Outline 0	Chaining Modes	Public-key 00000000	RSA 0000000	Appendix 0000000
Ű	00000000000	0000000	000000	000000

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 8 February 7, 2019

Outline •	Chaining Modes	Public-key 00000000	RSA 0000000	Appendix 0000000

Chaining Modes

Block chaining modes Extending chaining modes to bytes

Public-key Cryptography

RSA

Appendix

Outline 0	Chaining Modes	Public-key	RSA 0000000	Appendix 0000000

Chaining Modes

Outline 0	Chaining Modes	Public-key	RSA 0000000	Appendix 0000000
Block chaining modes				

Encrypting sequences of blocks in ECB mode

Recall from lecture 5: A chaining mode tells how to encrypt a sequence of plaintext blocks m_1, m_2, \ldots, m_t to produce a corresponding sequence of ciphertext blocks c_1, c_2, \ldots, c_t , and conversely, how to recover the m_i 's given the c_i 's.

Electronic Code Book (ECB) mode encrypts/decrypts each block separately.

$$c_i = E_k(m_i), \ 1 \leq i \leq t.$$

Outline	Chaining Modes	Public-key	RSA	Appendix
0		00000000	0000000	0000000
Block chaining modes				

Removing cipher block dependence from ECB

ECB has the undesirable property that identical plaintext blocks yield identical ciphertext blocks. For example, $m_3 = m_8$ iff $c_3 = c_8$. This gives Eve possibly useful information about the meesage m.

Two extensions to ECB fix this particular problem:

- Output Feedback (OFB) and Cipher Feedback (CFB) modes.
- Cipher Block Chaining Mode (CBC).

Outline 0	Chaining Modes	Public-key	RSA 0000000	Appendix 0000000
Block chaining modes				

Encrypting sequences of blocks in OFB mode

Output Feedback (OFB) mode repeatedly applies the block cipher to a fixed initialization vector (IV) to produce a sequence of subkeys. Each block is encrypted/decrypted by XORing with the corresponding subkey.

$$k_0 = E_k(IV)$$

 $k_i = E_k(k_{i-1}), \ c_i = m_i \oplus k_i, \ 1 \le i \le t.$

It is likely that $k_3 \neq k_8$, so it is also likely that $c_3 \neq c_8$ even when $m_3 = m_8$.

OFB is like the one-time pad where, given a single known plaintext pair (m, c), $m \oplus c$ reveals the sequence of subkeys. Hence, a master key should never be used for more than one message.

Outline	Chaining Modes	Public-key	RSA	Appendix
0	000000000000000000000000000000000000000	0000000	0000000	0000000
Disal shatter	a des			

Block chaining modes

Cipher Feedback (CFB)

Cipher Feedback (CFB) mode alleviates this problem by making the sequence of subkeys dependent on the message as well as on the master key k. Namely, subkey k_i is the encryption of ciphertext block c_{i-1} rather than the encryption of the previous subkey k_{i-1} as is done with OFB.

A curious fact about OFB and CFB

In both OFB and CFB, Bob is able to decrypt without using the block decryption function D_k , so it is not even necessary for E_k to be one-to-one.

This is because in both modes, E_k is only used for subkey generation, and both encryption and decryption of a message use the same sequence of subkeys.

For example, CFB encryption and decryption are almost identical.

▶ To encrypt, Alice computes $k_i = E_k(c_{i-1})$ and $c_i = m_i \oplus k_i$.

▶ To decrypt, Bob computes $k_i = E_k(c_{i-1})$ and $m_i = c_i \oplus k_i$. c_0 is a fixed initialization vector.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		00000000	0000000	0000000
Block chaining modes				

OFB, CFB, and stream ciphers

Both OFB and CFB are closely related to stream ciphers. In both cases, $c_i = m_i \oplus k_i$, where subkey k_i is computed from the master key and the data that came before stage *i*.

Like a one-time pad, OFB is insecure if the same key is ever reused, for the sequence of k_i 's generated will be the same. If m and m' are encrypted using the same key k, then $m \oplus m' = c \oplus c'$.

CFB partially avoids this problem, for even if the same key k is used for two different message sequences m_i and m'_i , it is only true that $m_i \oplus m'_i = c_i \oplus c'_i \oplus E_k(c_{i-1}) \oplus E_k(c'_{i-1})$, and the dependency on k does not drop out. However, the problem still exists when m and m' share a prefix.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		0000000	0000000	0000000
Block chaining modes				

Cipher Block Chaining Mode (CBC)

Cipher Block Chaining Mode (CBC) prevents identical message blocks from having identical corresponding ciphter blocks by mixing in the *previous* ciphtertext block when encrypting the current block.

