YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

CPSC 367: Cryptography and Computer Security

Handout #7 March 25, 2019

Professor M. J. Fischer

Homework Assignment 6

Due on Tuesday, April 2, 2019.

Problem 1: ElGamal Authentication

Once Happy understood ElGamal signatures, he was excited to use them for authentication. He wants to send an authenticated message m to Bob so that Bob can verify that m came from him.

Happy has an ElGamal signing key (g,p,x) and Bob has the corresponding verification key (g,p,a). We denote the signing algorithm using that key pair by S and the verification algorithm by V. Happy and Bob also have a cryptographic hash function h whose output is the same length as the signatures produced by S.

Here's Happy's idea. Bob sends him a fresh tag r. Happy signs r and attaches it to a hash of his message. Bob checks the tag's signature and accepts the message.

	Нарру		Bob
1.		\leftarrow	Choose random string r .
2.	Compute $s = S(r) \oplus h(m \oplus r)$	$\xrightarrow{(m,s)}$	Check $V(r, s \oplus h(m \oplus r))$.
			Accept m as coming from Happy if check succeeds.

Questions

- (a) Describe why Bob accepts every message that Happy sends in this way (assuming no errors in transmission).
- (b) Mallory wants to replace m with a message m' of his choosing and get Bob to accept it as valid. Describe in detail how he can do this. Assume that Mallory is carrying out a man-in-the-middle attack, but she does not know Happy's signing key and cannot forge signatures S(x) for messages x of Mallory's choosing.
- (c) Suggest a way to fix this protocol to thwart Mallory's attack. Your suggestion should not use any more rounds of communication nor assume any other encryption system or secret keys. Explain.

[Hint: Think about a better way to use h to "bind" m to the signature.]

Problem 2: Hash from Cryptosystem

Happy decided to build a hash function H(M) out of the AES-128 encryption function E_k . Define the function $f(s,m) = E_m(s) \oplus m$, where s and m have length 128. Let M be a message of arbitrary length. Here's how to compute H(M).

- Pad M appropriately and divide it into 128-bit blocks $m_1m_2 \dots m_t$.
- Compute the sequence:

$$s_1 = m_1$$

$$s_2 = f(s_1, m_2)$$

$$s_3 = f(s_2, m_3)$$

$$\vdots$$

$$s_t = f(s_{t-1}, m_t).$$

• Define $H(M) = s_t$.

Questions

(a) Given any $k \ge 1$ and 128-bit string s_k , show how to find a message $M = m_1 m_2 \dots m_k$ such that $H(M) = s_k$.

[Hint: Use the fact that the decryption function $D_k()$ is the inverse of $E_k()$. This allows you to "work backwards" from s_k to s_1 .]

(b) Show how to find a colliding pair (M, M') for H().