Recursion tree for $T(n) \leq 3 T\left(\frac{n}{2}\right)+C n$
level o
© level:
work in

$$
\begin{aligned}
& =3^{i} \cdot c \frac{n}{2^{i}} \vdots \frac{n}{8} \frac{1}{8} \frac{n}{8} \\
& \quad \sum_{i=0}^{k} r^{i}=\frac{r^{k+1}-1}{r-1}
\end{aligned}
$$

$$
\begin{aligned}
& x^{a \cdot b}=(x)^{b} \\
& \log _{b} a=\frac{1}{\log _{a} b}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
=\operatorname{cn} \sum_{i=0}^{\log _{2} n}\left(\frac{3}{2}\right)^{i} \\
=\operatorname{cn}\left(\frac{3}{2}^{\log _{2} n+1}-1\right)
\end{array} \\
& \begin{array}{l}
=\operatorname{cn} \sum_{i=0}^{\log _{2} n}\left(\frac{3}{2}\right)^{i} \\
=\operatorname{lcn}\left(\frac{3}{2}^{\log n+1}-1\right)
\end{array} \\
& \leq 2 \mathrm{cn}^{\frac{3}{\log _{\frac{3}{2}} n}} \log _{\frac{3}{2} 2}+1 \\
& \sum_{i=0}^{\log _{2} n}\left(\frac{3}{2}\right)^{i} \cdot<n \\
& =2 \operatorname{cn} \frac{3^{1}}{2} \cdot\left(\frac{3}{2}^{\log _{\frac{1}{2} n} n}\right)^{\frac{1}{\log _{\frac{1}{2} 2}}} \\
& =3 \mathrm{cn} \cdot n^{\log _{2} \frac{3}{2}} \\
& =3\left(n \cdot n^{\left(\log _{2} 3-\log _{2} 2\right)}\right. \\
& =3 \mathrm{cn} \cdot n^{\log _{2} 3-1} \\
& =34 \cdot n^{\log _{2} 3} \cdot \% \\
& =3 \mathrm{cn}^{\log _{2} 3} \quad \log _{2} 3<2 \\
& \text { which is } O\left(n^{\log _{2} 3}\right)
\end{aligned}
$$

Recursion Tire for $\left.\left.T(n) \leq \frac{1}{2}\right)^{2} T\left(\frac{n}{(3)}\right)+c_{n}^{2}\right)^{d}$

$$
\begin{aligned}
& \mathrm{Cn}^{2} \\
& \frac{10}{9} \mathrm{cn}^{2} \\
& \frac{100}{81} \mathrm{cn}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{10}{5}\right)^{i} \mathrm{cn}^{2} \\
& \mathrm{Cn}^{2} \cdot \sum_{i=0}^{\log _{3} n}\left(\frac{10}{5}\right)^{i} \\
& 1111111 \begin{array}{l}
\text { at loor1: }\left(\frac{2}{4}\right)^{\circ}<n^{2}
\end{array} \\
& \text { som }=\sum_{i=0}^{\log 3 n}\left(\frac{2}{4}\right)^{i} \cdot c n^{2}=O\left(n^{2} \log n\right) \\
& \leq \sum_{i=0}^{\infty}\left(\frac{2}{a}\right)^{i} \cdot \mathrm{cn}^{2} \quad \sum\left(\frac{a}{b^{\alpha}}\right)^{i} c \cdot n^{d} \\
& =c n^{2} \cdot \sum_{i=0}^{\infty}\left(\frac{2}{a}\right)^{i} \\
& d=2 \\
& \text { - }=\frac{9}{7} \mathrm{cn}^{2} \\
& O\left(n^{2}\right) \\
& \text { which of } 3 \text { cases } \\
& \text { depends on } \\
& \frac{a}{b^{d}}<\stackrel{?}{=}>1 \\
& \log _{b} a<\stackrel{?}{\Rightarrow} d
\end{aligned}
$$

Master Method
Suppose $\quad T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n) \quad[J, \Gamma 7, \pm 1$ don't muster

Then
if $f(n) \in O\left(n^{\log _{6} a-\varepsilon}\right)$ for some $\varepsilon>0$ then $T(n)$ is $O\left(n^{\log _{b} a}\right)$
if $f(n) \in \theta\left(n^{\log _{6} a}\right)$ then $T(n)$ is $O(f(n) \cdot \log n)$
if $f(n) \in \Omega\left(n^{\operatorname{los} 5 a+\varepsilon}\right)$ for some $\varepsilon>0$ and if af $(\hat{\xi}) \leq c$.f(n) for some $c>1$ and all large n

$$
T(n) \text { is } O(f(n))
$$

Examples: $\quad T(n)=9 T\left(\frac{n}{3}\right)+n \quad \begin{array}{ll}a=9 \\ b=3\end{array} \quad \log _{b} a=2$

