the
method of algorithm BSTW. As in other
adaptive schemes, sender and receiver
maintain identical representations of the
code, in this case message lists that are
updated at each transmission using the
move-to-front heuristic. These lists are in-
itially empty. When message a, is transmit-
ted, if a, is on the sender’s list, the sender
transmits its current position. The sender
then updates his or her list by moving at to
position 1 and shifting each of the other
messages down one position. The receiver
similarly alters his or her word list. If a, is
being transmitted for the first time, then k
+ 1 is the “position” transmitted, where k
is the number of distinct messages trans-
mitted so far. Some representation of the
message itself must be transmitted as well,
but just this first time. Again, a, is moved
to position 1 by both sender and receiver
subsequent to its transmission. For the en-
semble “abcadeabfd “, the transmission
wouldbela2b3c34d5e356f5(for
ease of presentation, list positions are rep-
resented in base ten).

As the example shows, algorithm BSTW
transmits each source message once; the
rest of its transmission consists of encod-
ings of list positions. Therefore, an
essential feature of algorithm BSTW is a
reasonable scheme for representation of

Data Compression l 287

An implementation of algorithm BSTW
is described in great detail in Bentley et al.
[19861. In this implementation, encoding
an integer consists of a table lookup; the
codewords for the integers from 1 to n + 1
are stored in an array indexed from 1 to
n + 1. A binary trie is used to store the
inverse mapping from codewords to inte-
gers. Decoding an Elias codeword to find
the corresponding integer involves follow-
ing a path in the trie. Two interlinked data
structures, a binary trie and a binary tree,
are used to maintain the word list. The trie
is based on the binary encodings of the
source words. Mapping a source message oi
to its list position p involves following a
path in the trie, following a link to the tree,
and then computing the symmetric order
position of the tree node. Finding the
source message Ui in position p is accom-
plished by finding the symmetric order po-
sition p in the tree and returning the word
stored there. Using this implementation,
the work done by sender and receiver is
O(kngth(ai) + length(w)), where oi is the
message being transmitted and w the code-
word representing oi’s position in the list.
If the source alphabet consists of single
characters, then the complexity of algo-
rithm BSTW is just O(length(w)).

The “move-to-front” scheme of Bentley
et al. was independently developed by Elias
in his paper on interval encoding and re-
cency rank encoding [Elias 19871. Recency
rank encoding is equivalent to algorithm
BSTW. The name emphasizes the fact,
mentioned above, that the codeword for a
source message represents the number of
distinct messages that have occurred since
its most recent occurrence. Interval encod-
ing represents a source message by the total
number of messages that have occurred
since its last occurrence (equivalently, the
length of the interval since the last previous
occurrence of the current message). It is
obvious that the length of the interval since
the last occurrence of a message a, is at
least as great as its recency rank, so that
recency rank encoding never uses more,
and generally uses fewer, symbols per mes-
sage than interval encoding. The advantage
to interval encoding is that it has a very
simple implementation and can encode and
decode selections from a very large alphabet

the integers. The methods discussed by
Bentley et al. are the Elias codes presented
in Section 3.3. The simple scheme, code y,
involves prefixing the binary representa-
tion of the integer i with Llog iJ zeros. This
yields a prefix code with the length of the
codeword for i equal to 2Llog i J + 1. Greater
compression can be gained through use of
the more sophisticated scheme 6, which
encodes an integer i in 1 + Llog i J + 21 (log(1
+ Llog il)l bits.

A message ensemble on which algorithm
BSTW is particularly efficient, described
by Bentley et al., is formed by repeating
each of n messages n times; for example,
In2n3” . . . nne Disregarding overhead, a
static Huffman code uses n’log n bits (or
log n bits per message), whereas algorithm
BSTW uses n2 + 2 CL Llog iJ (which is
less than or equal to nz + 2n log n or O(1)
bits per message). The overhead for algo-
rithm BSTW consists of just the n log n
bits needed to transmit each source letter
once. As discussed in Section 3.2, the over-
head for static Huffman coding includes an
additional 2n bits. The locality present in
ensemble EXAMPLE is similar to that in
the above example. The transmission ef-
fected by algorithm BSTW is 1 a 1 2 space
3b1124c11125d111126ellll
127f1111118glllllll.Using3
bits for each source letter (a-g and space)
and the Elias code 6 for list positions, the
number of bits used is 81, which is a great
improvement over all of the other methods
discussed (only 69% of the length used by
static Huffman coding). This could be im-
proved further by the use of Fibonacci
codes for list positions.

In Bentley et al. [1986] a proof is given
that with the simple scheme for encoding
integers, the performance of algorithm
BSTW is bounded above by 2S + 1, where
S is the cost of the static Huffman coding
scheme. Using the more sophisticated
integer encoding scheme, the bound is
1 + S + 2 log(1 + S). A key idea in the
proofs given by Bentley et al. is the fact
that, using the move-to-front heuristic, the
integer transmitted for a message a, will be
one more than the number of different
words transmitted since the last occurrence
of a,. Bentley et al. also prove that algo-
rithm BSTW is asymptotically optimal.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

288 l D. A. Lelewer and D. 5’. Hirschberg

(a million letters, for example) at a micro-
second rate [Elias 19871. The use of inter-
val encoding might be justified in a data
transmission setting, where speed is the
essential factor.

