Data Structures
Free M <- M
Free <- W
Invitations <- \{\}
Tentative <- \{\}
linked or wraparound awry
Free m is an queue (m in queue means m is free, not in queue manes not free)
Fresh $(\omega] \longleftarrow 1$ for all ω

While there is an m in Free sit. there is a ws.t. (m, w) not in Invitations finding m s.t. $m \in$ Free $O\left(n^{2}\right)$ if
choose such an m \longrightarrow check if quare empty O(I)
\rightarrow remove heal of queue obI)
let w be m's highest ranked s.t. (m, w) not in Invitations

Fend is a hash set $\ddot{\sim}$ $O(n)$ if Prem is an array of $0 / 1$:̈ but don t read set ops - queue is enough!

$$
\begin{array}{cc}
\text { add }(m, w) \text { to Invitations } & \longrightarrow w \leftarrow \operatorname{Pref} m[m][\operatorname{Nert}[m]] \\
\text { OlD) } 1 \text { lost }) & \operatorname{Nowt}[m] \leftarrow \operatorname{Next}(m)+1] o(1)
\end{array}
$$

if w in Free then \rightarrow if Free $[\omega]=1 \quad O(1)$ remove w from Free remove m from Free M
else
add (m, w) to Tentative $\leftarrow \operatorname{Match} m[m] t w]$ find mast invitation bo make Inutatios $O\left(n^{2}\right)$ if search list of Inutations: $:$
\square
find m^{\prime} s.t. $\left(m^{\prime}, w\right)$ in Tentative $m^{l} \leftarrow \operatorname{Matoh} \omega[w]$ $(3,1),(4,5),(2,1)$ if w prefers m to ${ }^{\text {m }}$
still neat b do [remove m from Free] already removed $O(1)$ Sh en in $\theta(1)$ add m^{\prime} to FreeD] add to back $O(1)$
remove $\left(\mathrm{m}^{\prime}, w\right)$ from Tentative Math $\left[\mathrm{m}^{\prime}\right) \leftarrow$ NIL time $\quad \operatorname{add}(m, w)$ to Tentative return Tentative F eve add in to back $O(1)$
sire of Tentative $=$ \# of iterations of main loop Tentative S MxW, which is of size n^{2}

So main lop terminates affer at most n^{2} iterations.
Work before loop is $\theta\left(n^{2}\right)$ [including initializing dater structure for preferences]
Work in lop is $\theta(1)$
So total time is $\theta\left(n^{2}\right)$

Loop Invariant : Something true at beginning of every iteration of loop

Loop Invariant Thu:
ariont Thu: \rightarrow statement about variables and e it itemdrons of loop
For prodiante P, if
a) tie before $1^{\text {st }}$ operation condition on loop
then P is loop invariant
essentially induction \#t iteathen of loop
Also want
loop must terminate
the fiat invariant tare at end of loop means algon blum did what it was supposed to
SelectionSort (A)
for $i=0$ to $n-2$
 $\begin{aligned} & \text { and } A[i-1] \leq A[-], \ldots, A \\ & \text { and } A \text { has original valves but } \\ & \text { a di }\end{aligned}$ when $i=n-1$, inv says

So $A[0] \leq A[1] \leq \cdots \leq A[n-2] \leq A(n-1]$
(still need to pore that the claimed invariant is the invariant)
InsertionSort (A)
for $i=1$ to $n-1$
insert $A[i]$ into correct location among $A[0], \ldots, A[i-1]$
INV: $A(0] \leq \cdots \leq A[i-1)\left(1^{s t} ;\right.$ in order $)$
and $1^{\text {st }}$: ells of A now are the same as original $1^{\text {at }}$ ielts

$$
\begin{array}{lllll}
\text { original } 1^{\text {ct }} \text { ielts } \\
\text { (in possibly different order) } & 1 & 2 & 3 & 5 \\
\hline
\end{array}
$$

and $1^{-\quad}$; efts of A now are the same as original $1^{4 \pi}$ ells (in possibly different order) and remaining elis are same as before (and in same order)

