Pre: no nes-weight cycles (all shortest path

$Q \leftarrow \varnothing$ prionty queue key = bi weight of showiest path
$\left[\begin{array}{lr}\{5\{s\} & \text { vests we know } \\ d[s] \leftarrow 0 & \text { shortest path to }\end{array}\right.$
$\pi[s] \leftarrow$ NIL

$$
v \in V, v \neq S
$$

if $(s, v) \in E$

$$
d^{\prime}[v] \leftarrow l(s, v)
$$

$$
T[v] \leftarrow v
$$

else

$$
\begin{aligned}
& d^{\prime}[v] \leftarrow \infty \\
& \pi(v] \leftarrow N I L
\end{aligned}
$$

Q.engueve ($v, d^{\prime}[v]$)
\rightarrow while $Q \neq \varnothing$
$V=Q$. extract $\min ()$
$d v] \in d^{\prime}[v]$
$S \in S v\{v\}$
for $(v, w) \in E$ where $w \in Q$
if $d[v]+l(v, w)<d^{\prime}(w)$
$d^{\prime}[w]=d[v]+l(v, w)$
$\pi[w]=v$
Q. decrease Priority ($w, d^{\prime}(w]$)

of oof- C/5
d 00/2 + $5 / d$
$f \infty>1 / 5$
invariant:
a) $s \in S$
b) S, Q partition V
b) $|Q|=|V|-1-\#$ iterations
d) for $v \in S, d(v)=\delta(s, v)<$ (ho coast of shortest $s \leadsto v$
$\pi(v)=$ nurt-bolast on min-ost path
d, π correct
e) So v $v \in Q, d^{\prime}(v]=$ cost d min cost save using s

$$
d^{\prime}, \pi \text { ave correct }
$$

f) $d^{\prime}[v]$ is the priority of v in Q
g) $\pi[v]=N / L$ or $\pi[v] \in S$ for all $v \in V$
e) $d^{\prime}[w]$ are hot wight of shortest path $s \xrightarrow{s} \stackrel{s}{s}$ i) $d^{\prime}[v]$ is tot weight of a path s

$$
\text { 2) } d^{\prime}[v] \leq \text { tot weisht of any path } s \xrightarrow{s} w^{s} w
$$

Let P be any path $s \xrightarrow{\text { case }} w$
i) P doesn't vex v
than P is $S \xrightarrow{S^{\text {add }}} w$

code inv

$$
\begin{aligned}
& \text { ii) } P \text { is } s \longrightarrow v \longrightarrow w \\
& \text { Let } \begin{array}{r}
p^{\prime} \text { be shortest path } s \leadsto v \\
+ \text { edge } v \rightarrow w
\end{array} \\
& \begin{aligned}
l(P) & =l\left(P_{1}\right)+l(v, w) \\
& \geq l^{\prime}\left(P_{1}\right)+l(v, w)
\end{aligned} \\
& =d[v]+l(v, w) \\
& \begin{aligned}
l(P) & =l\left(p_{1}\right)+l(x, w) \\
& 2 l\left(p_{1}^{\prime}\right)+l(x, w) \\
& =d(x] \pm l(x, w) \\
& ? d d_{\text {out }}^{\prime}[w] \\
& ? d_{\text {man }}^{\prime}(w)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
Q \leftarrow \varnothing \\
S \leftarrow\{s\}
\end{array} \\
& d[s] \leftarrow 0 \\
& \begin{array}{l}
d[s] \leftarrow 0 \\
\pi[s]
\end{array} \\
& v \in V, v \neq S \\
& \text { if }(s, v) \in E \\
& \pi[v] \leftarrow v \\
& \text { else } \\
& d^{\prime}[v] \leftarrow \infty \\
& \pi(\mathrm{J}] \longleftarrow \mathrm{NIL} \\
& Q \text {.enqueue }\left(v, d^{\prime}[v]\right) \\
& \text { while } Q \notin \varnothing \\
& \checkmark=Q \text {. extract } \mathrm{min}() \\
& \frac{d[v]}{s} 5<-d^{\prime}(v] \\
& \text { s } \leftarrow<u\{v\} \\
& \begin{array}{l}
\text { if } d[v]+l(v, w)<d^{\prime}(v)
\end{array} \\
& d^{\prime}[w]=d[v]+l(v, w) \\
& \begin{array}{l}
\pi[w]=v \\
Q . \operatorname{decrase} \operatorname{Priorily}\left(w, d^{\prime}(w]\right)
\end{array}
\end{aligned}
$$

d) $d[v]$ is hot wisht shoitest path $s \rightarrow v$ (for all $v \in S$)

$$
\begin{aligned}
\operatorname{dmu}(v] & =d^{\prime}[v] \\
d^{\prime}[v] & \leqslant d^{\prime}[y] \quad \text { extract-min } \\
d^{\prime}[y] & \leqslant l\left(P_{1}\right) \quad \text { INV } e \\
l\left(P_{1}\right) & \leqslant l\left(P_{1}\right)+l\left(P_{2}\right) \\
& \text { PRE no nus-wisht } \\
& =l(P) \quad \text { edlys so so } l\left(P_{2}\right)>0
\end{aligned}
$$

Negative Weights
Negative weights \rightarrow Dijkstra