Ryabko [1987] also comments that the
work of Bentley et al. coincides with many
of the results in a paper in which he con-
siders data compression by means of a
“book stack” (the books represent the
source messages, and as a “book” occurs it
is taken from the stack and placed on top).
Horspool and Cormack [1987] have consid-
ered “move-to-front,” as well as several
other list organization heuristics, in con-
nection with data compression.

6. EMPIRICAL RESULTS

Empirical tests of the efficiencies of the
algorithms presented here are reported
in Bentley et al. [1986], Knuth [1985],
Schwartz and Kallick [19641, Vitter [19871,
and Welch [19841. These experiments com-
pare the number of bits per word required;
processing time is not reported. Although
theoretical considerations bound the per-
formance of the various algorithms, exper-
imental data are invaluable in providing
additional insight. It is clear that the per-
formance of each of these methods is de-
pendent on the characteristics of the source
ensemble.

Schwartz and Kallick [1964] test an im-
plementation of static Huffman coding in
which bottom merging is used to determine
codeword lengths and all codewords of a
given length are sequential binary numbers.
The source alphabet in the experiment
consists of 5114 frequently used English
words, 27 geographical names, 10 numerals,
14 symbols, and 43 suffixes. The entropy of
the document is 8.884 binary digits per
message, and the average codeword con-
structed has length 8.920. The same docu-
ment is also coded one character at a time.
In this case the entropy of the source is
4.03, and the coded ensemble contains an
average of 4.09 bits per letter. The redun-
dancy is low in both cases. However, the
relative redundancy (i.e., redundancy/
entropy) is lower when the document is
encoded by words.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Knuth [19851 describes algorithm FGK’s
performance on three types of data: a file
containing the text of Grimm’s first 10 fairy
tales, text of a technical book, and a file of
graphical data. For the first two files, the
source messages are individual characters
and the alphabet size is 128. The same data
are coded using pairs of characters so that
the alphabet size is 1968. For the graphical
data, the number of source messages is 343.
In the case of the fairy tales the perform-
ance of FGK is very close to optimum,
although performance degrades with in-
creasing file size. Performance on the tech-
nical book is not as good, but it is still
respectable. The graphical data prove
harder yet to compress, but again FGK
performs reasonably well. In the latter two
cases the trend of performance degradation
with file size continues. Defining source
messages to consist of character pairs re-
sults in slightly better compression, but the
difference would not appear to justify the
increased memory requirement imposed by
the larger alphabet.

Vitter [1987] tests the performance of
algorithms V and FGK against that of
static Huffman coding. Each method is run
on data that include Pascal source code, the
TEX source of the author’s thesis, and elec-
tronic mail files. Figure 23 summarizes the
results of the experiment for a small file of
text. The performance of each algorithm is
measured by the number of bits in the
coded ensemble, and overhead costs are not
included. Compression achieved by each
algorithm is represented by the size of the
file it creates, given as a percentage of the
original file size. Figure 24 presents data
for Pascal source code. For the TEX source,
the alphabet consists of 128 individual
characters; for the other two file types, no
more than 97 characters appear. For each
experiment, when the overhead costs are
taken into account, algorithm V outper-
forms static Huffman coding as long as the
size of the message ensemble (number of
characters) is no more than 104. Algorithm
FGK displays slightly higher costs, but
never more than 100.4% of the static algo-
rithm.

Witten et al. [1987] compare adaptive
arithmetic coding with adaptive Huffman

Data Compression l 289

for experiments that compare the perform-
ance of algorithm BSTW to static Huffman
coding. Here the defined words consist of
two disjoint classes, sequence of alpha-
numeric characters and sequences of non-
alphanumeric characters. The performance
of algorithm BSTW is very close to that of
static Huffman coding in all cases. The
experiments reported by Bentley et al. are
of particular interest in that they incorpo-
rate another dimension, the possibility that
in the move-to-front scheme one might
want to limit the size of the data structure
containing the codes to include only the m
most recent words, for some m. The tests
consider cache sizes of 8, 16, 32, 64, 128,
and 256. Although performance tends to
increase with cache size, the increase is
erratic, with some documents exhibiting
nonmonotonicity (performance that in-
creases with cache size to a point and then
decreases when cache size is further in-
creased).

Welch [19841 reports simulation results
for Lempel-Ziv codes in terms of compres-
sion ratios. His definition of compression
ratio is the one given in Section 1.3, C =
(average message length)/(average code-
word length). The ratios reported are 1.8
for English text, 2-6 for COBOL data files,
1.0 for floating-point arrays, 2.1 for for-
matted scientific data, 2.6 for system log
data, 2.3 for source code, and 1.5 for object
code. The tests involving English text files
showed that long individual documents did
not compress better than groups of short
documents. This observation is somewhat
surprising in that it seems to refute the
intuition that redundancy is due at least in
part to correlation in content. For purposes
of comparison, Welch cites results of
Pechura and Rubin. Pechura [1982]
achieved a 1.5 compression ratio using
static Huffman coding on files of English
text. Rubin reports a 2.4 ratio for Eng-
lish text when using a complex technique
for choosing the source messages to which
Huffman coding is applied [Rubin 19761.
These results provide only a very weak
basis for comparison, since the character-
istics of the files used by the three authors
are unknown. It is very likely that a single
algorithm may produce compression ratios

n k Static Algorithm V Algorithm FGK

100 96 83.0 71.1 82.4
500 96 83.0 80.8 83.5
961 97 83.5 82.3 83.7

Figure23. Simulation results for a small text file
[Vitter 19871: n, file size in 8-bit bytes; k, number of
distinct messages.

