
YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

CPSC 367: Cryptography and Computer Security Handout #8
Professor M. J. Fischer April 3, 2019

Homework Assignment 7
Due on Thursday, April 11, 2019.

Extending Hash Functions

Happy threw together a hash function h : 32-bits → 16-bits, which he implemented by a C function
hash32(). Adapting Method 2 from slide 22 of Lecture 15, Happy defined a new hash function
H: 64-bits → 16-bits and implemented it by a C function hash64. Since he didn’t know how to
find colliding pairs for h, he thought that H would also be collision-free.

Clever Clem was able to find lots of colliding pairs for H . He didn’t want to tell Happy how he
did it, but he presented Happy with a file H-collisions of colliding pairs for H , each line of
which consists of two 64-bit whitespace-separated hex numbers.

Your job is to write a program breakHash.c that applies the ideas presented on slide 23 of
Lecture 15 to find corresponding colliding pairs for h. Your program should take the name of a file
containing pairs of collisions for H as a command line argument. It should read each line, determine
whether case 1 or case 2 applies, and find the corresponding colliding pair for h. You should then
write a line to standard output consisting of 5 numbers: the original colliding pair for H , the case
number that pertains (1 or 2), and the colliding pair for h described by that case. Colliding pairs
should be written in hex with the 0x-prefix (as in the input file). The case number should be written
as a single digit. In case 2, if both m1 6= m′

1 and m2 6= m′
2, then print the first colliding pair for h.

Do not attempt to reverse-engineer hash32() (although this is possible to do with a little
thought and cleverness). Rather, the goal of this problem is for you to apply the cited method from
Lecture 15 for finding colliding pairs for hash32() given colliding pairs for hash64(). For this
reason, I am only releasing the object code for hash32() and hash64(). Your program can call
these functions, but I’m purposely not giving you the source code.

You will find the three files that you need for this assignment in Zoo directory /c/cs367/
assignments/hw7/:

hw7.h is the header file for hash32() and hash64(). It also contains some use-
ful typedef’s and macros for dealing with bit strings represented by unsigned
integers.

libhw7.a contains linux binaries for hash32() and hash64() so that you can
compute them.

H-collisions is Clever Clem’s file of colliding pairs.

In order to call hash32() and hash64() from your own program, breakHash.c, you will
need to do three things:

(a) Put hw7.h and libhw7.a into your working directory along with your code.

(b) #include the header file hw7.h in your code.

(c) Link your compiled code to the library libhw7.a.

You can compile and link with the single command line:

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln15.pdf
http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln15.pdf
http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln15.pdf
http://zoo.cs.yale.edu/classes/cs367/2019s/assignments/hw7
http://zoo.cs.yale.edu/classes/cs367/2019s/assignments/hw7


2 Homework Assignment 7

gcc -o breakHash -std=c99 -Wall -O1 -g -L. breakHash.c -lhw7

The switch -L. says to search for the library in your working directory. The switch -lhw7 says to
link to the library hw7, which resides in the file libhw7.a.

The folder mac-osx contains a version of libhw7.a that you can use if you choose to develop
your code on a Mac. However, you should compile and test your code on the Zoo before submitting.


