
Notes onProgramming in C

Rob Pike

Introduction

Kernighan and Plauger’sThe Elements of Programming Style was an important and rightly influential book. But
sometimes I feel its concise rules were taken as a cookbook approach to good style instead of the succinct expression of a
philosophy they were meant to be. If the book claims that variable names should be chosen meaningfully, doesn’t it then
follow that variables whose names are small essays on their use are even better? Isn’tMaximumValueUntilOverflow
a better name thanmaxval? I don’t think so.

What follows is a set of short essays thatcollectively encourage a philosophy of clarity in programming rather than
giving hard rules. I don’t expect you to agree with all of them, because they are opinion and opinions change with the
times. But they’ve been accumulating in my head, if not on paper until now, for a long time, and are based on a lot of
experience, so I hope they help you understand how to plan the details of a program. (I’ve yet to see a good essay on how
to plan the whole thing, but then that’s partly what this course is about.) If you find them idiosyncratic, fine; if you disagree
with them, fine; but if they make you think about why you disagree, that’s better. Under nocircumstancesshould you pro-
gram the way I say to because I say to; program the way you think expresses best what you’re trying to accomplish in the
program. And do so consistently and ruthlessly.

Your comments are welcome.

Issues of typography

A program is a sort of publication. It’s meant to be read by the programmer, another programmer (perhaps yourself a
few days, weeks or years later), and lastly a machine. The machine doesn’t care how pretty the program is — if the pro-
gram compiles, the machine’s happy — but people do, and they should. Sometimes they care too much: pretty printers
mechanicallyproduce pretty output thataccentuatesirrelevant detail in the program, which isassensibleasputting all the
prepositionsin English textin bold font. Although many people think programs should look like the Algol-68 report (and
some systems even require you to edit programs in that style), a clear program is not made any clearer by such presentation,
and a bad program is only made laughable.

Typographic conventions consistently held are important to clear presentation, of course — indentation is probably
the best known and most useful example — but when the ink obscures the intent, typography has taken over. So even if you
stick with plain old typewriter-like output, be conscious of typographic silliness. Avoid decoration; for instance, keep com-
ments brief and banner-free. Say what you want to say in the program, neatly and consistently. Then move on.

Variable names

Ah, variable names. Length is not a virtue in a name; clarity of expressionis. A global variable rarely used may
deserve a long name,maxphysaddr say. An array index used on every line of a loop needn’t be named any more ela-
borately thani. Sayingindex or elementnumber is more to type (or calls upon your text editor) and obscures the
details of the computation. When the variable names are huge, it’s harder to see what’s going on. This is partly a typo-
graphic issue; consider

for(i=0 to 100)
array[i]=0

vs.

for(elementnumber=0 to 100)
array[elementnumber]=0;

The problem gets worse fast with real examples. Indices are just notation, so treat them as such.

Pointers also require sensible notation.np is just as mnemonic asnodepointer if you consistently use a naming
convention from whichnp means ‘‘node pointer’’ is easily derived. More on this in the next essay.

As in all other aspects of readable programming, consistency is important in naming. If you call one variable
maxphysaddr, don’t call its cousinlowestaddress.

- 2 -

Finally, I prefer minimum-length but maximum-information names, and then let the context fill in the rest. Globals,
for instance, typically have little context when they are used, so their names need to be relatively evocative. Thus I say
maxphysaddr (not MaximumPhysicalAddress) for a global variable, butnp not NodePointer for a pointer
locally defined and used. This is largely a matter of taste, but taste is relevant to clarity.

I eschew embedded capital letters in names; to my prose-oriented eyes, they are too awkward to read comfortably.
They jangle like bad typography.

The use of pointers.

C is unusual in that it allows pointers to point to anything. Pointers are sharp tools, and like any such tool, used well
they can be delightfully productive, but used badly they can do great damage (I sunk a wood chisel into my thumb a few
days before writing this). Pointers have a bad reputation in academia, because they are considered too dangerous, dirty
somehow. But I think they are powerfulnotation, which means they can help us express ourselves clearly.