$$
n \text { is } O\left(n^{\varepsilon-0.1}\right)
$$

$1^{\text {st }}$ lase $T(n)$ is $O\left(n^{2}\right)$

$$
\begin{aligned}
& T(n)=T\left(\frac{2}{3} n\right)+1 \quad \begin{array}{l}
a=1 \\
b=\frac{3}{2}
\end{array} \log _{\frac{3}{2}} 1=0 \quad 1 \text { is } \theta\left(n^{\log _{50} c}\right) \\
& T(n) \text { is } O(\log n)
\end{aligned}
$$

$$
\begin{aligned}
& T(n)=3 \cdot T\left(\frac{n}{4}\right)+n \log _{n} \begin{array}{l}
a=3 \\
b=4 \quad \log _{b} a=\log _{4} 3 \\
n \log _{n} \text { is } \Omega\left(n^{\log , 3+0.1}\right) \\
3^{\text {rd }} \text { case } T(n) \text { is } O(n \log n)
\end{array}
\end{aligned}
$$

$$
\begin{array}{rl}
T(n)=2 T\left(\frac{n}{2}\right)+n \log n \quad a=2 & b=r \log _{6} a=1 \\
& n \log n \in \theta(n) ? \text { No } \\
& n \log n \in O\left(n^{1-\varepsilon}\right) ? \text { No } \\
& n \log n \in \Omega\left(n^{1+\varepsilon}\right) ? N O \\
& \text { is } y \log n \Omega\left(n^{1.001}\right)
\end{array}
$$

$$
n \log n \in J L(n)!N
$$

$$
\text { is } y \log n \quad \Omega\left(n_{11}^{1.001}\right)
$$

Mm dies not apply
(this version)

Matrix Multiplication

$$
\begin{aligned}
& S_{1}=B_{12}-B_{22} \\
& S_{2}=A_{11}+A_{12} \\
& S_{3}=A_{21}+A_{22} \\
& S_{4}=B_{21}-B_{11} \\
& S_{5}=A_{11}+A_{22} \\
& S_{6}=B_{11}+B_{22} \\
& S_{7}=A_{12}-A_{22} \\
& S_{8}=B_{21}+B_{22} \\
& S_{9}=A_{11}-A_{21} \\
& S_{10}=B_{11}+B_{12}
\end{aligned}
$$

$$
P_{1}=A_{11} \cdot S_{1}
$$

$$
P_{2}=S_{2} \cdot B_{22}
$$

$$
P_{3}=A_{22} \cdot S_{11}
$$

$$
P_{4}=S_{3} \cdot B_{12}
$$

$$
T(n)=7 \cdot T\left(\frac{n}{2}\right)+c n^{2}
$$

$$
P_{5}=S_{5} \cdot S_{6}
$$

$$
n^{2} \text { is } 0\left(n^{\log _{2} 7-\varepsilon}\right)
$$

$$
P_{6}=S_{7} \cdot S_{8}
$$

$$
P_{7}=S_{9} \cdot S_{10}
$$

$$
\begin{aligned}
& C_{11}=P_{5}-P_{3}-P_{2}+P_{6} \\
& C_{12}=P_{1}+P_{2}=A_{11}\left(B_{12}-B_{22}\right)+\left(A_{11}+A_{12}\right) B_{22} \\
& C_{21}=P_{3}+P_{4}=A_{11} B_{12}-A_{11} B_{22}+A_{11} B_{22}+A_{12} \cdot B_{22} \\
& C_{22}=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

$$
\text { result }=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 3 & 1 \\
0 & 2 & 0 \\
4 & 6 & 9
\end{array}\right) \cdot\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 1 & 1 \\
3 & 0 & 1
\end{array}\right)=(\square) \\
& O\left(n^{3}\right) \text { from } 202 \text { method } \\
& \left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)=\left(\begin{array}{cc}
A_{11} \cdot B_{11}+A_{12} \cdot B_{21} & A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\
\cdots & \ldots
\end{array}\right)
\end{aligned}
$$

$$
\text { result }=\left(\begin{array}{ll}
c_{11} & c_{12} \\
c_{21} & c_{22}
\end{array}\right)
$$

Convolution
Smoothing
ave high by date

weight

Convolution: $\left(\begin{array}{llll}a_{0} & a_{1} & \cdots & a_{370}\end{array}\right) \notin\left(\begin{array}{llll}b_{0} & b_{1} & \cdots & b_{6}\end{array}\right)$

$$
=\left(a_{0} b_{0} \quad a_{0} b_{1}+a_{1} b_{0} \quad a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0} \cdots a_{0} \cdot b_{6}+\cdots+a_{6} b_{0} \quad a_{1} b_{6}+\cdots+a_{6} b_{1} \cdots a_{n} \cdot b_{m-1}\right)
$$

