$$
\begin{aligned}
& D_{i j} k s t r \operatorname{tr}(6, l) \\
& S \leftarrow\{s\} \\
& d(s) \leftarrow 0
\end{aligned}
$$

while $S \neq V$

$$
\begin{aligned}
& S \leftarrow S \cup\{v\} \\
& d(v)=d^{\prime}(v) \\
& Q \leftarrow \varnothing \\
& S \leftarrow\{s\} \\
& d[s] \leftarrow 0 \\
& \pi[s] \leftarrow \text { NIL males a) } \quad T \text { - make } \\
& d) \quad T
\end{aligned}
$$

for $v \in V, v \neq S$
if $(s, v) \in E$
$\left.\begin{array}{l}d^{\prime}[v] \leftarrow l(s, v) \\ \pi[v] \leftarrow s\end{array}\right]$ - males e) T
elise

$$
d^{\prime}[v] \leftarrow \infty
$$

$$
\pi(v) \leftarrow N 1 L
$$

Q.enguere $\left(v, d^{\prime}[v)\right)$
while $Q \neq \varnothing$

$$
\begin{aligned}
& v=\text { Q. extract } \operatorname{Min}() \\
& d[v] \leftarrow d^{\prime}[v] \\
& S \leftarrow S v\{v\}
\end{aligned}
$$

g)
for $(v, w) \in E$ where $w \in Q$
if $d[v]+l(v, w)<d^{\prime}(w)$
$d^{\prime}[w]=d[v]+l(v, w)$
$\pi[w]=V$
return (d, π)
$\pi[w]=v$
Q. decreasePrisuity $\left(w, d^{\prime}[w]\right.$ for $v \in Q, d^{\prime}[v]=\operatorname{cost}$ of min-eost path sadv
where intermediate vats are in S
b) $S \in S$ partition V
c) $|Q|=n-1$ - \#iterations
d) for $v \in S, d[v]=$ cost of min -cost path $s \longrightarrow v$
$\pi[v]$ is next-du-last on that path $\pi[v]=$ next-to-last vert on that path
Basis:
f) $d^{\prime}[v]$ is the priority of v

Term: when loup stops, $Q=\varnothing$, so $S=V^{S} \pi[v]=N I L$ or $\pi[v] \in S$ for all $v \in V$

Induction: a) nothing removed from S
b) every time v removed frow Q, added S; those are only charges b, Q
c) one extract min per iteration
d) [Need for the one v added to S, d and π are correct] cost of min-cost path $S \leadsto V$
Consider any path $s \leadsto v$ (want cost of that path to be $\geq d(v)]$
if p has all int vests in S than

$$
d^{\prime}[v] \leqslant \ell(p) \text { by iNv) }
$$

else p has int vests not on S
find $1^{\text {st }}$ edgy (x, y) that coss from S to Q
else p has int vents not in S
Sud 1^{1+t} eds (x, y) that cases from S to Q
(3)

$d^{\prime}[v] \leq d^{\prime}[y] \quad$ (extract min + inv f)
split p at y into p_{1}, p_{2}
$\begin{aligned} d^{\prime}[y] & \leq l\left(p_{1}\right) \\ & \left.\leq l\left(p_{1}\right)+l\left(p_{2}\right) \text { since } \quad l\left(p_{p_{2}}\right) \geq 0 \quad \text { (no nos weight polys) }\right) ~\end{aligned}$

$$
=e(p)
$$

$$
l\left(p_{1}\right) \leq l(p)
$$

$$
d^{\prime}[v] \leqslant d^{\prime}[y] \leq l\left(p_{1}\right) \leq l(p)
$$

so $d^{\prime}[v]$ is \leq cost of any pith $s \leadsto v$ and is cowect value for $\frac{d}{d}(v)$ to be at to
f) any change do d^{\prime} is accompanied by conespounding change to Q
e) [S expands, which expands the set of path's d' needs to minimize over - v is allowed as an intermediate vet - need to show that our updates to d^{\prime} are sufficient]

Consider any path p s $\xrightarrow[s]{s} v \xrightarrow{s} y \rightarrow w$

Consider any path
shodened cole

Consider any path $p \quad s \stackrel{s}{\rightarrow} w$

$$
l(p) \geq d_{\uparrow \text { ina }}^{\prime}(w) \underset{\uparrow}{\text { inv } e} \underset{\text { code }}{\geq} d_{\text {new }}^{\prime}(\text { inv }]
$$

So d'now $[w] \leq \ell(p)$ for any path $s \leadsto w$ using int. vests in su\{u\}

$$
\begin{aligned}
& l(p) \geq l\left(p^{\prime}\right)=d[v]+l(v, w) \geq d^{\prime} \text { nw }(w]
\end{aligned}
$$

$$
\begin{aligned}
& l(p) \geq l\left(p^{\prime}\right) \geq d_{\text {old }}^{\prime}[\omega] \geq d_{\text {man }}^{\prime}[\omega] \\
& \text { replaces sasvasy inv core } \\
& \text { with sourest easy }
\end{aligned}
$$

g) only dime $\pi[w]$ is changed, it is changed to something just addled to S;

Minimum Spanning Tree: MST of undirected, wowneghtred wights G is a set of edges $T \leq E$ that forms a tree, connects all vertices in V, and minimizes total weight
 spanning tree weight $=19$
 minimum spanning tree
weight $=11$

while $S \neq V$ choose $v \notin S$ to minimize $d^{\prime}(v)=\min _{u \in S} d(u)+l(u, v)$

for $v \in V, v \neq S$

$$
\text { if }(s, v) \in E
$$

$$
d^{\prime}[v] \leftarrow \ell(s, v)
$$

$$
\pi[v] \leftarrow v
$$

else

$$
\begin{aligned}
& d^{\prime}[v] \leftarrow \infty \\
& \pi(v] \longleftarrow N I L
\end{aligned}
$$

Q.enqueue ($\left.v, d^{\prime}[v]\right)$
while $Q \neq \varnothing$.
Q.enqueve ($\left.v, d^{\prime}[v]\right)$
while $Q \neq \varnothing$

$$
V=Q \cdot \operatorname{extractmin}()
$$

$d \leftarrow v] \leftarrow d^{\prime}(v]$
$S \leftarrow S \cup\{v\}$$\quad A \leftarrow A \cup\{(\pi(v), v)\}$
for $(v, w) \in E$ where $w \in Q$
if $d[F]+l(v, w)<d^{\prime}(w)$
$d^{\prime}[w]=d[\sigma]+l(v, w)$
$\pi[w]=v$
Q. decrease Priority ($w, d^{\prime}[w]$)
return $(d, \pi) A$