n k Static Algorithm V Algorithm FGK

100 32 57.4 56.2 58.9
500 49 61.5 62.2 63.0

1000 57 61.3 61.8 62.4
10000 73 59.8 59.9 60.0
12067 78 59.6 59.8 59.9

Figure 24. Simulation results for Pascal source code
[Vitter 19871: n, file size in bytes; k, number of distinct
messages.

coding. The version of arithmetic coding
tested employs single-character adaptive
frequencies and is a mildly optimized C
implementation. Witten et al. compare the
results provided by this version of arith-
metic coding with the results achieved by
the UNIX compact program (compact is
based on algorithm FGK). On three large
files that typify data compression applica-
tions, compression achieved by arithmetic
coding is better than that provided by com-
pact, but only slightly better (average file
size is 98% of the compacted size). A file
over a three-character alphabet, with very
skewed symbol probabilities, is encoded by
arithmetic coding in less than 1 bit per
character; the resulting file size is 74% of
the size of the file generated by compact.
Witten et al. also report encoding and de-
coding times. The encoding time of arith-
metic coding is generally half the time
required by the adaptive Huffman coding
method. Decode time averages 65% of the
time required by compact. Only in the
case of the skewed file are the time statis-
tics quite different. Arithmetic coding again
achieves faster encoding, 67% of the time
required by compact. However, compact de-
codes more quickly, using only 78% of the
time of the arithmetic method.

Bentley et al. [1986] use C and Pascal
source files, TROFF source files, and a
terminal session transcript of several hours

ACM Computing Surveys, Vol. 19, No. 3, September 1987

290 l D. A. Lelewer and D. S. Hirschberg

ranging from 1.5 to 2.4, depending on the
source to which it is applied.

7. SUSCEPTIBILITY TO ERROR

The discrete noiseless channel is, unfortu-
nately, not a very realistic model of a
communication system. Actual data trans-
mission systems are prone to two types of
error: phase error, in which a code symbol
is lost or gained, and amplitude error, in
which a code symbol is corrupted [Neu-
mann 19621. The degree to which channel
errors degrade transmission is an impor-
tant parameter in the choice of a data
compression method. The susceptibility to
error of a coding algorithm depends heavily
on whether the method is static or adaptive.

7.1 Static Codes

The effect of amplitude errors is dem-
onstrated in Figure 26. The format of
the illustration is the same as that in Fig-
ure 25. This time bits 1, 2, and 4 are
inverted rather than lost. Again synchro-
nization is regained almost immediately.
When bit 1 or bit 2 is changed, only the
first three bits (the first character of the
ensemble) are disturbed. Inversion of bit 4
causes loss of synchronization through the
ninth bit. A very simple explanation of the
self-synchronization present in these ex-
amples can be given. Since many of the
codewords end in the same sequence of
digits, the decoder is likely to reach a leaf
of the Huffman code tree at one of the
codeword boundaries of the original coded
ensemble. When this happens, the decoder
is back in synchronization with the en-
coder.

It is generally known that Huffman codes
tend to be self-correcting [Standish 19801;
that is, a transmission error tends not to
propagate too far. The codeword in which
the error occurs is incorrectly received, and
it is likely that several subsequent code-
words are misinterpreted, but before too
long the receiver is back in synchronization
with the sender. In a static code, synchro-
nization means simply that both sender and
receiver identify the beginnings of the code-
words in the same way. In Figure 25 an
example is used to illustrate the ability of
a Huffman code to recover from phase er-
rors. The message ensemble “BCDAEB ” is
encoded using the Huffman code of Figure
8 where the source letters al . . . a5 repre-
sent A . . . E, respectively, yielding the
coded ensemble “0110100011000011”. Fig-
ure 25 demonstrates the impact of loss of
the first bit, the second bit, or the fourth
bit. The dots show the way in which each
line is parsed into codewords. The loss of
the first bit results in resynchronization
after the third bit so that only the first
source message (B) is lost (replaced by AA).
When the second bit is lost, the first eight
bits of the coded ensemble are misinter-
preted and synchronization is regained by
bit 9. Dropping the fourth bit causes the
same degree of disturbance as dropping the
second.

So that self-synchronization may be dis-
cussed more carefully, the following defi-
nitions are presented. (It should be noted
that these definitions hold for arbitrary
prefix codes so that the discussion includes
all of the codes described in Section 3.) Ifs
is a suffix of some codeword and there exist
sequences of codewords r and A such that
s I? = A, then I’ is said to be a synchronizing
sequence for s. For example, in the Huffman
code used above, 1 is a synchronizing se-
quence for the suffix 01, whereas both
000001 and 011 are synchronizing se-
quences for the suffix 10. If every suffix (of
every codeword) has a synchronizing se-
quence, then the code is completely self-
synchronizing. If some or none of the proper
suffixes have synchronizing sequences,
then the code is, respectively, partially or
never self-synchronizing. Finally, if there
exists a sequence l? that is a synchronizing
sequence for every suffix, r is defined to be
a universal synchronizing sequence. The
code used in the examples above is com-
pletely self-synchronizing and has univer-
sal synchronizing sequence 00000011000.
Gilbert and Moore [1959] prove that the
existence of a universal synchronizing se-
quence is a necessary as well as a sufficient
condition for a code to be completely self-
synchronizing. They also state that any
prefix code that is completely self-
synchronizing will synchronize itself with

