Asymptotic lower bound: $f(n)$ such that any solution for X has worst case $\Omega(f(n))$
Reduction: reduce Y to X by solving Y using an algorithm to solve X reducing bipartite matching to maximum flow $X X$
an upper bound for X is an upper bound for Y
a lower bound for Y is a lower bound for X

$$
\text { bipartite graph } G
$$

capacity graph 6^{\prime}
run algorithm | Food-Fulkerson (Cm) for $x \quad{ }^{\text {Ford-Fulkerson }}=O(n \mathrm{~m})$ maximum flow f

Asymptotic lower bound: $f(n)$ such that any solution for X has worst case $\Omega(f(n))$
Reduction: reduce Y to X by solving Y using an algorithm to solve X reducing bipartite matching to maximum flow $X X$
an upper bound for X is an upper bound for Y
a lower bound for Y is a lower bound for X

$$
\text { bipartite graph } 6
$$

capacity graph 6^{\prime}
run algorithm | Food-Fulkerson (Cm)
for $x \quad{ }^{\text {Ford-Fulkerson }}=O(n \mathrm{~m})$
maximum flow f
trans fum \square
maximum matching M total: $O(n m)$

Reductions
Asymptotic lower bound: $f(n)$ such that any solution for X has worst case $\Omega(f(n))$

Reductions
Asymptotic lower bound: $f(n)$ such that any solution for X has worst case $\Omega(f(n))$ Reduction: reduce Y to X by solving Y using an algorithm to solve X

2-D Convex Hull
2-D Convex HUll: given set of points, find subset that defines a convex polygon that contains them all (0 from bottom)
lines between interior points stay inside
non-lonver polygons

2-D Convex Hull
2-D Convex HWII: given set of points, find subset that defines
a convex polygon that contains them all (from bottom)
limes between interior points stay inside
non-lonver polygons

2-D Convex Hull
2-D Convex HUll: given set of points, find subset that defines a convex polygon that contains them all (\mathcal{S} from bottom)
limes between interior points stay inside

Jarvis March: $O\left(n^{2}\right)$ (gift wrapping)

Graham Sean: $O(n \log n)$

Convex Hull Sort

$A \leftarrow$ empty list
for each $(x, y) \in P$
return A

$$
\begin{gathered}
{[(4,16),(7,49),(10,100),(12,144),(16,256)]} \\
(4,7,10,12,16]
\end{gathered}
$$

$H \leftarrow$ CONVEX-HULL (P) ???

$$
\begin{aligned}
& A \leftarrow \text { empty list } \\
& \text { for each }(x, y) \in H \quad O(n)
\end{aligned}
$$

$$
\text { add } \times \text { to } A
$$

return A
Suppose ??? is $O(n)$.
Then CONVEX-HuLL-SORT runs in $O(n)$ time $\Rightarrow \Leftrightarrow[4,7,10,12,16]$
CONVEX-HULL worst case is $\Omega(n \log n)$ [lower bound for sorting is lower bound for CH]
visits each vertex exactly once
Hamiltonian Cycle: given undirected G, return Hamiltmian cycle, or report that none exists given undirected 6, determine if 6 has a Hamiltunian cycle
has HC:
 no HC:

Decision problem: output is Y or N
a Hamiltonian cycle
Travelling Salesperson: given Lily connected, undirected, weighted G, find four of lowest total weight

given fully connected, undirected, weighted 6 , and bound k, determine if 6 has a tour of total weight $\leq k$
visits each vertex exactly once
Hamiltonian Cycle: given undirected G, return Hamiltmian cycle, or report that none exists given undirected 6 , determine if G has a Hamiltunian cycle
has HC:
 no HC:

Decision problem: output is Y or N
a Hamiltonian cycle
Travelling Salesperson: given Lily connected, undirected, weighted G, find four of lowest total weight

given fully connected, undirected, weighted 6 , and bound k, determine if 6 has a tour of total weight $\leq k$

Reducing HC to TSP - solve HC using a solution to TSP
Given undirected G, construct WIly connected, undirected, weighted G^{\prime} by

1) copying the vertices of 6
2) adding edges between all
3) adding edges between all pairs of vertices
4) selling $w(u, v)=\left\{\begin{array}{l}1 \text { if }(u, v) \text { exists in } G \\ 2 \text { otherwise }\end{array}\right.$
5) choosing $k=$ \# of vertices

