
Maximum Flow in Polynomial Time

MAX-FLOW (6)

flu, v) = O for all (u,v) EE △ ← 2 log= max c(s,v)

Ollogz C) while $\Delta \ge 1$ while there is a path P s ast in Gr, a

titembers:

Oln) (augment (P, f)

Oln) (update (Gr, P)

resid

residual capacity

 residual Stuph
we only object of a company of a capacity of cut & m. D

total O(logz (·m·n) polynomial in size of smph + # Sits in capacities

INV (outsimest loop): there is a cut (A, B) s.t. c(A,B) = u(f) + 2m-D Basis :

Maintenance: Let $A^* = \{v \mid s \rightarrow v \text{ in } G_{r,a}\}$, $B^* = V - A^*$

$$v(f) = f^{\text{out}}(A^{+}) - f^{\text{in}}(A^{+})$$
 THM of Mar 27

$$= \sum_{(u,v) \in E} f(u,v) - \sum_{(u,v) \in E} f(u,v)$$

$$= \sum_{(u,v) \in E} f(u,v) - \sum_{(u,v) \in E} f(u,v)$$

def fort, I'm

2 [c(u,v)-Dok)- [Dold

for edges $A^{\vee} \rightarrow \underline{B}^{\vee}$ $C_{r}(u,v) = \overline{c(u,v)} - f(u,v) < \Delta$ (if cr(u,v) > △ then (u,v) ∈ Gr, a so save →v) for edge (B) A"

f (u,v) < A

2 ((A*, B*) - m A ald

(if f(u,v) ≥ D then Cr (v,u) ≥ D

= c(A),B)-Zmanu

50 (v, u) 6 (c, o and 5 → v → u =>)

any flour of capacity of any cut

INV v (fms) = v (f*) = c(A*,B*) = v (fold) + Zm D

v(from) - v(folk) & Zm a = 16 320

we add at most this during literation of outer loop

each iteration of luner adds = a flow

50 < 2m Horadins of Somer

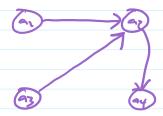
Comparison Graphs

PRE: nzl, A listinct

MAX (A , ^)

 $max \leftarrow A[1]$ for i=2 to n

if A[i] > max


Companisons max = ALi]

retun max

Companion Graph

captures results st companions done in alg

small -> big

lower bound for MAX: n-1 compansors

- every alg that solves MAY has worst-case of 2 n-1 compansons

to know may, must be path from to what the mar is

MIN- AND_MAX (A,n)

max (A (1)

6 = 2 to n if A(:) > max

max (ALi)

du + Ali) 4 min

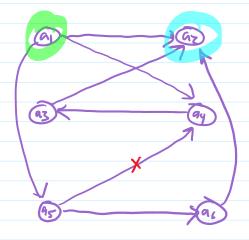
min (AL)

return (mln, mex)

worst case 2n-Z

mayc ← []
minc ← []

for 1=1 to n by Z


if ACi) LACi+1) 2 min c. append (ACi)

may c. append (A[it])

ely

return (MIN(MINC), MAX(MARC))

bok1 30 - 2

For any MW-AND_MAX Alg, can had path w/ = 32-7 comps

! U unknown

X ands for mex

Al L min

: Un known	
X ands for mex	
N by min	
O rule d out	
of	
if comp U vs U choose branch aubitrary	
X vs N follow X brigger branch X vs X, autobrary	
N vs N avhitrary	
X vs O bellow X bager	
N vs O blow o bager	
N vs O Gollow O bagger O vs O Follow consistent W prev	
	7
at hom, most have 1 X, 1 N O V n-2	U
ned 3n - 7 compansons to so from	
Mula 7 - C Compansons to 30 arm	
~ U → IX,\W, DU, ~-Z D	
so any aly for MIN_AND_MAX has worst care 2 3 - Z	
Lower Board for MIN-AND-MAX is 3 72-7	
	_
	—
	—