Lower Bounds
Lower bound for problem P is $f(n)$ means no alg that solves P has worst case better than $f(n)$

Lower bound for sorting

```
for i = 0 to n-2
    for j = 0 to n-2-i
        swap(a, j, j+1)
```


$D T$ for sorting n items, using companions
Binary toe e with n ! leaves most hare hight $\geq \log _{2} n$!
So any compan3on-based sot must have a worst can $\leq \log _{2} n$!

$$
\begin{gathered}
\log _{2} n+\log _{2} n-1+\cdots+\log _{2} 1 \\
O(n \log n)
\end{gathered}
$$

Reductions
Convex Hull

live between interior pts doses it leave
\uparrow
Given a set of points in the plane, what convex polygon with vertices chosen from the set contains the rest?

Sorting w/ Conner |LUll|

$$
C H-S O R T(A)
$$

for each $x \in A$ pts $\leftarrow p+3 \cup\left\{\left(x,-x^{2}\right)\right\}$
Ch = CONVEX-HNCL (ph)
sort $\leftarrow[]$
for each $(x, y) \in c h$ sort \leftarrow sort $+[x]$
fix wraparound return suit

lu sing companions)
Lower bound on $C H$: $O(n \log n)$
if $C H$ is easy then sorting is early
(w.l. Center than $o \ln \log n)$)
if sorting is hard then convex hull is hard

$$
\text { HAMILTONIAN - CYCLE } \leq \text { LONLEST-PATH }
$$

Solving HC usm LP:

$$
\begin{aligned}
& \frac{H C(6)}{k \leftarrow \text { volts in } G} \\
& \text { long } \leftarrow \text { LONGEST-PATH (} 6) \\
& \text { if }
\end{aligned}
$$

NP: a class of useful problems

NP-complete: the hardest of the problems in NP

For decaion problems A and $B, A \leq_{p} B$ means

Vertex Cover: Given G and k, determine if there is a vertex cover of size $\leq k$

subset of ventres with no edges between members of subset
Independent Set: Given G and k, determine if there is an independent set of sire $\geq k$

Algorithm for $V($: reduin $I S(6, n-k)$
$V C \leq_{p}$ IS (if VC is hard then IS is hard)

TAM: 6 has VC of size k if and only if 6 has IS of size $n-k$
Proof: \Rightarrow Suppose 6 has VC C of size k. (ned to show there is IS of size $n-k$]
Let $S=C^{c}=V-C$. Certainly size of $S=n-k$
Let $u, v \in S$ (hued (u, v) not an ed u] for all $u, v \in S$

$$
\begin{aligned}
\text { Suppose } & (u, v) \in E \\
& C \text { covers }(u, v) \\
& u \in C \text { or } v \in C \\
& \text { so u } u \text { or } v \notin S \Rightarrow E \\
\therefore & (u, v) \in E
\end{aligned}
$$

\Leftarrow Later
$A \leqslant_{p} B:$ there is an all for A that runs in polynomial $\#$ of steps including calls to all for B (that count as a single step)

bor some $k \leftarrow$ ald for B
THM: If $A \leqslant P B$ and $B \in P$ then $A \in P$

COR: If $A s_{p} B$ and $A \& P$ then $B \& P$
subset of vests
w/ all possible eds between
Clique: Given G and k, determine if G contains a clique of size $\geq k$.

edges exactly
whir G dorsn.t
hove them
Alg for VC: $\underbrace{}_{\text {poly -hern } C L I Q V E\left(G^{c}, \frac{n-k}{4}\right) .}$
VC S_{P} CLICVE poly-time poly-time

THO : 6 has VC of sire k if and only if G^{e} has clique of size $|V|-k$
Proof: \Rightarrow Suppose G has VC C of sine k. Let $C^{\prime}=V-C$. So sire of $C^{\prime}=n-k$
Let $u, v \in C^{\prime}$ and $u \neq v$. Cued that C^{\prime} is a clique for all $u, v \in C^{\prime}(u, v)$ is in $\left.G^{c}\right]$
Suppose (u, v) is not an edge in G^{C}
Then (u, v) is an edge in G
def of G^{c}
So $u \in C$ or $v \in C$
C Covers edges of G
So $u \notin C^{\prime}$ or $v \notin C^{\prime} \Rightarrow E$ construction of C^{\prime}
$\therefore(u, v)$ is an ed μ in G^{c}, so for all $u, v \in C^{\prime}$, edge exists, so C^{\prime} is
E Suppose G^{e} has clique C of size k. Let $C^{\prime}=V-C$. a clique

Let (u, v) be an edge in G.
Suppose $u \notin C^{\prime}$ and $v \notin C^{\prime}$
Then $u \in C$ and $v \in C$
So (u, v) is an edge in G^{6}.
So (u, v) is not an ely in G

Eyck
Hamiltonian Path: Given G, is there a simple path through all vertices?
Long Path: Given G, k, is there a simple path of length $\geq k$?
$H P \leqslant P L P: \quad H P(6):$ return $\angle P(6, n)$

$$
H P \leq_{p} H C ?
$$

Travelling Salesperson: Given complete weighted, G, and bound k, is there a tour of total weight $\leq k$?
$H C S_{p} T S P$: 1) Crate G^{\prime} in same venter sat as G poly and all possible edge
2) Set $l(u, v)=\left\{\begin{array}{ll}0 & \text { if }(u, v) \in G \\ 1 & \text { otherwise }\end{array}\right.$ poly
3) retion $\operatorname{TSP}\left(G^{\prime}, 0\right)$

