Value of flow = Flow across cut

DEF: $s-t$ cot is partition of V into A, B s.t. $s \in A, t \in B$

THM: Let f be a flow, (A, B) be an st cut. Then $f^{\text {out }}(A)-f^{\text {in }}(A)=v(f)$

$$
v(f)=f^{\prime v+}(A)-f^{\prime n}(A)
$$

$$
f^{\omega+1}\left(A^{\prime}\right)=f^{0^{*}(A)-f\left(A_{, y}\right)+f\left(y_{2} B\right)}
$$

$$
f^{\sin }\left(A^{\prime}\right)=f^{\sin (A)-f(y, A)+f(B, y)}
$$

$$
f^{\text {oort }}\left(A^{\prime}\right)-f^{\text {in }}\left(A^{\prime}\right)=
$$

$$
\begin{array}{r}
\underbrace{f^{\text {out }}(A)-f^{\text {in }}(A)}_{v(f)}-\underbrace{\underbrace{f(1)}(y)}_{v(f)-0=v(f)}+f^{f(A, y)-f(B, y)}+\frac{f(y, B)+f(y, A)}{f(f)}
\end{array}
$$

Proof:

$$
\begin{aligned}
& v(f)=f_{\text {out }}(s) \\
& =f^{\text {out }}(s)-f^{\ln }(s) \\
& \text { def } u(f) \\
& \operatorname{fin}(s)=0 \\
& f^{\circ o t}(v)-f^{\prime n}(v)=0 \text { for all } v \in A-\{s\} \text { conservation } \\
& v(f)=\sum_{v \in A} f^{\text {out }}(v)-f^{\text {in }}(v) \\
& =\sum_{v \in A}\left(\sum_{(v, x) \in E} f(v, x)-\sum_{(u, v) \in E} f(u, v)\right) \quad \operatorname{def} f^{o u t}, f^{m} \\
& =\sum_{v \in A}\left(\sum_{\substack{(v, x) \in \in \in \\
x \notin A}} f(v, x)-\sum_{\substack{(u, v) \in E \\
u \notin A}} f(u, v)\right) \\
& \text { If } a, a^{\prime} \in A \text { thin } \\
& f\left(a, a^{\prime}\right) \text { press in both } \\
& \text { sums and canals } \\
& =f^{\text {au }}(A)-f^{\text {in }}(A) \\
& v \neq s \text { terms are } 0 \\
& \operatorname{def} f^{\text {out }}, f^{m} \\
& \begin{array}{l}
\text { If } a, a^{\prime} \in A \text { then } \\
f\left(a, a^{\prime}\right) \text { appreas in } \\
\text { sums and canals }
\end{array} \\
& \operatorname{det} f^{\mu+}(A), f^{\text {in }}(A)
\end{aligned}
$$

which path shall we chase $1^{\text {tr }}$?

MAX -FLOW (6)
$f(u, v) \leftarrow 0$ for all $(u, v) \in E$ $G_{r} \leftarrow G$

$$
\Delta \leftarrow 2^{\left\lfloor\log _{z} \max _{(s, v) \in E} c(s, v)\right.}
$$

$O\left(\log _{2} C\right)$ while $\Delta \geq 1$
\#itemboms?? \rightarrow while there is a path $P s \leadsto t$ in $G r, \Delta$ $G(m) \quad o(n)\left[\begin{array}{l}\text { augment }(P, f) \\ u p d a t e\end{array}\left(G_{r}, P\right)\right.$

$$
\Delta \leftarrow \Delta / 2
$$

total $\frac{O\left(\log _{2} C \cdot m \cdot n\right)}{\text { polynomial in size of graph }}$

INV (outermost loop): there is a cut (A, B) sot. $c(A, B) \leq v(f)+2 m-\Delta$
Basis:

Maintenance: Let $A^{*}=\left\{v \mid s \leadsto v\right.$ in $\left.G_{r, \Delta}\right\}, B^{*}=v-A^{*}$

$$
v(f)=f^{\text {out }}\left(A^{v}\right)-f^{\text {in }}\left(A^{*}\right)
$$

for edges $A^{*} \rightarrow B^{v}$

$$
\geq C\left(A^{+}, B^{+}\right)-m \Delta_{\text {old }} \quad(i f f(u, v) \geq \Delta
$$

$$
=c\left(A^{\nu}, B^{r}\right)-2 m \Delta n m
$$

$$
\text { then } c_{r}(v, u) \geq 1
$$

$$
\begin{aligned}
& \text { so }(v, u) \in(\operatorname{Gr}, \Delta \\
& \text { and } \quad s \rightarrow v \rightarrow u \Rightarrow E)
\end{aligned}
$$

we add at most this during
liberation of outor loup
each iterntun of sumer adds $\geq \Delta$ flow so $\leq 2 m$ steradians of inner

$$
\begin{aligned}
& v\left(f_{\text {mus }}\right) \leq v\left(f^{+}\right) \leq C\left(A^{\downarrow}, B^{\downarrow}\right) \leq v\left(f_{\text {old }}\right)+2 m \Delta \\
& v\left(f_{\text {new }}\right)-v\left(f_{\text {old }}\right) \leq 2 m \Delta \quad \begin{array}{lll}
m=10 \\
\Delta=16 & 320
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& c_{r}(u, v)=\overline{c(u, v)}-f(u, v)<\Delta \\
& \text { (if } c_{r}(u, v)>\Delta \text { then } \\
& \left.(u, v) \in G_{r, \Delta} \triangle \text { so save } \Rightarrow \subseteq\right) \\
& \text { for dye }\left(\begin{array}{c}
\Delta \\
B^{*}
\end{array} \rightarrow A^{*}\right.
\end{aligned}
$$

\rightarrow record of result of comps between elements
Comparison Graphs

$$
\begin{gathered}
\operatorname{mAx}(A, n) \\
\max \leftarrow A[1] \\
\text { for } i=Z \text { Ire: } n \geq 1 \quad A \text { distinct } \\
i f(A[i]>\operatorname{may} \\
n-1 \text { comparisons } \longleftarrow A[i] \\
\text { return mex }
\end{gathered}
$$

$$
\sin 11 \longrightarrow \operatorname{la} v
$$

Lower Bounds
Lower bound for problem P is $f(n)$ means
no all that solves P has worst-case $o(f(n))$
Lower bound for sorting:
for $i=0$ to $n-2$
for $j=0$ to $n-2-i$
if $(a[j+1]<a[j])$ then
$\operatorname{swap}(a, j, j+1)$

all $n!$ perms of Input
DT for bubble soot is a binary toe w / r !. Heres any!
so tree has height $\geq \log _{2} n$!

$$
\approx n \log n
$$

