
Disjoint Set Data Structure

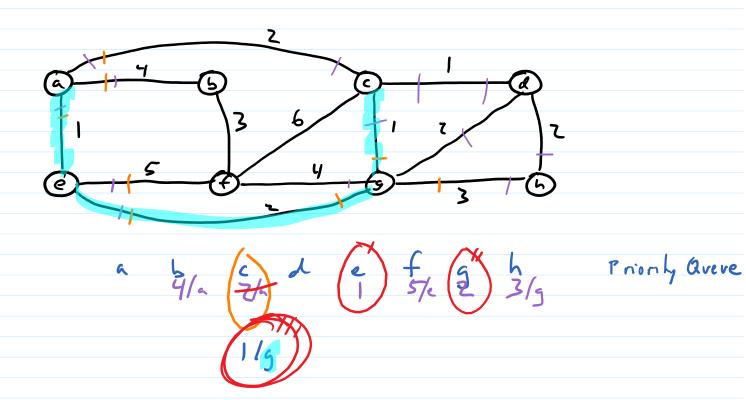
ADD (u): adds set [u] to partition (one elt in partition using selected edges) FIND-SET (a): returns id of part of parkhons

O(1) same for everything Containing u
in the same part UNION (u,v): merges part of paradim contains a with that
O (log n) amorbized containing v 2 % У 5 1 UNION (A, e) 0: ac 1:5 2 Union (c,d) UNIN (6,5) UNION (e,g) Let Rv,; = { 0 otherwise total # relabilitys = \(\sum_{i=1}^{n-1} \ \Ru_{i};

n=#vertus m=#edys

Kruskal's Algorithm: consider edges in order of 1 weight 0(m log n)

add edge if connects two different components of probo-MST


DFS? O(n+m) subset of

For every edge, so total some MST

O(n-m+m²) to better

 $O(m \log n)$ sort edges in order of increasing weight $O(m \cdot 1)$ $O(m \cdot 1)$ if u, v in different connected components $O(n \cdot \log n)$ $T \leftarrow Tv \{(u, v)\}$ $v_{N \mid 0} = v_{N} = v_{$

Prim's Algorithm

Priority Over	Implementations	extract-min	decrease-key	TOTAL	MEΘ(n)	m f O (u²) Lense
unsorted army	0(~)	O(n) search entire am	θ(1)	0 (n2 +m)	٥(٣٦)	0(,2)
sorted avray	Olnlogn	O(1) wrap-arand style remove 1st element	O(n) find eH to change swap it to new loc			
bivery heap or balanced BST	θ (n) θ (n)	0 (lyn)	o(los n)	0(m log n)	O(nlogn)	(موماته)
Lb heep	ð(n)	Ollogn)	A(1)	O (nlogusm) Olaloga	(1,1)