ACM Computing Surveys, Vol. 19, No. 3, September 1987

Data Compression l 291

011.010.001.1.000.011. Coded ensemble BCDAEB
1.1.010.001.1.000.011. Bit 1 is lost, interpreted as AACDAEB
010.1.000.1.1.000.011. Bit 2 is lost, interpreted as CAEAAEB
011.1.000.1.1.000.011. Bit 4 is lost, interpreted as BAEAAEB

Figure 25. Recovery from phase errors.

0 1 1.0 1 0.00 1.1.000.011 Coded ensemble BCDAEB
1.1.1.0 10.00 1.1.000.011 Bit 1 is inverted, interpreted as DCDAEB
0 0 1.0 10.00 1.1.000.011 Bit 2 is inverted, interpreted as AAACDAEB
0 11.1.1.0 00.1.1.000.011 Bit 4 is inverted, interpreted as BAAEAAEB

Figure 26. Recovery from amplitude errors.

probability 1 if the source ensemble con- self-synchronize, this is not guaranteed,
sists of successive messages independently and when self-synchronization is assured,
chosen with any given set of probabilities. there is no bound on the propagation of the
This is true since the probability of occur- error. An additional difficulty is that self-
rence of the universal synchronizing se- synchronization provides no indication
quence at any given time is positive. that an error has occurred.

It is important to realize that the fact
that a completely self-synchronizing code
will resynchronize with probability 1 does
not guarantee recovery from error with
bounded delay. In fact, for every completely
self-synchronizing prefix code with more
than two codewords, there are errors within
one codeword that cause unbounded error
propagation [Neumann 19621. In addition,
prefix codes are not always completely self-
synchronizing. Bobrow and Hakimi [19691
state a necessary condition for a prefix code
with codeword lengths l1 . . . 1, to be com-
pletely self-synchronizing: the greatest
common divisor of the Zi must be equal to
1. The Huffman code (00, 01, 10,
1100, 1101, 1110, 1111) is not completely
self-synchronizing but is partially self-
synchronizing since suffixes 00, 01, and 10
are synchronized by any codeword. The
Huffman code (000, 0010, 0011, 01, 100,
1010, 1011, 100, 111) is never self-synchro-
nizing. Examples of never self-synchro-
nizing Huffman codes are difficult to
construct, and the example above is the
only one with fewer than 16 source mes-
sages. Stiffler [1971] proves that a code is
never self-synchronizing if and only if none
of the proper suffixes of the codewords are
themselves codewords.

The conclusions that may be drawn from
the above discussion are as follows: Al-
though it is common for Huffman codes to

The problem of error detection and cor-
rection in connection with Huffman codes
has not received a great deal of attention.
Several ideas on the subject are reported
here. Rudner [1971] states that synchroniz-
ing sequences should be as short as possible
to minimize resynchronization delay. In ad-
dition, if a synchronizing sequence is used
as the codeword for a high probability mes-
sage, then resynchronization will be more
frequent. A method for constructing a min-
imum-redundancy code having the shortest
possible synchronizing sequence is de-
scribed by Rudner [19711. Neumann [19621
suggests purposely adding some redun-
dancy to Huffman codes in order to permit
detection of certain types of errors. Clearly
this has to be done carefully so as not to
negate the redundancy reduction provided
by Huffman coding. McIntyre and Pechura
[1985] cite data integrity as an advantage
of the codebook approach discussed in Sec-
tion 3.2. When the code is stored separately
from the coded data, the code may be
backed up to protect it from perturbation.
However, when the code is stored or trans-
mitted with the data, it is susceptible to
errors. An error in the code representation
constitutes a drastic loss, and therefore ex-
treme measures for protecting this part of
the transmission are justified.

The Elias codes of Section 3.3 are not at
all robust. Each of the codes y and 6 can be

ACM Computing Surveys, Vol. 19, No. 3, September 1987

292 l D. A. Lelewer and D. S. Hirschberg

001 1 0.00 1 00.0 00100 0. Coded integers 6,4,8
0 1 1.0 00 1 00 0.00100.0 Bit 2 is lost, interpreted as 3, 8, 2, etc.

011.1.0 00 1 00 0.00100.0 Bit 2 is inverted, interpreted as 3, 1,8,4, etc.

000 1 0 00.1.00 0 00100 0 Bit 3 is inverted, interpreted as 8, 1, etc.

Figure 27. Effects of errors in Elias codes.

000011.000011.00011.010 11.01011. Coded ensemble “au bb”
00 011.000011.00011.010 11.01011. Bit 3 is lost, interpreted as “u bb”
001011.000011.00011.010 11.01011. Bit 3 is inverted, interpreted as “?a bb”
00001 000011.00011.010 11.01011. Bit 6 is lost, interpreted as “? bb”
000010 000011.00011.010 11.01011. Bit 6 is inverted, interpreted as “? bb”
000011.000011.00011.011.11.01011. Bit 20 is inverted, interpreted as “aa fgb”

Figure 28. Effects of errors in Fibonacci codes.

thought of as generating codewords that
consist of a number of substrings such that
each substring encodes the length of the
subsequent substring. For code y we may
think of each codeword y(x) as the conca-
tenation of z, a string of n zeros, and b,
a string of length n + 1 (n = Hog xJ). If
one of the zeros in substring z is lost, syn-
chronization will be lost since the last
symbol of b will be pushed into the next
codeword.

