$N P$-complete: Problem X is NP-complete if 1) $X \in N P$
2) $Y \leqslant_{P} X$ for all $Y \in N P$

To show X is NP-complete:

1) show $X \in N P$
2) show $Y \leqslant_{p} X$ for some $N P$-complete Y

Let $Z \in N P$. Then $Z \leqslant p y$ and so $Z \leqslant_{p} X$
So, by transitivity, $Z \leqslant_{p} X$ for all $Z \in N P$ and hence X is $N P$-complete

NP -complete: Problem X is NP-complete if 1) $X \in N P$
2) $Y \leqslant_{p} X$ for all $Y \in N P$

To show X is NP-complete:

1) show $X \in N P$
2) show $Y \leqslant_{p} X$ for some $N P$-complete Y

Let $Z \in N P$. Then $Z \leqslant p y$ and so $Z \leqslant_{p} X$
So, by transitivity, $Z \leqslant_{p} X$ for all $Z \in N P$ and hence X is $N P$-complete
Kava (man y-ones) reduction

$$
\begin{aligned}
& \text { result } \leftarrow X(x) \\
& \text { result } \leftarrow \operatorname{IS}\left(G^{\prime}, k^{\prime}\right) \\
& \text { result } \leftarrow T S P\left(G^{\prime}, K^{\prime}\right) \\
& \text { return result } \\
& \text { return result } \\
& \text { return result }
\end{aligned}
$$

Hamiltonian Cycle $\leq m$ Hamiltonian Path (and hence $H C \leq P H P$)

Hamiltonian Cycle: given undirected G, determine if 6 has a Hamiltunian cycle
Hamiltonian Path: given undirected G, determine if G has a Hamiltonian path

$$
H P \in N P: \quad \frac{H P-V E R I F Y(G, p)}{\text { if every vertex in } G \text { appears exactly once in } p \quad O(n k)^{\text {length of } p}}
$$

for consecutive v_{i}, v_{i+1} in $p \quad O(k)$ iterations if $\left(v_{i}, v_{i+1}\right)$ is not an edge $\left.\quad d_{n}\right)$ per iteration return NO return YES
return NO

If G has Hamiltonian path P, $H P-V E R I F Y ~(G, P)=Y E S$
If G has no Hamiltonian path, $H P-\operatorname{VERIFY}(G, p)=$ NO for all p

$$
H C<=H P
$$

$H C \leq m P:$

MC <= HP

G^{\prime} has $H P \rightarrow G$ has HC:

Let 6 have HP

Then $v, v_{1}, \ldots, v_{n-1}, v$ is $H C$ in G
so $\left(v_{n-1}, v\right)$ is ely s in G since v ' is a copy of v

G^{\prime} has HP $\rightarrow 6$ has HC:
s, t, v^{\prime} not in here, so
Let G have HP

Then $v, v_{1}, \ldots, v_{n-1}, v$ is $H C$ in G
$\left(v_{n-1}, v^{\prime}\right)$ is edge in G^{\prime}
6 has $H C \rightarrow 6^{\prime}$ has HP:
so $\left(v_{n-1}, v\right)$ is edge in G
Let $v, v_{1}, \ldots, v_{n-1}, v$ be $H C$ in G
since V^{\prime} is a copy of V

HP is NP-complete

$$
\begin{aligned}
& H C \text { is } N P \text {-complete } \\
& H P \in N P \\
& H C \leqslant P H \\
& \therefore H P \text { is NP-complete }
\end{aligned}
$$

