Bipartite Matching
Bipartite Graph: V can be pardtioned into X, Y sot. all educ (u, v) have $u \in X, v \in Y$
$u \in Y, v \in X$

Matching in a graph:

there is a perfect matching dor this graph

Problem: Find a matching of maximum size

Prodem: Given directed graph G with source s and sink t and capacity $c(e)>0$ for each $e \in E$,
find $\frac{\text { flow }}{\downarrow}$ of maximum value
assisonent of $f(u, v) \geq 0$ ob each else

$$
v(f)=7
$$

$$
\begin{array}{cl}
f^{\text {out }}(A)=7 & f^{\text {in }}(B)=7 \\
f^{\text {in }}(A)=0 & f^{\text {out }}(B)=0 \\
f^{\text {out }}(A)-f^{\text {in }}(A)=7-0=7 & =v(f)
\end{array}
$$

$$
\begin{array}{ll}
A \quad f^{\text {out }}(A)=9 \\
\text { (in }(A)=2 \\
& f^{\text {out }}(A)-\operatorname{fin}^{\text {in }}(A)=9-2=7=v(f)
\end{array}
$$

Bipartite Matching solved by Maximum Flow
6': input do max A ow needs source
sink
capantios
directions

mAX-BIPARTITE-MATCH (6)
construct G^{\prime} as above
find mar flow f for G^{\prime}
return $m=\{(u, v) \mid u \in X, v \in Y, f(u, v)=1\}$

Lemma 1: There is an integer - valued flow f in b^{\prime} with $v(f)=k$
There is a matching M in G with $|M|=k$
Proof: a lithlelater

LEmma 2: For directed graph 6 with integer capacities, there is a max flow w/ int-valued flows Proofimore later

THM: For bipartite G, max flow f in G^{\prime} gives max matching Proof: Let f be max flow, m be corresponding matching
f is integer -valued

$$
\begin{equation*}
|m|=v(f) \tag{4}
\end{equation*}
$$

Suppose\& M not maximum: M^{\prime} is matching with $\left|M^{\prime}\right|>|M|$
Then there is corresponding flow f^{\prime} with

$$
v\left(f^{\prime}\right)=\left|m^{\prime}\right|>|m|=v(f)
$$

So f is not max flow $\Rightarrow E f$ is max flow
So M is maximum

DEF: set cot is a partition of V into A, B sot. $s \in A, t \in B$

$$
D E F: f^{\text {in }}(X)=\sum_{\substack{(u, v) \in E \\ u \in x \\ v \in X}} f(u, v) \quad f^{o u t}(x)=\sum_{\substack{(u, v) \subset E \\ u \in X \\ v \in X}} f(u, v)
$$

THM: Let f be a flow, (A, B) be an sot cut. Than $f^{\text {out }(A)-f^{m}(A)=v(f)}$
Proof:

$$
v(f)=f o u t(s)
$$

def

Proof:

$$
\begin{aligned}
v(f) & =f^{\text {out }}(s) \\
& =f^{\text {out }}(s)-f^{\text {in }}(s) \\
f^{\circ o t}(v) & =f^{\prime n}(v)=0 \text { for all } v \in A-\{s\} \\
v(f) & =\sum_{v \in A} f^{\text {out }}(v)-f^{\text {in }}(v) \\
& =\sum_{v \in A} \sum_{(v, x) \in E} f(v, x)-\sum_{(u, v) \in E} f(u, v) \\
& =\sum_{v \in A} \sum_{(v, x) \in E} f(v, x)-\sum_{(u, v) \in E} f(u, v) \\
& =f^{\text {out }}(A)-f^{\text {in }}(A \notin A)
\end{aligned}
$$

def
no edges to s so $f^{\text {in }}(s)=0$
Conservation (and $t \notin A$)
$v \neq S$ terms are zero

$$
=\sum_{v \in A} \sum_{(v, x) \in E} f(v, x)-\sum_{(u, v) \in E} f(u, v) \quad d \in f f^{\text {out }}, f^{\text {in }}
$$

eds $A \rightarrow A$ cancel
rearrange; def

LEmma 1: There is an integer -valued flow f in G^{\prime} with $v(f)=k$
There is a matching M in G with $|M|=k$
Proof : \Rightarrow Construct $M=\{(x, y) \mid x \in X, y \in Y, f(x, y)=1\}$
M is a matching in G
$(x, y) \in m \rightarrow(x, y) \in G \quad$ construction of G^{\prime} (no cedes $x \rightarrow Y$ added)
 cant han $\left(x_{1}, y\right),\left(x_{2}, y\right)+M, x_{1} \notin x_{2}$
conservation def fort
Define set at $A=X \cup\{s\}, B=\{\cup\{t\}$

$$
\begin{aligned}
v(f) & =f^{\text {out }}(A)-f^{\text {in }}(A)=f^{\text {art }}(A) \quad \text { prev Th } \\
& =\sum_{\substack{(x, y) \in E^{\prime} \\
x \in A \\
y \in A}} f(x, y) \\
& =\sum_{\substack{(x, y) \in E^{\prime} \\
x \in x \\
y \in Y \\
f(x, y)=1}} f(x, y) \\
& =|\{(x, y) \mid x \in x, y \in Y, f(x, y)=1\}| \\
& =|m|
\end{aligned}
$$

$\Rightarrow E \sin c$

rutan of 6°