Since the 1 at the front of substring b
delimits the end of z, if a zero in z is changed
to a 1, synchronization will be lost as sym-
bols from b are pushed into the following
codeword. Similarly, if ones at the front of
b are inverted to zeros, synchronization will
be lost since the codeword y(x) consumes
symbols from the following codeword. Once
synchronization is lost, it cannot normally
be recovered.

In Figure 27, codewords r(6), r(4), r(8)
are used to illustrate the above ideas. In
each case, synchronization is lost and never
recovered.

The Elias code 6 may be thought of as a
three-part ramp, where 6(x) = zmb with z
a string of n zeros, m a string of length
n + 1 with binary value u, and b a string of
length u - 1. For example, in 6(16) =
00.101.0000, n = 2, u = 5, and the final
substring is the binary value of 16 with the
leading 1 removed so that it has length u -
1 = 4. Again the fact that each substring
determines the length of the subsequent
substring means that an error in one of the

first two substrings is disastrous, changing
the way in which the rest of the codeword
is to be interpreted. And, like code y, code
6 has no properties that aid in regaining
synchronization once it has been lost.

The Fibonacci codes of Section 3.3, on
the other hand, are quite robust. This ro-
bustness is due to the fact that every code-
word ends in the substring 11 and that
substring can appear nowhere else in a
codeword. If an error occurs anywhere
other than in the 11 substring, the error is
contained within that one codeword. It is
possible that one codeword will become two
(see the sixth line of Figure 28), but no
other codewords will be distributed. If the
last symbol of a codeword is lost or changed,
the current codeword will be fused with its
successor so that two codewords are lost.
When the penultimate bit is disturbed, up
to three codewords can be lost. For example
the coded message 011.11.011 becomes
0011.1011 if bit 2 is inverted. The maxi-
mum disturbance resulting from either an
amplitude error or a phase error is the
disturbance of three codewords.

In Figure 28, some illustrations based on
the Fibonacci coding of ensemble EXAM-
PLE as shown in Figure 12 are given. When
bit 3 (which is not part of an 11 substring)
is lost or changed, only a single codeword
is degraded. When bit 6 (the final bit of the
first codeword) is lost or changed, the first
two codewords are incorrectly decoded.
When bit 20 is changed, the first b is incor-
rectly decoded as fg.

ACM ComputingSurveys,Vol. 19,No.3,September1987

Data Compression l 293

error flags. For adaptive methods it may be
necessary for receiver and sender to verify
the current code mapping periodically.

For adaptive Huffman coding, Galla-
ger [1978] suggests an “aging” scheme,
whereby recent occurrences of a character
contribute more to its frequency count than
do earlier occurrences. This strategy intro-
duces the notion of locality into the
adaptive Huffman scheme. Cormack and
Horspool [1984] describe an algorithm
for approximating exponential aging. How-
ever, the effectiveness of this algorithm
has not been established.

Both Knuth [1985] and Bentley et al.
[1986] suggest the possibility of using the
“cache” concept to exploit locality and
minimize the effect of anomalous source
messages. Preliminary empirical results in-
dicate that this may be helpful. A problem
related to the use of a cache is overhead
time required for deletion. Strategies for
reducing the cost of a deletion could be
considered. Another possible extension to
algorithm BSTW is to investigate other lo-
cality heuristics. Bentley et al. [19861 prove
that intermittent move-to-front (move-to-
front after every k occurrences) is as effec-
tive as move-to-front. It should be noted
that there are many other self-organizing
methods yet to be considered. Horspool and
Cormack [19871 describe experimental re-
sults that imply that the transpose heuris-
tic performs as well as move-to-front and
suggest that it is also easier to implement.

Several aspects of free-parse methods
merit further attention. Lempel-Ziv codes
appear to be promising, although the
absence of a worst-case bound on the
redundancy of an individual finite source
ensemble is a drawback. The variable-
block type Lempel-Ziv codes have been
implemented with some success [ARC
19861, and the construction of a variable-
variable Lempel-Ziv code has been
sketched [Ziv and Lempel 19781. The effi-
ciency of the variable-variable model
should be investigated. In addition, an im-
plementation of Lempel-Ziv coding that
combines the time efficiency of the Rodeh
et al. [19811 method with more efficient use
of space is worthy of consideration.

7.2 Adaptive Codes

Adaptive codes are far more adversely af-
fected by transmission errors than static
codes. For example, in the case of an adap-
tive Huffman code, even though the re-
ceiver may resynchronize with the sender
in terms of correctly locating the beginning
of a codeword, the information lost repre-
sents more than a few bits or a few char-
acters of the source ensemble. The fact
that sender and receiver are dynamically
redefining the code indicates that by the
time synchronization is regained, they may
have radically different representations
of the code. Synchronization as defined in
Section 7.1 refers to synchronization of the
bit stream, which is not sufficient for adap-
tive methods. What is needed here is code
synchronization, that is, synchronization of
both the bit stream and the dynamic data
structure representing the current code
mapping.