Multiplying Polynomials

$$
\begin{aligned}
A(x) & =\left(a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}\right) \\
B(x) & =\left(b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{1} x_{1}+b_{0}\right) \quad A=\left(a_{n} a_{n-1} \cdots a_{0}\right) \\
C(x) & =A(x) \cdot B(x) \\
& =a_{n} b_{n} \cdot x^{2 n}+\left(a_{n-1} b_{n}+a_{n} b_{n-1}\right) x^{2 n-1}+\cdots+\left(b_{n-1} b_{1}+a_{1} b_{0}\right) x+a_{0} b_{0} \quad\left(a_{n} b_{n} a_{n-1} b_{n}+a_{n} b_{n-1} \cdots a_{0} b_{0}+a_{0} b_{0}+a_{0} b_{0}\right) \\
& A * B
\end{aligned}
$$

Define $p(A)=$ polynomial with coefficients from $A \quad p\left(a_{0}, \ldots, a_{n y}\right)=a_{0}+a_{1} x+\cdots+a_{n y} x^{n-1}$

$$
p(A) \cdot p(B)=p(A * B)
$$

pelymult conudution
p is $1-1$ and ont (bijecture) $\quad p^{-1}(f)=$ vector of coefficients of f CONVOLUTION($A, B)$

$$
\text { return } \frac{p(A) \cdot p(B)=p(A \vee B)}{p^{-1}(C)} p^{-1}(C)=p^{-1}(p(A \cdot B))=A+B
$$

$\left(x_{1}, y_{1}\right)$ is on $P_{1} \quad$ can be done using any representation of the polynomials! $\left(x_{1}, y_{2}\right)$ is on P_{2} $\left(x_{1}, y_{1} \cdot y_{2}\right)$ is on $P_{1} \cdot P_{2}$
coefficients or points - Cor poly of degree k, any sit of? $\mathrm{k}=1 \mathrm{ph}$ is sulticient

$$
\begin{array}{llllll}
A=x^{2}-5 x+6 & (0,6) & (1,2) & (2,0) & (3,0) & (4,2) \\
B=x^{2}-1 & (0,-1) & (1,0) & (2,3) & (3,6) & (4,15) \\
A \cdot B=x^{4}-5 x^{3}+5 x^{2}+5 x-6 & (0,-6) & (1,0) & (2,0) & (3,0) & (4,30)
\end{array}
$$

vector $A \rightarrow$ coefficients of $p(A) \rightarrow \mathrm{Zn}$ pts on $p(A)$
divide /argues
$0\left(n^{2}\right)$ by nom pal enol
 vector $A>B$

Convolution (A, B)
return POLY-mULT (A, B)
$n=\operatorname{len}(A)$
POLY-mult (A, B)
$n=\operatorname{len}(A)$
$\ell^{\text {Ais dare } n-1} A \cdot B$ is dree $2 n-2$; need $2_{2 n-1} p$ ts; choose z_{n} (What??)

$$
\begin{aligned}
& A_{x}=\operatorname{POLY-EVAL}\left(A, Z_{n}\right) \\
& B_{x}=\operatorname{POLY-EVAL}\left(B, Z_{n}\right) \\
& C_{x}=A_{x} \cdot B_{x}
\end{aligned}
$$

return INTERPOLATE (C_{x})
$O(n \log n)$
$O(n \log n)$
$O(n)$
$O(n \log n)$

$$
C_{x}=A_{x} \cdot B_{x}
$$

POLY_EVAL (A, n) retvins A evaluated at $k^{\text {th }}$ roots of $\mid A(1), A(z), A\left(z^{2}\right), \ldots, A\left(z^{k-1}\right)$
if $\operatorname{degrec}(A)=0$
return $\left[a_{0}, a_{0}, \ldots, a_{0}\right]$
else

$$
\operatorname{EVEN} \leftarrow\left[a_{0}, a_{2}, a_{4}, \ldots\right]
$$

$O D D \leftarrow\left[a_{1}, a_{3}, \ldots\right]$ or $(0): A \operatorname{deg}$ es $(A)=1$

$$
\text { EX } \leftarrow \text { POLY-EVAL }(E V E N, n)
$$

$O_{x} \leftarrow$ POLY_EVAL (ODD, n)
for $j=0$ to $k-1$
$j=0$ to $k-1$
$\operatorname{RESULT}[j]=E \times[2 j \bmod k]+e^{-2 \pi i \frac{k}{n}} \cdot O_{x}\left[z_{j} \bmod k\right] e^{\downarrow \pi \cdot \frac{i}{k}} e^{2 \pi i \frac{2 i}{k}}$
return RESULT

$$
\begin{gathered}
T(n) \leq 2 \cdot T\left(\frac{n}{2}\right)+c \cdot n \\
T(n) \text { is } O(n \log n)
\end{gathered}
$$