- ► To encrypt, Alice applies E_k to the XOR of the current plaintext block with the previous ciphertext block. That is, c_i = E_k(m_i ⊕ c_{i-1}).
- ▶ To decrypt, Bob computes $m_i = D_k(c_i) \oplus c_{i-1}$.

To get started, we take $c_0 = IV$, where IV is a fixed *initialization* vector which we assume is publicly known.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		0000000	0000000	0000000
Block chaining modes				

Propagating Cipher-Block Chaining Mode (PCBC)

Here is a more complicated chaining rule that nonetheless can be deciphered.

- ► To encrypt, Alice XORs the current plaintext block, previous plaintext block, and previous ciphertext block. That is, c_i = E_k(m_i ⊕ m_{i-1} ⊕ c_{i-1}). Here, both m₀ and c₀ are fixed initialization vectors.
- ▶ To decrypt, Bob computes $m_i = D_k(c_i) \oplus m_{i-1} \oplus c_{i-1}$.

Outline 0	Chaining Modes	Public-key	RSA 0000000	Appendix 0000000
Block chaining modes				

Recovery from data corruption

In real applications, a ciphertext block might be damaged or lost. An interesting property is how much plaintext is lost as a result.

- With ECB and OFB, if Bob receives a bad block c_i, then he cannot recover the corresponding m_i, but all good ciphertext blocks can be decrypted.
- With CBC and CFB, Bob needs good c_i and c_{i-1} blocks in order to decrypt m_i. Therefore, a bad block c_i renders both m_i and m_{i+1} unreadable.

▶ With PCBC, bad block c_i renders m_j unreadable for all $j \ge i$. Error-correcting codes applied to the ciphertext are often used in practice since they minimize lost data and give better indications of when irrecoverable data loss has occurred.

Outline 0	Chaining Modes	Public-key	RSA 0000000	Appendix 0000000
Block chaining modes				

Other modes

Other modes can easily be invented.

In all cases, c_i is computed by some expression (which may depend on *i*) built from $E_k()$ and \oplus applied to available information:

- ciphertext blocks c_1, \ldots, c_{i-1} ,
- message blocks m_1, \ldots, m_i ,
- any initialization vectors.

Any such equation that can be "solved" for m_i (by possibly using $D_k()$ to invert $E_k()$) is a suitable chaining mode in the sense that Alice can produce the ciphertext and Bob can decrypt it.

Of course, the resulting security properties depend heavily on the particular expression chosen.

Outline	Chaining Modes	Public-key	RSA	Appendix
0	○○○○○○○○●○	00000000	0000000	0000000
Byte chaining modes				

Stream ciphers from OFB and CFB block ciphers

OFB and **CFB** block modes can be turned into stream ciphers.

Both compute $c_i = m_i \oplus k_i$, where

▶
$$k_i = E_k(k_{i-1})$$
 (for OFB);

▶ $k_i = E_k(c_{i-1})$ (for CFB).

Assume a block size of *b* bytes. Number the bytes in block m_i as $m_{i,0}, \ldots, m_{i,b-1}$ and similarly for c_i and k_i .

Then $c_{i,j} = m_{i,j} \oplus k_{i,j}$, so each output byte $c_{i,j}$ can be computed before knowing $m_{i,j'}$ for j' > j; no need to wait for all of m_i .

One must keep track of j. When j = b, the current block is finished, i must be incremented, j must be reset to 0, and k_{i+1} must be computed.

Extended OFB and CFB modes

Simpler (for hardware implementation) and more uniform stream ciphers result by also computing k_i a byte at a time.

The idea: Use a shift register X to accumulate the feedback bits from previous stages of encryption so that the full-sized blocks needed by the block chaining method are available.

X is initialized to some public initialization vector.

Details are in the appendix.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		●0000000	0000000	0000000

Public-key Cryptography

Outline Chaining Modes Public-key RSA Appr o 00000000000 00000000 0000000 0000000	endix 00000

Public-key cryptography

Classical cryptography uses a single key for both encryption and decryption. This is also called a *symmetric* or *1-key* cryptography.

There is no logical reason why the encryption and decryption keys should be the same.

Allowing them to differ gives rise to *asymmetric* cryptography, also known as *public-key* or *2-key* cryptography.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		00●00000	0000000	0000000

Asymmetric cryptosystems

An asymmetric cryptosystem has a pair $k = (k_e, k_d)$ of related keys, the encryption key k_e and the decryption key k_d .

Alice encrypts a message m by computing $c = E_{k_e}(m)$. Bob decrypts c by computing $m = D_{k_d}(c)$.

We sometimes write e and d as shorthand for k_e and k_d , respectively.