There is no evidence that adaptive meth-
ods are self-synchronizing. Bentley et al.
[1986] note that, in algorithm BSTW, loss
of synchronization can be catastrophic,
whereas this is not true with static Huff-
man coding. Ziv and Lempel [1977] recog-
nize that the major drawback of their
algorithm is its susceptibility to error prop-
agation. Welch [1984] also considers the
problem of error tolerance of Lempel-Ziv
codes and suggests that the entire ensemble
be embedded in an error-detecting code.
Neither static nor adaptive arithmetic cod-
ing has the ability to tolerate errors.

8. NEW DIRECTIONS

Data compression is still very much an
active research area. This section suggests
possibilities for further study.

The discussion of Section 7 illustrates
the susceptibility to error of the codes pre-
sented in this survey. Strategies for increas-
ing the reliability of these codes while
incurring only a moderate loss of effi-
ciency would be of great value. This area
appears to be largely unexplored. Possible
approaches include embedding the entire
ensemble in an error-correcting code or re-
serving one or more codewords to act as

ACM Computing Surveys, Vol. 19, No. 3, September 1987

294 l D. A. Lelewer and D. S. Hirschberg

Another important research topic is the
development of theoretical models for data
compression that address the problem of
local redundancy. Models based on Markov
chains can be exploited to take advantage
of interaction between groups of symbols.
Entropy tends to be overestimated when
symbol interaction is not considered.
Models that exploit relationships between
source messages may achieve better
compression than predicted by an entropy
calculation based only on symbol probabil-
ities. The use of Markov modeling is
considered by Llewellyn [1987] and by
Langdon and Rissanen [1983].

9. SUMMARY

Data compression is a topic of much im-
portance and many applications. Methods
of data compression have been studied for
almost four decades. This paper has pro-
vided an overview of data compression
methods of general utility. The algorithms
have been evaluated in terms of the amount
of compression they provide, algorithm
efficiency, and susceptibility to error. Al-
though algorithm efficiency and suscepti-
bility to error are relatively independent of
the characteristics of the source ensemble,
the amount of compression achieved de-
pends on the characteristics of the source
to a great extent.

Semantic dependent data compression
techniques, as discussed in Section 2, are
special-purpose methods designed to ex-
ploit local redundancy or context informa-
tion. A semantic dependent scheme can
usually be viewed as a special case of one
or more general-purpose algorithms. It
should also be noted that algorithm BSTW
is a general-purpose technique that exploits
locality of reference, a type of local redun-
dancy.

Susceptibility to error is the main draw-
back of each of the algorithms presented
here. Although channel errors are more
devastating to adaptive algorithms than to
static ones, it is possible for an error
to propagate without limit even in the
static case. Methods of limiting the effect
of an error on the effectiveness of a

ACM Computing Surveys, Vol. 19, No. 3, September 1987

data compression algorithm should be
investigated.

REFERENCES

ABRAMSON, N. 1963. Information Theory and Cod-
ing. McGraw-Hill, New York.

APOSTOLICO, A., AND FRAENKEL, A. S. 1985. Robust
transmission of unbounded strings using Fibo-
nacci representations. Tech. Rep. CS85-14, Dept.
of Applied Mathematics, The Weizmann Insti-
tute of Science, Rehovot, Israel.

ARC 1986. ARC File Archive Utility, Version 5.1.
System Enhancement Associates, Wayne, N.J.

ASH, R. B. 1965. Information Theory. Interscience,
New York.

BENTLEY, J. L., SLEATOR, D. D., TARJAN, R. E., AND
WEI, V. K. 1986. A locally adaptive data com-
pression scheme. Commun. ACM 29, 4 (Apr.),
320-330.

BOBROW, L. S., AND HAKIMI, S. L. 1969. Graph
theoretic prefix codes and their synchronizing
properties. Znf. Contr. 15,l (July), 70-94.

BRENT, R. P., AND KUNG, H. T. 1978. Fast algo-
rithms for manipulating formal power series.
J. ACM 25, 4 (Oct.), 581-595.

CAPOCELLI. R. M., GIANCARLO, R., AND TANEJA, I. J.
1986. Bounds on the redundancy of Huffman
codes. IEEE Trans. Inf. Theory 32, 6 (Nov.),
854-857.

CAPPELLINI, V., ED. 1985. Data Compression and
Error Control Techmimes with Applications. Ac-
ademic Press, London.

CONNELL, J. B. 1973. A Huffman-Shannon-Fan0
code. Proc. IEEE 61, 7 (July), 1046-1047.

CORMACK, G. V. 1985. Data compression on a data-
base system. Commun. ACM 28, 12 (Dec.), 1336-
1342.

CORMACK, G. V., AND HORSPOOL, R. N. 1984.
Algorithms for adaptive Huffman codes. Znf.
Process. L&t. 18, 3 (Mar.), 159-165.

CORTESI, D. 1982. An effective text-compression al-
gorithm. BYTE 7,l (Jan.), 397-403.

COT, N. 1977. Characterization and design of opti-
mal prefix codes. Ph.D. dissertation, Computer
Science Dept., Stanford Univ., Stanford, Cahf.

ELIAS, P. 1975. Universal codeword sets and rep-
resentations of the integers. IEEE Trans. Znf.
Theory 21, 2 (Mar.), 1941203.