6 has $H C \rightarrow G^{\prime}$ has a tour of total weight $\leq k=n$
Suppose G has $H C$. Call it $v_{0}, v_{1}, \ldots, v_{n}=v_{0}$. Since that is a path in G, the edger $\left(v_{i}, v_{i+1}\right)$ exists in G and so has $w\left(v_{i}, v_{i+1}\right)=1$ by construction of 6 !. The path is also a tour of G^{\prime} with total weight $n=k$.
G^{\prime} has a tour of total weight $\leq k=n \rightarrow G$ has a Hamiltonian (yale Suppose 6^{6} has a tour of total wright $\leq k=n$. It has n edges, each with wright 1 or 2 , so all the edges must have weight I since otherwise the total weight is i_{n}. By constandion of G^{\prime}, all edges in the four are edges in 6 . G^{\prime} and 6 have the same vertex set, so the tour is also a Hamiltonian Cycle in G.

Reducing HC to TSP - Solve HC using a solution to TSP
Given undirected G, construct filly connected, undirected, weighted G^{\prime} by

1) copying the vertices of G
2) adding edges between all pairs of vertices
3) setting $w(u, v)=\left\{\begin{array}{l}1 \text { if }(u, v) \text { exists in } G \\ 2 \text { otherwise }\end{array}\right.$
4) choosing $k=$ of vertices
$\frac{H((G)}{1)}$ constinet 6^{\prime}, choose k
5) answer $\leftarrow T S P\left(G^{\prime}, k\right)$ poly 3) return answer calls to TSP

6 has $H C \rightarrow 6^{\prime}$ has a tour of total weight $\leq k=n$
G has a Hamiltonian cycle if and only if G^{\prime} has a tor of weight $\leq n$
G^{\prime} has a tour of total weight $\leq k=n \rightarrow G$ has a Hamiltonian (yale

Polynomial-Time Reductions
palynomial-time realvible to
$Y \leq_{p} X$ means there is an algorithm for Y that runs in polynomial time, aside from a polynomial number of calls fo an algorithm that solves X

$$
H C \leq p T S P \quad \text { TC EP??? }
$$

$P=$ set of decision problems solvable in polynomial time

$$
\begin{aligned}
& T S P \in P \rightarrow H C \in P: \text { suppose } T S P \in P \text {. Then } \frac{H C(G)}{\text { poly }} \frac{G^{\prime} \text { chonstrect is a poly-time }}{} \text {, choose } k \text { algonithon for } H C \\
& H C \& P \rightarrow T S P \& P \text { (contrapositive) } \\
& \text { poly 1) construct } b^{\prime} \text {, choose } k \text { algorithm for HC } \\
& \text { poly 2) answer } \leftarrow \operatorname{TSP}\left(6^{0}, k\right) \\
& \text { poly 3) return answer }
\end{aligned}
$$

Suppose $Y \leq P X$ and $X \in P$. Then $Y \in P$ (use the alonoithm from the def. of $\leq p$) Suppose $Y \leqslant P X$ and $Y \notin P$. Then $X \notin P$ (contrapositive)

Polynomial-Time Reductions
palynomial-time reducible to
$Y \leq_{p} X$ means there is an algorithm for Y that runs in polynomial time, aside from a polynomial number of calls fo an algorithm that solves X

$$
H C \leq p T S P \quad \text { TC EP??? }
$$

$P=$ set of decision problems solvable in polynomial time

$$
\begin{aligned}
& T S P \in P \rightarrow H C \in P: \text { suppose } \underset{T S P \in P \text {. Then }}{\text { poly }} \frac{H(G)}{1) \text { construct } G^{\prime} \text {, choose } k \text { algonothon for } H C} \\
& H C \& P \rightarrow T S P \& P \text { (contrapositive) } \\
& \text { poly 1) construed } b^{\prime} \text {, choose } k \text { algorithm for HC } \\
& \text { poly 2) answer } \leftarrow \operatorname{TSP}\left(6^{\prime}, k\right) \\
& \text { poly 3) return answer }
\end{aligned}
$$

Suppose $Y \leq P X$ and $X \in P$. Then $Y \in P$ (use the alonoithm from the def. of $\leq p$) Suppose $Y \leqslant P X$ and $Y \notin P$. Then $X \notin P$ (contrapositive)

Longest Path
Given a graph G, what is a longest simple path in 6?