As always, the decryption function inverts the encryption function, so $m = D_d(E_e(m))$.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		000●0000	0000000	0000000

Security requirement

Should be hard for Eve to find *m* given $c = E_e(m)$ and *e*.

- The system remains secure even if the encryption key e is made public!
- *e* is said to be the *public key* and *d* the *private key*.

Reason to make e public.

Anybody can send an encrypted message to Bob. Sandra obtains Bob's public key e and sends c = E_e(m) to Bob.

▶ Bob recovers *m* by computing $D_d(c)$, using his private key *d*. This greatly simplifies key management. No longer need a secure channel between Alice and Bob for the initial key distribution (which I have carefully avoided talking about so far).

Outline	Chaining Modes	Public-key	RSA	Appendix
0		00000000	0000000	0000000

Man-in-the-middle attack against 2-key cryptosystem

An active adversary Mallory can carry out a nasty *man-in-the-middle* attack.

- Mallory sends his own encryption key to Sandra when she attempts to obtain Bob's key.
- Not knowing she has been duped, Sandra encrypts her private data using Mallory's public key, so Mallory can read it (but Bob cannot)!
- To keep from being discovered, Mallory intercepts each message from Sandra to Bob, decrypts using his own decryption key, re-encrypts using Bob's public encryption key, and sends it on to Bob. Bob, receiving a validly encrypted message, is none the wiser.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		00000●00	0000000	0000000

Passive attacks against a 2-key cryptosystem

Making the encryption key public also helps a passive attacker.

- 1. Chosen-plaintext attacks are always available since Eve can generate as many plaintext-ciphertext pairs as she wishes using the public encryption function $E_e()$.
- 2. The public encryption function also gives Eve a foolproof way to check validity of a potential decryption. Namely, Eve can verify $D_d(c) = m_0$ for some candidate message m_0 by checking that $c = E_e(m_0)$.

Redundancy in the set of meaningful messages is no longer necessary for brute force attacks.

Outline	Chaining Modes	Public-key	RSA	Appendix
0	000000000000	00000000	000000	0000000

Facts about asymmetric cryptosystems

Good asymmetric cryptosystems are much harder to design than good symmetric cryptosystems.

All known asymmetric systems are orders of magnitude slower than corresponding symmetric systems.

Outline 0	Chaining Modes	Public-key 0000000●	RSA 0000000	Appendix 0000000

Hybrid cryptosystems

Asymmetric and symmetric cryptosystems are often used together. Let (E^2, D^2) be a 2-key cryptosystem and (E^1, D^1) be a 1-key cryptosystem.

Here's how Alice sends a secret message m to Bob.

- Alice generates a random session key k.
- Alice computes $c_1 = E_k^1(m)$ and $c_2 = E_e^2(k)$, where *e* is Bob's public key, and sends (c_1, c_2) to Bob.
- ▶ Bob computes $k = D_d^2(c_2)$ using his private decryption key *d* and then computes $m = D_k^1(c_1)$.

This is much more efficient than simply sending $E_e^2(m)$ in the usual case that m is much longer than k.

Note that the 2-key system is used to encrypt random strings!

Outline 0	Chaining Modes	Public-key	RSA ●000000	Appendix 0000000

RSA

Outline 0	Chaining Modes	Public-key	RSA 000000	Appendix 0000000

Overview of RSA

Probably the most commonly used asymmetric cryptosystem today is *RSA*, named from the initials of its three inventors, Rivest, Shamir, and Adelman.

Unlike the symmetric systems we have been talking about so far, RSA is based not on substitution and transposition but on arithmetic involving very large integers—numbers that are hundreds or even thousands of bits long.

To understand why RSA works requires knowing a bit of number theory. However, the basic ideas can be presented quite simply, which I will do now.

Outline 0	Chaining Modes	Public-key	RSA ○○●○○○○	Appendix 0000000

RSA spaces

The message space, ciphertext space, and key space for RSA is the set of integers $Z_n = \{0, ..., n-1\}$ for some very large integer n.

For now, think of n as a number so large that its binary representation is 1024 bits long.

Such a number is unimaginably big. It is bigger than $2^{1023} \approx 10^{308}$.

For comparison, the number of atoms in the observable universe¹ is estimated to be "only" 10^{80} .

¹Wikipedia, https://en.wikipedia.org/wiki/Observable_universe

Outline	Chaining Modes	Public-key	RSA	Appendix
0		0000000	000●000	0000000

Encoding bit strings by integers

To use RSA as a block cipher on bit strings, Alice must convert each block to an integer $m \in \mathbb{Z}_n$, and Bob must convert m back to a block.