ELIAS, P. 1987. Interval and recency rank source
coding: Two on-line adaptive variable-length
schemes. IEEE Trans. Znf. Theory 33, 1 (Jan.),
3-10.

FALLER, N. 1973. An adaptive system for data
compression. In Record of the 7th As&mar Con-
ference on Circuits, Systems and Computers
(Pacific Grove, Calif., Nov.). Naval Postgraduate
School, Monterey, Calif., pp. 593-597.

FANO, R. M. 1949. Transmission of Information.
M.I.T. Press, Cambridge, Mass.

Data Compression l 295

FRAENKEL, A. S., AND KLEIN, S. T. 1985. Robust
universal complete codes as alternatives to Huff-
man codes. Tech. Rep. CS85-16, Dept. of Applied
Mathematics, The Weizmann Institute of Sci-
ence, Rehovot, Israel.

FRAENKEL, A. S., MOR, M., AND PERL, Y. 1983. Is
text compression by prefixes and suffixes practi-
cal? Acta Znf. 20,4 (Dec.), 371-375.

GALLAGER, R. G. 1968. Information Theory and
Reliable Communication. Wiley, New York.

GALLAGER, R. G. 1978. Variations on a theme by
Huffman. IEEE Trans. Znf. Theory 24, 6 (Nov.),
668-674.

GAREY, M. R. 1974. Optimal binary search trees with
restricted maximal depth. SIAM J. Comput. 3, 2
(June), 101-110.

GILBERT, E. N. 1971. Codes based on inaccurate
source probabilities. IEEE Trans. Znf. Theory 17,
3 (May), 304-314.

GILBERT, E. N., AND MOORE, E. F. 1959. Variable-
length binary encodings. Bell Syst. Tech. J. 38,4
(July), 933-967.

GLASSEY, C. R., AND KARP, R. M. 1976. On the
optimality of Huffman trees. SIAM J. Appl.
Math. 31,2 (Sept.), 368-378.

GONZALEZ, R. C., AND WINTZ, P. 1977. Digital Zm-
age Processing. Addison-Wesley, Reading, Mass.

HAHN, B. 1974. A new technique for compression
and storage of data. Commun. ACM 17,8 (Aug.),
434-436.

HESTER, J. H., AND HIRSCHBERG, D. S. 1985. Self-
organizing linear search. ACM Comput. Surv. 17,
3 (Sept.), 295-311.

HORSPOOL, R. N., AND CORMACK, G. V. 1987. A
locally adaptive data compression scheme. Com-
mun. ACM 30,9 (Sept.), 792-794.

Hu, T. C., AND TAN, K. C. 1972. Path length of
binary search trees. SIAM J. Appl. Math 22, 2
(Mar.), 225-234.

Hu, T. C., AND TUCKER, A. C. 1971. Optimal com-
puter search trees and variable-length alphabetic
codes. SIAM J. Appl. Math. 21, 4 (Dec.), 514-
532.

HUFFMAN, D. A. 1952. A method for the construc-
tion of minimum-redundancy codes. Proc. IRE
40,9 (Sept.), 1098-1101.

INGELS, F. M. 1971. Information and Coding Theory.
Intext, Scranton, Penn.

ITAI, A. 1976. Optimal alphabetic trees. SIAM J.
Comput. 5, 1 (Mar.), 9-18.

KARP, R. M. 1961. Minimum redundancy coding for
the discrete noiseless channel. IRE Trans. Znf.
Theory 7, 1 (Jan.), 27-38.

KNUTH, D. E. 1971. Optimum binary search trees.
Acta Znf. 1, 1 (Jan.), 14-25.

KNUTH, D. E. 1985. Dynamic Huffman coding.
J. Algorithms 6, 2 (June), 163-180.

KRAUSE, R. M. 1962. Channels which transmit let-
ters of unequal duration. Znf. Control 5, 1 (Mar.),
13-24.

LAESER, R. P., MCLAUGHLIN, W. I., AND WOLFF,
D. M. 1986. Engineering Voyager 2’s encounter
with Uranus. Sci. Am. 255, 5 (Nov.), 36-45.

LANGDON, G. G., AND RISSANEN, J. J. 1983. A
double-adaptive file compression algorithm.
ZEEE Trans. Comm. 31,ll (Nov.), 1253-1255.

LLEWELLYN, J. A. 1987. Data compression for a
source with Markov characteristics. Comput. J.
30,2, 149-156.

MCINTYRE, D. R., AND PECHURA, M. A. 1985. Data
compression using static Huffman code-decode
tables. Commun. ACM 28, 6 (June), 612-
616.

PARKER, D. S. 1980. Conditions for the optimality
of the Huffman algorithm. SIAM J. Comput. 9,3
(Aug.), 470-489.

MEHLHORN, K. 1980. An efficient algorithm for
constructing nearly optimal prefix codes. IEEE
Trans. Znf. Theory 26,5 (Sept.), 513-517.

NEUMANN, P. G. 1962. Efficient error-limiting
variable-length codes. IRE Trans. Znf. Theory 8,
4 (July), 292-304.

PASCO, R. 1976. Source coding algorithms for fast
data compression. Ph.D. dissertation, Dept. of
Electrical Engineering, Stanford Univ., Stanford,
Calif.