Consider: When you have a pointer to an object, it is a name for exactly that object and no other. That sounds trivial,
but look at the following two expressions:

np
node[i]

The first points to a node, the second evaluates to (say) the same node. But the second form is an expression; it is not so
simple. To interpret it, we must know whatnode is, whati is, and thati and node are related by the (probably
unspecified) rules of the surrounding program. Nothing about the expression in isolation can show thati is a valid index of
node, let alone the index of the element we want. Ifi andj andk are all indices into the node array, it’s very easy to slip
up, and the compiler cannot help. It’s particularly easy to make mistakes when passing things to subroutines: a pointer is a
single thing; an array and an index must be believed to belong together in the receiving subroutine.

An expression that evaluates to an object is inherently more subtle and error-prone than the address of that object.
Correct use of pointers can simplify code:

parent->link[i].type

vs.

lp->type.

If we want the next element’s type, it’s

parent->link[++i].type

or

(++lp)->type.

i advances but the rest of the expression must stay constant; with pointers, there’s only one thing to advance.

Typographic considerations enter here, too. Stepping through structures using pointers can be much easier to read
than with expressions: less ink is needed and less effort is expended by the compiler and computer. A related issue is that
the type of the pointer affects how it can be used correctly, which allows some helpful compile-time error checking that
array indices cannot share. Also, if the objects are structures, their tag fields are reminders of their type, so

np->left

is sufficiently evocative; if an array is being indexed the array will have some well-chosen name and the expression will end
up longer:

node[i].left.

Again, the extra characters become more irritating as the examples become larger.

As a rule, if you find code containing many similar, complex expressions that evaluate to elements of a data structure,
judicious use of pointers can clear things up. Consider what

if(goleft)
p->left=p->right->left;

else
p->right=p->left->right;

would look like using a compound expression forp. Sometimes it’s worth a temporary variable (herep) or a macro to dis-
till the calculation.

- 3 -

Procedurenames

Procedure names should reflect what they do; function names should reflect what theyreturn. Functions are used in
expressions, often in things likeif’s, so they need to read appropriately.

if(checksize(x))

is unhelpful because we can’t deduce whether checksize returns true on error or non-error; instead

if(validsize(x))

makes the point clear and makes a future mistake in using the routine less likely.

Comments

A delicate matter, requiring taste and judgement. I tend to err on the side of eliminating comments, for several rea-
sons. First, if the code is clear, and uses good type names and variable names, it should explain itself. Second, comments
aren’t checked by the compiler, so there is no guarantee they’re right, especially after the code is modified. A misleading
comment can be very confusing. Third, the issue of typography: comments clutter code.

But I do comment sometimes. Almost exclusively, I use them as an introduction to what follows. Examples: explain-
ing the use of global variables and types (the one thing I always comment in large programs); as an introduction to an
unusual or critical procedure; or to mark off sections of a large computation.

There is a famously bad comment style:

i=i+1; /* Add one to i */

and there are worse ways to do it:

/**********************************
* *
* Add one to i *
* *
**********************************/

i=i+1;

Don’t laugh now, wait until you see it in real life.

Avoid cute typography in comments, avoid big blocks of comments except perhaps before vital sections like the
declaration of the central data structure (comments on data are usually much more helpful than on algorithms); basically,
avoid comments. If your code needs a comment to be understood, it would be better to rewrite it so it’s easier to under-
stand. Which brings us to

Complexity

Most programs are too complicated — that is, more complex than they need to be to solve their problems efficiently.
Why? Mostly it’s because of bad design, but I will skip that issue here because it’s a big one. But programs are often com-
plicated at the microscopic level, and that is something I can address here.

Rule 1. You can’t tell where a program is going to spend its time. Bottlenecks occur in surprising places, so don’t try
to second guess and put in a speed hack until you’ve proven that’s where the bottleneck is.

Rule 2. Measure. Don’t tune for speed until you’ve measured, and even then don’t unless one part of the code
overwhelms the rest.

Rule 3. Fancy algorithms are slow whenn is small, andn is usually small. Fancy algorithms have big constants.
Until you know thatn is frequently going to be big, don’t get fancy. (Even ifn does get big, use Rule 2 first.) For exam-
ple, binary trees are always faster than splay trees for workaday problems.

