
for $v \in V, v \neq S$

$$
\begin{aligned}
& \text { if }(s, v) \in E \\
& d^{\prime}[v] \leftarrow l(s, v) \\
& \pi[v] \leftarrow v
\end{aligned}
$$

else

$$
\begin{aligned}
& d^{\prime}[v] \leftarrow \infty \\
& \pi[v] \leftarrow N I L
\end{aligned}
$$

$Q$.enqueue $\left(v, d^{\prime}[v]\right)$
while $Q \neq \varnothing$
$1 N V:$
$V=Q$. extract $\min ()$
$c u t=S, Q$

for $(v, w) \in E$ where $w \in Q$ if $d[\square]+l(v, w)<d^{\prime}(w)$

$$
d^{\prime}[w]=d[0]+l(v, w)
$$

$\pi[w]=v$
Q. decrease Priority ( $w, d^{\prime}[w]$ )
return $(d, \pi) A$

For an undirected graph $G=(V, E)$
a cut partition of $V$ into $S, V-S$
a subset of edges $E^{\prime}$ respects cot $\left(v_{1}, v_{2}\right)$ if, for all $(u, v) \in E^{\prime}$ $u, v \in V_{1}$ or

$$
u, v \in v_{2}
$$


$E^{\prime}$ respects the out


Does $E^{\prime}$ respect cot $\frac{(\{a, d, y\},\{b, c, c, f, h\}) ?}{N O \quad(a, c)}$


Cut Property / Light Edge Thu
Thy: If 1$) ~ G:(V, E)$ is an undirected, weighted graph with $w(u, v) \geq 0$ fir all $(u, v) \in E$
2) $(S, V-S)$ is a act of $G$ is $A \leq E$ an acyclic subset of $E$ that respects $(S, V-S)$
4) $A$ is a proto-mST ( $A$ is a sub st spots some MST $\frac{1}{1}$ )
5) $(u, v)$ is min-wisht edge that cross s $(v, v-S)$
then $A \cup\{(u, v)\}$ is a proto-mST


Proof: Suppose $6, S, A,(u, v)$ satisfy $1-5$ above light else across $(S, V-S) ; A$ respects $S$ Find MST $T$ so that $A \leq T$
Tue cases: 1) $(u, v) \in T$. Then $\frac{A \cup\{(u, v)\}}{\text { this is a prato }} \subseteq T$
2) $(u, v) \notin T$

Then there is some edge $(x, y)$ on path $u$ asp in $T$ so that $x \in S, y \in V-S$

A T


Let $T^{\prime}=\underbrace{T-\{(x, y)\}}_{L}, \cup\{(u, v)\}$
$\{(x, y)\}$ has 2 connected components: that of $x$ and $u$ and that of $y$ and $v$ adding $\{(u, v)\}$ connects those connected components

So $T^{\prime}$ connects $V$
And $T^{\prime}$ is acyclic

And $T^{\prime}$ is spanning tree
Furthermore, $w(T) \leqslant w\left(T^{\prime}\right)$ sink $T$ is $\frac{M}{\varepsilon} S T$

$$
\begin{aligned}
& =w(T)-\ell(x, y)+\ell(u, v) \\
& =\omega(y)+\underbrace{\substack{\sin u \\
\text { mm-wisht } \\
\text { oft nos }}}_{\substack{(l(u, v)-l(x, y))}}(u, v) \text { is }
\end{aligned}
$$



$$
\leq v(T) \quad \text { squere }-a l l \leq a r=
$$

while $|T|<n-1$
find min-weight else $(u, v)$ across some wot that $T$ respects
$T \leftarrow T u\{(u, v\})$ return $T \leftarrow T \cup\{(u, v\})$

Kruskal's Algorithm: consider edges in order of $\uparrow$ weight add edge if connects two different components of protu-msT

 connected components $\{d, g\}\{a, c, e, f, b, h\}$

Disjoint Set Forest (partition): add $(v)$ : adds $\{v\}$ to paction
find $(v)$ : returns eft of part of petition $v$ is in; union $(u, v)$ : merges $u$ reverespatative sat same et reined for the paction

MST-KRUSKAL(G) precondition: $G$ is connected, no neg-waisht edge
sort edges in order of nondecreasing weight $O(m \log n)(=O(m \log m))$
$A \in \varnothing \quad b / e n-1 \leq m \leq n^{2}$
for each $v \in V$
$J O(n)$ donal $\log n-1 \leq \log m \leq 2 \log n$

$$
\begin{aligned}
& \text { for etch edge }(u, v) \text { in order of sort } \\
& m \text { if } P \text {. find }(n) \neq P \text {. find }(v) \longleftarrow O(m) \text { total } \\
& A \leftarrow A \cup\{(u, v)\} \\
& n-1 \\
& \text { P.union (uv) } \\
& O(n \log n) \text { luteal }
\end{aligned}
$$

Disjoint Set Data Structure
ADD $(u):$ add $\{u\}$ to partition

FIND-SET $(u)$ : redon representative of $u$ 's part of partition UNION $(u, v)$ : merge $u, v$ 's parts of partition

| UNION $(e, f)$ | $a$ | $b$ | $c$ | $d$ | $e$ | $f$ | $g$ | $h$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| UNION $(c, h)$ | 0 | 1 | 2 | 3 | 4 | 5 | $\&$ | 7 |
| UNION $(c, a)$ |  |  |  | 0 |  |  |  |  |

UNION $(d, g)$
3
UNION ( $c, e$ )
UNION ( $b, f$ )
array comp $[v]$ for index of v's component rep $[i]$ for representation of component ;
UNION $(e, g)$ FIND (V): return $\operatorname{rep}[\operatorname{comp}[v]] \quad O(1) \ddot{u}$ UNION (uv): change all occoreenus of comp [v] b comp $[u]$