PECHURA, M. 1982. File archival techniques using
data compression. Commun. ACM 25, 9 (Sept.),
605-609.

PERL, Y., GAREY, M. R., AND EVEN, S. 1975.
Efficient generation of ontimal prefix code: Equi-
probable words using unequal cost letters.- J.
ACM 22,2 (Apr.), 202-214.

PKARC FAST! 1987. PKARC FAST! File Archival
Utility, Version 3.5. PKWARE, Inc. Glendale,
Wis.

REGHBATI, H. K. 1981. An overview of data
compression techniques. Computer 14, 4 (Apr.),
71-75.

RISSANEN, J. J. 1976. Generalized Kraft inequality
and arithmetic coding. IBM J. Res. Dev. 20
(May), 198-203.

RISSANEN, J. J. 1983. A universal data compression
system. IEEE Trans. Znf. Theory 29, 5 (Sept.),
656-664.

RODEH, M., PRATT, V. R., AND EVEN, S. 1981.
Linear algorithm for data compression via string
matching. J. ACM 28, 1 (Jan.), 16-24.

RUBIN, F. 1976. Experiments in text tile compres-
sion. Commun. ACM 19, 11 (Nov.), 617-623.

RUBIN, F. 1979. Arithmetic stream coding using
fixed precision registers. IEEE Trans. Znf. Theory
25, 6 (Nov.), 672-675.

RUDNER, B. 1971. Construction of minimum-
redundancy codes with optimal synchronizing
property. IEEE Trans. Znf. Theory 17, 4 (July),
478-487.

RUTH, S. S., AND KREUTZER, P. J. 1972. Data
compression for large business files. Datamation
18,9 (Sept.), 62-66.

ACM Computing Surveys, Vol. 19, No. 3, September 1987

296 l D. A. Lelewer and D. S. Hirschberg

RYABKO, B. Y. 1987. A locally adaptive data
compression scheme. Commun. ACM 16, 2
(Sept.), 792.

SAMET, H. 1984. The Quadtree and related hierar-
chical data structures. ACM Comput. Surv. 30, 9
(June), 187-260.

SCHWARTZ, E. S. 1964. An optimum encoding with
minimum longest code and total number of digits.
Inf. Control 7, 1 (Mar.), 37-44.

SCHWARTZ, E. S., AND KALLICK, B. 1964. Gen-
erating a canonical prefix encoding. Commun.
ACM 7, 3 (Mar.), 166-169.

SEVERANCE, D. G. 1983. A practitioner’s guide to
data base compression. Znf. Syst. 8,1, 51-62.

SHANNON, C. E., AND WEAVER, W. 1949. The Math-
ematical Theory of Communication. University of
Illinois Press, Urbana, Ill.

SNYDERMAN, M., AND HUNT, B. 1970. The myriad
virtues of text compaction. Datamation 16, 12
(Dec.), 36-40.

STANDISH, T. A. 1980. Data Structure Techniques.
Addison-Wesley, Reading, Mass.

STIFFLER, J. J. 1971. Theory of Synchronous Com-
munications. Prentice-Hall, Englewood Cliffs,
N.J.

STORER, J. A., AND SZYMANSKI, T. G. 1982. Data
compression via textual substitution. J. ACM 29,
4 (Oct.), 928-951.

TANAKA, H. 1987. Data structure of Huffman codes
and its application to efficient encoding and
decoding. IEEE Trans. Znf. Theory 33, 1 (Jan.),
154-156.

TROPPER, R. 1982. Binary-coded text, A text-
compression method. BYTE 7,4 (Apr.), 398-413.

UNIX. 1984. UNIX User’s Manual, Version 4.2.
Berkeley Software Distribution, Virtual VAX-11
Version, Univ. of California, Berkeley, Calif.

VARN, B. 1971. Optimal variable length codes (arbi-
trary symbol cost and equal code word probabil-
ity). Znf. Control 19, 4 (Nov.), 289-301.

VITTER, J. S. 1987. Design and analysis of dynamic
Huffman codes. J. ACM 34,4 (Oct.), 825-845.

WAGNER, R. A. 1973. Common phrases and mini-
mum-space text storage. Commun. ACM 16, 3
(Mar.), 148-152.

WELCH, T. A. 1984. A technique for high-perform-
ance data compression. Computer 17, 6 (June),
8-19.

WILKINS, L. C., AND WINTZ, P. A. 1971.
Bibliography on data compression, picture prop-
erties and picture coding. IEEE Trans. Znf. The-
ory 17,2,180-197.

WITPEN, I. H., NEAL, R. M., AND CLEARY, J. G.
1987. Arithmetic coding for data compression.
Commun. ACM 30,6 (June), 520-540.

ZIMMERMAN, S. 1959. An optimal search procedure.
Am. Math. Monthly 66, (Oct.), 690-693.

ZIV, J., AND LEMPEL, A. 1977. A universal algorithm
for sequential data compression. IEEE Trans.
Znf. Theory 23,3 (May), 337-343.

ZIV, J., AND LEMPEL, A. 1978. Compression of indi-
vidual sequences via variable-rate coding. IEEE
Trans. Znf. Theory 24,5 (Sept.), 530-536.

Received May 1987; final revision accepted January 1988.

ACM Computing Surveys, Vol. 19, No. 3, September 198’7

