Negative Weights
Negative weights

If $s, v_{1}, v_{2}, \ldots, v_{k}$ is a shortest path $s \leadsto v_{k}$ then shortest path for each $v_{i}, v_{j} v_{1}, v_{i+1}, \ldots, v_{j}$ is shortest path $v_{j} \leadsto v_{j}$

$d(v)=$ total weight of shortest path $s \rightarrow v$

$$
=\left\{\begin{array}{l}
0 \\
\min _{\substack{u, \int_{i s} \\
\text { aprdge }}} d(u)+w(u, v) \quad \text { otherwise }
\end{array}\right.
$$

Let $d_{s}(i, v)=$ tot weight of short path $s \leadsto v w / \leq$; pluses

$$
= \begin{cases}0 & \text { if } v=s \\ 00 \text { if } i=0 \text { and } r \neq s\end{cases}
$$

Shortest-paths (n, s)
$M \leftarrow$ nan array
for $v=0$ to $n-1 \quad m[0, v] \leftarrow \infty$

$$
M(0, s) \leftarrow 0
$$

$\theta(n)$ iterations for $i=1$ to $n-1$
for $v=0$ to $n-1$

$$
\begin{aligned}
& v=0 \text { to }{ }^{n-1} M(i, v)^{n=\min \left(m(i-1, v), \min _{u=0 . \ldots n-1} m(i-1, u]+w(u, v)\right)} \text { On) per iteration } \\
& \theta\left(n^{3}\right) \text { total time }
\end{aligned}
$$

SHortest-paths (n, s)

$$
\begin{aligned}
& M \leftarrow n \times n \text { array } \quad m[0, v] \leftarrow \infty \\
& \text { for } v=0 \text { to } n-1 \quad M[0,0 \\
& M(0, s) \leftarrow 0
\end{aligned}
$$

for $i=1$ to $n-1$
for $v=0$ to $n-1$

$$
\begin{aligned}
& v=0 \text { to } n-1 \\
& M(1, v)^{n}=\min \left(m[-1, v), \min _{u=0 . \ldots n-1} m[\{X, u]+w(u, v)) .\right.
\end{aligned}
$$

SHortest-Paths (n, s)
$\theta\left(n^{3}\right)$ time $\quad M \leftarrow$ non array \quad after iteration: $M[v]=$ length of a
$\theta(n)$ spice
for $v=0$ to $n-1 \quad M[v] \leftarrow \infty$
$M[s] \leftarrow 0$ path $S \rightarrow V$
\leqslant shortest path
for $i=1$ to $n-1$

$$
\begin{aligned}
& \text { For } v=0 \text { to } n\left(v^{n}\right]^{-1}=\min \left(m[v), \min _{m \ldots n-1} m[u]+w(u, v)\right. \\
& \text { SHORTEST-PATHS }(n, s)
\end{aligned}
$$

$\theta\left(n \cdot \frac{m}{n}\right)$ dime

$$
\begin{aligned}
& M \leftarrow n \times n \text { array } \\
& \text { for } v=0 \text { to } n-1 \quad M[v] \leftarrow \infty \\
& M[s] \leftarrow 0
\end{aligned}
$$

for $i=1$ to $n-1$
for all eds (u,v)

$$
M^{\prime \prime \prime}(v]=\min (m[v), \quad m[u]+w(u, v))
$$

1-2-3 Nim

Start with one rows of \mathbf{n} stones move has winning strategy 1,3,4
On each turn, take as $\frac{1,2,0,3 \text { stones one row }}{2}$

Vendor Scheduling

$$
\begin{aligned}
& \text { Brooklyn } \\
& \text { Strafford }
\end{aligned}
$$

$1^{s^{+}} 4$ weeks of optimal schedve for 5 weeks \neq optimal schedule for 4 weeks where is the optimal substructure?

