Disjoint Set Data Structure
ADD $(u):$ add $\{u\}$ to partition
FIND-SET (u): redon representative of u's part of partition
UNION (u, v) : merge u, v's parts of partition

$$
\begin{array}{ccccccccccc}
v & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { Comp }[7] & 8 & 1 & x & 3 & 4 & 8 & 6 & x & 8 & 9 \\
\text { size }[0]) & 8 & 84 & 5 & & & &
\end{array}
$$

UNION $(1,2)$
UNION $(2,5)$
UNION $(3,7)$
UNION $(4,8)$
$\operatorname{UNION}(6,7)$
$\operatorname{UNION}(3,4)$
$\operatorname{UNION}(0,1)$

$$
\begin{aligned}
& \text { but- for a single } x \text {, it is } \\
& \text { iterated over at most log }
\end{aligned}
$$

$$
\begin{aligned}
& \text { bic on each add to list, size } \\
& \text { of comp } x \text { is in doubles (at least) }
\end{aligned}
$$

so total iterations is $O(n \log n)$
$\operatorname{UNION}(0,1)$
$\operatorname{UNDN}(2,3)$
UnIon $(4,5)$
$\operatorname{UNION}(4,6)$
$\operatorname{UNION}(4,7)$
UNION $(1,4)$
FIND (6), FIND (7)

$\operatorname{FAND}(4), \operatorname{FIMD}(2)$
representative is root
$\left.\quad \begin{array}{l}\text { FIND }(v) \\ \text { traverse wee for } v \\ \text { link all vents on that path directly } \text { bo soot } \\ l\end{array}\right)$ path compression

unions

1	2
1	3
4	5
4	6
1	4
7	8
7	9
10	11
10	12
7	10
1	7
13	14
13	15
16	17
16	18
13	16
19	20
19	21
22	23
22	24
19	22
13	19
1	13

total time over m operations on n items $O\left(m \frac{\alpha(n)}{\eta}\right)$
inverse Ackerman's fin
really slow-growing - slower than log b

$$
\alpha(n) \leq 4 \text { for any reasonable }
$$

$\frac{\text { FInDS }}{11,23}$
we did a lot of easy work to set up 1 FInd that tolls a
few extra steps - spread thant
few extra steps - spread that
extra work over all pres operations - amortized time is low

MST - KRUsKAL(G) precondition: G is connected, no neg-weight edges sort edges in order of nondecreasing weight $O(m \log n)$ $A \leftarrow \varnothing$
for each $v \in V$
Pad (v)
for each edge (u, v) in order of sort INVARIANT: a) for all (x, y) before current,
$u^{\prime}=P$. Find (u) $v^{\prime}=P$. find (v) if $u^{\prime} \neq v^{\prime}$ then

$$
\begin{aligned}
& \text { P.union }\left(u^{\prime}, v^{\prime}\right) \\
& A \leftarrow A \cup\{(u, v)\} \frac{O(n \log n) \text { total }}{(\operatorname{lin} t-\operatorname{ban} u)} \\
& O(m \log n) \text { overall }
\end{aligned}
$$

Basis:
a) vacuously T
b) done by init of P
c) $A=\varnothing$

Induction: Suppose $a, b, c T$ before loop
a) we never remove educ, so anything connected before remains connected, and if u,v not connected (in different connected components), we connect them
b) whenever we connect u, v's components, we call UNION (u,v)
c) Define cut by $s=$ component containing u

A respects ($S, V-S$) b/c cut defined by A's connected compsany eden m is between 2 vars on same component
(u, v) crosses cut $b / c \quad u \in S, v \$ S$
Consider any (x, y) that cosses wat
Suppose $\ell(x, y)<l(u, v)$. Than (x, y) iterated over, so by $\operatorname{IN}, a, x, y$ connected, so (x, y) dorsn't cross cot $\Rightarrow \epsilon$
So $\ell(u, v) \leq \ell(x, y)-(u, v)$ is as light as any other edge across the cut

Now apply Light Ede Thu do git $A \cup\{(u, v)\}$ is a pruto-MST
Termination: At termination, all eds in 6 have been examined.
For any pair of vertices $u, v \in V$, u, v are connected in G
there is a path $u=x_{1}, \ldots, x_{k}=v$ in G

$$
u=\underbrace{x_{1}}_{A}{ }^{G} x_{2} \underbrace{G}_{A} x_{3} \xrightarrow{G} \cdots \underbrace{x_{k}}_{A}=V
$$

\therefore A spans 6
A is a pato-msT INV C
A is an MST A is acyclic and connects $b \rightarrow A$ is a tree
\rightarrow only tree A can $b e s$ of is itself
\rightarrow only MST A can $b \leq$ of is itself

