
(1)
$a(v)$
O s is a shortest overall path (tot weight 0)
1 ib is shortest path $s \leadsto b$ (all other paths stat $\begin{aligned} & s \rightarrow a \leadsto b \\ & s \rightarrow b \rightarrow t \\ & s \rightarrow c \rightarrow b \\ & \rightarrow 5\end{aligned}$
2 sa is shortest path $s \rightarrow a \quad v \in S, \exists u \in S$ sit. $(u, v) \in E$ next shortest path is to some vert v adj to S^{\prime} (paths $s \leadsto v, v \& S: S \leadsto x \rightarrow y \leadsto v$)
 $(u, v) \in E$
$c_{1} \leq c_{2}$
so consider y $\left(\right.$ adj b_{0} s)
instead of v
$D_{i j} \operatorname{sstrn}$
$S \leftarrow\{S, l)$
$d(s)\}$
$d(s) \leftarrow 0$
while $S \neq V$
$v \in V-S$
choose $v \notin S$ to minimize $d^{\prime}(v)=\min _{u \in S} d(u)+l(u, v)$
$(u, v) \in E$
(and next-to-last vertex on shortest path $s \leadsto v$ is u that yielded min)

Given weighted G (directed or undirected), and a source vertex s, find min-weight path $s \leadsto v$ for all vertices v.

$$
\begin{gathered}
D_{i j k s t r u}(6, l) \\
S \longleftarrow\{S\}
\end{gathered}
$$

$$
d(s) \leftarrow 0
$$

while $S \neq V$
choose $v \& S$ to minimize $d^{\prime}(v)=\min _{\substack{u \in S \\(u, v) \in E}} d(u)+l(u, v)$

$$
\begin{aligned}
& S \leftarrow S u\{v\} \\
& d(v)=d^{\prime}(v) \\
& Q \leftarrow \varnothing \\
& S \leftarrow\{s\} \\
& d[s] \leftarrow 0 \\
& \pi[s] \leftarrow \text { NIL }
\end{aligned}
$$

solved vents
cost of min-cost path from s
for $v \in V, v \neq S$ nert-to-last vert on min-cost path
if $(s, v) \in E$
$d^{\prime}[v] \leftarrow l(s, v)$ best cost so for

$$
\pi[v] \leftarrow s
$$

else

$$
\begin{aligned}
& d^{\prime}[v] \leftarrow \infty \\
& \pi[u] \leftarrow \sim 1 L
\end{aligned}
$$

Q.enguare ($v, d^{\prime}[v]$)
n iterations while $Q \neq \varnothing$ Q = unsolved vets

$$
v=Q \text { extmatMin }()
$$

$$
d[v] \leftarrow d^{\prime}[v]
$$

m iterations Lot $\quad S \leftarrow S \cup\{v\}$ for $(v, w) \in E$ where $w \in Q$
if $d[v]+l(v, w)<d^{\prime}(w) \longleftarrow$ is path $s a v \rightarrow \omega$
$d^{\prime}[w]=d(v)+l(v, w)$ better than

$$
\pi[\omega]=v
$$

$$
s \rightarrow \pi(\omega) \rightarrow \omega \text { ? }
$$

1/inner iteration Q. decrease Priority ($\omega, d^{\prime}[w]$)

Prionty Queue Implementation

space if m is $\theta(n) \quad O(n \log n) \quad O\left(n^{2}\right)$ $O\left(n \log _{n}\right)$
dense m is $\theta\left(n^{2}\right) \quad O\left(n^{2} \log n\right)$ $O\left(n^{2}\right)$

