Free M <- M
Free <- W
Invitations <- \{\}

$$
\text { seq of matches for weller } 3
$$

Tentative <- $\}$
While there is an m in Free s.t. there is a w st. (m, w) not in Invitations choose such an m
let w be m's highest ranked sit. (mw) not in Invitations
add (m, w) to Invitations
Obs 1: Let $m_{i j}$ be the machinist welder i is tentatively matched with after j iterations Cor NIL if not matched yet)
if w in Free then
remove w from Free
a) Then if m invites w_{i} doing iteration j,
remove m from Free
add (m, w) to Tentative $m_{i j} \neq N / L$ and $m_{i k} \neq N / L$ for $k>j$
else
find m^{\prime} st. (m^{\prime}, w) in Tentative
if w prefers m to m^{\prime}
remove m from Free
add m^{\prime} to Free
remove (m ', w) from Tentative $\operatorname{add}(m, w)$ to Tentative
return Tentative
b) If $k \geqslant j$ and $m_{i j} \neq m_{i k}$ thin
wider i prefer $m_{i k}$ to $m_{i j}$
Obs 2: $m \in$ Free $M \longleftrightarrow$ there is no w st. ($m, w) \in$ Tentative $w \in$ Fire $W \leftrightarrow$ there is no m sid. $(m, w) \in$ Tratitive

Obs 3: Tentative \leq Invitations and is a matching
Obs 11: $m \in$ Free m \rightarrow there B a w sit. (m, w, \& Invitations
Suppose meFiecm but for all w $(m, w) \in$ Invites So by Obs, all w are matched and by Obs 3, all n machinist are mat chad
So by ubs 2,

Than 6-S tormantes, Tentativis a perfect matching
2 ways alg can terminate: * There are free machinists who have made all invitations π
2) N_{0} free machinists $\underset{\rightarrow}{ }$ then all n machinists mate med

$$
\begin{array}{ll}
\begin{array}{l}
p \vee q \\
p \rightarrow \\
\sim p
\end{array} & \rightarrow \text { then all } n \text { machinists matched (obramich } \\
\text { and so all nu welders matolud (Obs } 3 \text {) } \\
q & \text { so matching is perfect }
\end{array}
$$

when 6.S termmatrs, Tentative is a stable matching
Suppose not stable - there is an instability (m, w) wot Tentative. (af stable) $\left(m, v^{\prime}\right) \&$ Tentadue (ad instable, ty)
Tentative is a perfect matching, so can fund w sad. $(m, w) \in T$ Tentadim m invited w (only way to get matin (m, w))

m prefers w^{\prime} do w
$\frac{c^{\prime}}{}$ peters m do m^{\prime}
invited w^{\prime}

bor result of that invitation
w's seq of matches

$$
M L, N L L, \ldots, m^{\prime \prime}, m^{\prime \prime}, \ldots, m^{\prime}
$$

(def instability)
(def instublily)
(m mates invites in \downarrow order of pret, and eventually muted w who they doit prefer do w^{\prime})
rejected immediately - w^{\prime} already matched with m " and w^{\prime} prefers $m^{\prime \prime}$ to m 2 sob cases : $m^{\prime \prime}=m^{\prime}$ so w^{\prime} prefers m^{\prime} bo m $m^{\prime \prime} \neq m^{\prime} s_{0} w^{\prime}$ pretties $m^{\prime} d^{\prime} m^{\prime \prime}(\operatorname{coss} 1)$
..) so w' peefoes m^{\prime} bo m (transidue)
ii) accepted but revoked Tater

$$
\begin{aligned}
& p \rightarrow c \\
& q \rightarrow c
\end{aligned}
$$ so by dos again, w^{\prime} prefers m^{\prime} do m

$\rightarrow c$ in both caus, w^{\prime} prefers m^{\prime} to m
c
but then $\left(m, w^{\prime}\right)$ is not an instability
\therefore stable
w is a valid partner for m if $(m, w) \in S$ for some stable matching S
best (m) is m 's best valid partner (m's most preferred among m's valid partners)

G-S always returns $S^{*}=\{(m$, best $(m))\}$
Proof: Suppose not. Then there is some execution \mathcal{E} returns S sid. $(m, w) \in S$ but $w \neq$ best (m) for some m m invited best (m) before w in \mathcal{E} (invitation sin \downarrow order dperf)
so there is a rejection by a best valid partner in ε
so there is a rejection by a valid partner in ε (valid \geq last valid)
m must have been rejected by all prev invites bed dove w; consider last rejection in \mathcal{E} of a valid purtiver: w rejects m then $w=$ bast (m)
press invitees are perfesped (invites in \downarrow ordeal)
but nome are valid (els not 1 st rejection w rejects m in favor of same m^{\prime}, so w prefers m^{\prime} to m (code) by valid) there is some stable matching S^{\prime} sit. $(m, w) \in S^{\prime}$ (w is valid; def valid)
find w^{\prime} std. $\left(m^{\prime}, w^{\prime}\right) \in S^{\prime} \quad\left(S^{\prime}\right.$ is a perfect matching) them $w \neq w^{\prime}$ ($(m, w) \in s^{\prime}$, cant also have $\left.\left(m^{\prime}, w\right) \in s^{\prime}\right)$
w^{\prime} is a valid parturer of $m^{\prime} \quad\left(\left(m^{\prime}, w^{\prime}\right) \in S^{\prime}, S^{\prime}\right.$ is stale j af maid) m^{\prime} prefers w to $w^{\prime \prime}$ (w rejecting m is $1^{s t}$ rejection of $\left(m^{\prime}, w\right)$ is instability in $S^{\prime} \Rightarrow t$
\therefore O-S always returns 5^{*}

Interval Scheduling: Given n requests with start $s(i)$, finish $f(i)$ find largest set of compatible requests
nonover lapping - request i compar n request j
if $i \neq j$ and

$$
s(i)<f(i) \leqslant s(j)<f(j)
$$

Weighted Internal Scheduling: add weight w : to each request, find $s(j)<f(j) \leq s(i)<f(i)$ set of compatible requests to maximize total weight

Stable Matehiry: Gale - Shapley
Bipartite Matching: Gwen bipartite G, find maximum matching \rightarrow can split vests into 2 parts S_{1}, S_{2} site all edges between S_{1}, S_{2}

Independent Set: Given graph 6, find largest get of vertices sit. no edge between vertices in set

Competitive Facility Location: Given G with weighted veits, bound B game between PI, PZ alternating choosing vert sat. not adjacent do already chosen, is there a strategy for PZ to guarantee a total $\geqslant B$?
(10)-(1)-(1)-(15)