Many such encodings are possible, but perhaps the simplest is to prepend a "1" to the block x and regard the result as a binary integer m.

To decode m to a block, write out m in binary and then delete the initial "1" bit.

To ensure that m < n as required, we limit the length of our blocks to 1022 bits.

Outline	Chaining Modes	Public-key	RSA	Appendix
O		00000000	0000●00	0000000

RSA key generation

Here's how Bob generates an RSA key pair.

- Bob chooses two sufficiently large distinct prime numbers p and q and computes n = pq.
 For security, p and q should be about the same length (when written in binary).
- He computes two numbers e and d with a certain number-theoretic relationship.
- ► The public key is the pair k_e = (e, n). The private key is the pair k_d = (d, n). The primes p and q are no longer needed and should be discarded.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		0000000	00000●0	0000000

RSA encryption and decryption

To encrypt, Alice computes $c = m^e \mod n$.²

To decrypt, Bob computes $m = c^d \mod n$.

Here, $a \mod n$ denotes the remainder when a is divided by n.

This works because e and d are chosen so that, for all m,

$$m = (m^e \mod n)^d \mod n. \tag{1}$$

That's all there is to it, once the keys have been found.

Most of the complexity in implementing RSA has to do with key generation, which fortunately is done only infrequently.

²For now, assume all messages and ciphertexts are integers in Z_n .

Outline 0	Chaining Modes	Public-key 00000000	RSA 000000●	Appendix 0000000

RSA questions

You should already be asking yourself the following questions:

- ▶ How does one find *n*, *e*, *d* such that (1) is satisfied?
- Why is RSA believed to be secure?
- How can one implement RSA on a computer when most computers only support arithmetic on 32-bit or 64-bit integers, and how long does it take?
- How can one possibly compute m^e mod n for 1024 bit numbers. m^e, before taking the remainder, has size roughly

$$\left(2^{1024}\right)^{2^{1024}} = 2^{1024 \times 2^{1024}} = 2^{2^{10} \times 2^{1024}} = 2^{2^{1034}}$$

This is a number that is roughly 2^{1034} bits long! No computer has enough memory to store that number, and no computer is fast enough to compute it.

Οι 0	ıtline	Chaining Modes	Public-key 00000000	RSA 0000000	Appendix •000000

Appendix

Extended OFB and CFB notation

Details for extended modes .

Assume block size b = 16 bytes.

Define two operations: L and R on blocks:

• R(x) is the rightmost b-1 bytes of x.

Extended OFB and CFB similarities

- The extended versions of OFB and CFB are very similar.
- Both maintain a one-block shift register X.
- The shift register value X_s at stage *s* depends only on c_1, \ldots, c_{s-1} (which are now single bytes) and the master key *k*.

At stage *i*, Alice

- computes X_s according to Extended OFB or Extended CFB rules;
- computes byte key $k_s = L(E_k(X_s));$
- encrypts message byte m_s as $c_s = m_s \oplus k_s$.

Bob decrypts similarly.

Outline	Chaining Modes	Public-key	RSA	Appendix
0		00000000	0000000	000●000

Shift register rules

The two modes differ in how they update the shift register. Extended OFB mode

$$X_s = R(X_{s-1}) \cdot k_{s-1}$$

Extended CFB mode

$$X_s = R(X_{s-1}) \cdot c_{s-1}$$

(' \cdot ' denotes concatenation.)

Summary:

- Extended OFB keeps the most recent *b* key bytes in *X*.
- Extended CFB keeps the most recent b ciphertext bytes in X,

Comparison of extended OFB and CFB modes

The differences seem minor, but they have profound implications on the resulting cryptosystem.

- In eOFB mode, X_s depends only on s and the master key k (and the initialization vector IV), so loss of a ciphertext byte causes loss of only the corresponding plaintext byte.
- In eCFB mode, loss of ciphertext byte c_s causes m_s and all succeeding message bytes to become undecipherable until c_s is shifted off the end of X. Thus, b message bytes are lost.

Downside of extended OFB

The downside of eOFB is that security is lost if the same master key is used twice for different messages. CFB does not suffer from this problem since different messages lead to different ciphertexts and hence different keystreams.

Nevertheless, eCFB has the undesirable property that the keystreams *are the same* up to and including the first byte in which the two message streams differ.

This enables Eve to determine the length of the common prefix of the two message streams and also to determine the XOR of the first bytes at which they differ.

Outline	Chaining Modes	Public-key	RSA	Appendix
O		00000000	0000000	000000●

Possible solution

Possible solution to both problems: Use a different initialization vector for each message. Prefix the ciphertext with the (unencrypted) IV so Bob can still decrypt.