Pre-and Post-Conditions PRE: what needs to be true for code to do its job
POST: what the rode does
sum $(A)$ PRE: $A$ is an aria y of summable items
POST: redoing $\left.\sum_{i=0}^{\operatorname{len}(A)-1} A L_{i}\right]$
sort ( $A$ ) PRE: $A$ B an as ray of of comparable dens
$\operatorname{sort}(A)$

$$
\text { POST: } \quad A[0] \leqslant A[1] \leqslant \ldots \leqslant A[\operatorname{lon}(A)-1]
$$ and $A$ is permutation $A_{\text {in }} \leftarrow$

for $i=0$ to $\operatorname{lon}(A)-1$ $A[i]=i$ but doessint soot; ned $z^{\text {ne }}$ party of PO ST $s q \leftarrow a * a$

PRE: $a$ is multrpliable

$$
\text { POST: } \quad s_{q}=a+a
$$

$\min \longleftarrow-b /(2 * a)$ PRE: arthmetre is possible and $a \neq 0$
POST: min = result of anthmetic
$x \leftarrow A[i]+A\left[\sum_{i}\right] \quad$ PRE: $0 \leq i, j<\operatorname{len}(A)$ and cts are summable

Loop Invariant : something tee at start of every itreadion (right before condition test)

Loop Invariant Thin: the loop invariant
For predicate $P$, if
a) ' $P$ is tive when $\log p 1^{57}$ starts latter $O$ stientions)
b) whenever $P$ is tire before an iteration and condition (guard) is tive $P$ is five after west, iteration
thin $P$ is a loop invariant ( $T$ before testing condition after $n$ stembens for all $n$ s.l. there are $n$ iterations)
iteration
Also want loop terminates
$P$ five at termination and condition is fits $\rightarrow$ postconditions are met
$\operatorname{sum}(A)$

$$
\begin{aligned}
& \text { total } \leftarrow 0 \\
& i \leftarrow 0 \\
& \text { while } /<\operatorname{len}(A) \\
& \text { total = total }+A[i] \\
& i \leftarrow i+1
\end{aligned}
$$

INV:

$$
\begin{aligned}
& i=1 \\
& i=1
\end{aligned}
$$

$\rightarrow$ return total
Base case $(n=0): i=0$ by initialization so $i=n$

Term: $\frac{\text { if } n=\operatorname{len}(A) \text { then }}{i=\operatorname{len}(A) \text { and loop tominames }}$

$$
\text { total }=0 \text { by initialization }
$$

$$
\sum_{k=0}^{i-1} A[k]=\sum_{k=0}^{-1} A[k]=0=\text { total }
$$

if $n<\operatorname{lon}(A)$ then $i<\operatorname{lon}(A)$ and lop confines
$\therefore$ loopterminats of $n=\operatorname{len}(A) \quad$ [wont: iNV time onftor $n+1$ titers]
ion ....

$$
\begin{aligned}
& i_{012}=n \\
& i_{\text {new }}=i_{\text {olaf }}+1=n+1 \\
& \text { totalola }=\sum_{k=0}^{i_{\text {Ifc. }}} A[k] \\
& \text { totalmuw }=\text { tothlola }+A[\text { fold }] \\
& =\sum_{k=0}^{i_{0 N}-1} A[k]+A\left[i_{\text {ono }}\right] \\
& =\sum_{k=0}^{i o m} A[k]
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{k=0} A[k] \\
& =\sum_{k=0}^{\operatorname{Mnw}-1} A[k]
\end{aligned}
$$