Rule 4. Fancy algorithms are buggier than simple ones, and they’re much harder to implement. Use simple algo-
rithms as well as simple data structures.

The following data structures are a complete list for almost all practical programs:

array
linked list
hash table
binary tree

Of course, you must also be prepared to collect these into compound data structures. For instance, a symbol table might be

- 4 -

implemented as a hash table containing linked lists of arrays of characters.

Rule 5. Data dominates. If you’ve chosen the right data structures and organized things well, the algorithms will
almost always be self-evident. Data structures, not algorithms, are central to programming. (See Brooks p. 102.)

Rule 6. There is no Rule 6.

Programming with data.

Algorithms, or details of algorithms, can often be encoded compactly, efficiently and expressively as data rather than,
say, as lots ofif statements. The reason is that thecomplexity of the job at hand, if it is due to a combination of indepen-
dent details,can be encoded. A classic example of this is parsing tables, which encode the grammar of a programming
language in a form interpretable by a fixed, fairly simple piece of code. Finite state machines are particularly amenable to
this form of attack, but almost any program that involves the ‘parsing’ of some abstract sort of input into a sequence of
some independent ‘actions’ can be constructed profitably as a data-driven algorithm.

Perhaps the most intriguing aspect of this kind of design is that the tables can sometimes be generated by another pro-
gram — a parser generator, in the classical case. As a more earthy example, if an operating system is driven by a set of
tables that connect I/O requests to the appropriate device drivers, the system may be ‘configured’ by a program that reads a
description of the particular devices connected to the machine in question and prints the corresponding tables.

One of the reasons data-driven programs are not common, at least among beginners, is the tyranny of Pascal. Pascal,
like its creator, believes firmly in the separation of code and data. It therefore (at least in its original form) has no ability to
create initialized data. This flies in the face of the theories of Turing and von Neumann, which define the basic principles of
the stored-program computer. Code and dataare the same, or at least they can be. How else can you explain how a com-
piler works? (Functional languages have a similar problem with I/O.)

Function pointers

Another result of the tyranny of Pascal is that beginners don’t use function pointers. (You can’t have function-valued
variables in Pascal.) Using function pointers to encode complexity has some interesting properties.

Some of the complexity is passed to the routine pointed to. The routine must obey some standard protocol — it’s one
of a set of routines invoked identically — but beyond that, what it does is its business alone. The complexity isdistributed.

There is this idea of a protocol, in that all functions used similarly must behave similarly. This makes for easy docu-
mentation, testing, growth and even making the program run distributed over a network — the protocol can be encoded as
remote procedure calls.

I argue that clear use of function pointers is the heart of object-oriented programming. Given a set of operations you
want to perform on data, and a set of data types you want to respond to those operations, the easiest way to put the program
together is with a group of function pointers for each type. This, in a nutshell, defines class and method. The O-O
languages give you more of course — prettier syntax, derived types and so on — but conceptually they provide little extra.

Combining data-driven programs with function pointers leads to an astonishingly expressive way of working, a way
that, in my experience, has often led to pleasant surprises. Even without a special O-O language, you can get 90% of the
benefit for no extra work and be more in control of the result. I cannot recommend animplementationstyle more highly.
All the programs I have organized this way have survived comfortably after much development — far better than with less
disciplined approaches. Maybe that’s it: the discipline it forces pays off handsomely in the long run.

Include files

Simple rule: include files should never include include files. If instead they state (in comments or implicitly) what
files they need to have included first, the problem of deciding which files to include is pushed to the user (programmer) but
in a way that’s easy to handle and that, by construction, avoids multiple inclusions. Multiple inclusions are a bane of sys-
tems programming. It’s not rare to have files included five or more times to compile a single C source file. The Unix
/usr/include/sys stuff is terrible this way.

There’s a little dance involving#ifdef’s that can prevent a file being read twice, but it’s usually done wrong in
practice — the#ifdef’s are in the file itself, not the file that includes it. The result is often thousands of needless lines of
code passing through the lexical analyzer, which is (in good compilers) the most expensive phase.

Just follow the simple rule.

