
Outline Chaining Modes Public-key RSA Appendix

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 8
February 7, 2019

CPSC 367, Lecture 8 1/37



Outline Chaining Modes Public-key RSA Appendix

Chaining Modes
Block chaining modes
Extending chaining modes to bytes

Public-key Cryptography

RSA

Appendix

CPSC 367, Lecture 8 2/37



Outline Chaining Modes Public-key RSA Appendix

Chaining Modes

CPSC 367, Lecture 8 3/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Encrypting sequences of blocks in ECB mode

Recall from lecture 5: A chaining mode tells how to encrypt a
sequence of plaintext blocks m1,m2, . . . ,mt to produce a
corresponding sequence of ciphertext blocks c1, c2, . . . , ct , and
conversely, how to recover the mi ’s given the ci ’s.

Electronic Code Book (ECB) mode encrypts/decrypts each block
separately.

ci = Ek(mi ), 1 ≤ i ≤ t.

CPSC 367, Lecture 8 4/37

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln05.pdf


Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Removing cipher block dependence from ECB

ECB has the undesirable property that identical plaintext blocks
yield identical ciphertext blocks. For example, m3 = m8 iff c3 = c8.
This gives Eve possibly useful information about the meesage m.

Two extenstions to ECB fix this particular problem:

I Output Feedback (OFB) and Cipher Feedback (CFB) modes.

I Cipher Block Chaining Mode (CBC).

CPSC 367, Lecture 8 5/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Encrypting sequences of blocks in OFB mode

Output Feedback (OFB) mode repeatedly applies the block cipher
to a fixed initialization vector (IV) to produce a sequence of
subkeys. Each block is encrypted/decrypted by XORing with the
corresponding subkey.

k0 = Ek(IV )
ki = Ek(ki−1), ci = mi ⊕ ki , 1 ≤ i ≤ t.

It is likely that k3 6= k8, so it is also likely that c3 6= c8 even when
m3 = m8.

OFB is like the one-time pad where, given a single known plaintext
pair (m, c), m ⊕ c reveals the sequence of subkeys. Hence, a
master key should never be used for more than one message.

CPSC 367, Lecture 8 6/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Cipher Feedback (CFB)

Cipher Feedback (CFB) mode alleviates this problem by making
the sequence of subkeys dependent on the message as well as on
the master key k . Namely, subkey ki is the encryption of ciphertext
block ci−1 rather than the encryption of the previous subkey ki−1
as is done with OFB.

CPSC 367, Lecture 8 7/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

A curious fact about OFB and CFB

In both OFB and CFB, Bob is able to decrypt without using the
block decryption function Dk , so it is not even necessary for Ek to
be one-to-one.

This is because in both modes, Ek is only used for subkey
generation, and both encryption and decryption of a message use
the same sequence of subkeys.
For example, CFB encryption and decryption are almost identical.

I To encrypt, Alice computes ki = Ek(ci−1) and ci = mi ⊕ ki .

I To decrypt, Bob computes ki = Ek(ci−1) and mi = ci ⊕ ki .

c0 is a fixed initialization vector.

CPSC 367, Lecture 8 8/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

OFB, CFB, and stream ciphers

Both OFB and CFB are closely related to stream ciphers.
In both cases, ci = mi ⊕ ki , where subkey ki is computed from the
master key and the data that came before stage i .

Like a one-time pad, OFB is insecure if the same key is ever
reused, for the sequence of ki ’s generated will be the same.
If m and m′ are encrypted using the same key k , then
m ⊕m′ = c ⊕ c ′.

CFB partially avoids this problem, for even if the same key k is
used for two different message sequences mi and m′i , it is only true
that mi ⊕m′i = ci ⊕ c ′i ⊕ Ek(ci−1)⊕ Ek(c ′i−1), and the dependency
on k does not drop out. However, the problem still exists when m
and m′ share a prefix.

CPSC 367, Lecture 8 9/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Cipher Block Chaining Mode (CBC)

Cipher Block Chaining Mode (CBC) prevents identical message
blocks from having identical corresponding ciphter blocks by
mixing in the previous ciphtertext block when encrypting the
current block.

I To encrypt, Alice applies Ek to the XOR of the current
plaintext block with the previous ciphertext block.
That is, ci = Ek(mi ⊕ ci−1).

I To decrypt, Bob computes mi = Dk(ci )⊕ ci−1.

To get started, we take c0 = IV, where IV is a fixed initialization
vector which we assume is publicly known.

CPSC 367, Lecture 8 10/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Propagating Cipher-Block Chaining Mode (PCBC)

Here is a more complicated chaining rule that nonetheless can be
deciphered.

I To encrypt, Alice XORs the current plaintext block, previous
plaintext block, and previous ciphertext block.
That is, ci = Ek(mi ⊕mi−1 ⊕ ci−1). Here, both m0 and c0 are
fixed initialization vectors.

I To decrypt, Bob computes mi = Dk(ci )⊕mi−1 ⊕ ci−1.

CPSC 367, Lecture 8 11/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Recovery from data corruption

In real applications, a ciphertext block might be damaged or lost.
An interesting property is how much plaintext is lost as a result.

I With ECB and OFB, if Bob receives a bad block ci , then he
cannot recover the corresponding mi , but all good ciphertext
blocks can be decrypted.

I With CBC and CFB, Bob needs good ci and ci−1 blocks in
order to decrypt mi . Therefore, a bad block ci renders both
mi and mi+1 unreadable.

I With PCBC, bad block ci renders mj unreadable for all j ≥ i .

Error-correcting codes applied to the ciphertext are often used in
practice since they minimize lost data and give better indications
of when irrecoverable data loss has occurred.

CPSC 367, Lecture 8 12/37



Outline Chaining Modes Public-key RSA Appendix

Block chaining modes

Other modes

Other modes can easily be invented.

In all cases, ci is computed by some expression (which may depend
on i) built from Ek() and ⊕ applied to available information:

I ciphertext blocks c1, . . . , ci−1,

I message blocks m1, . . . ,mi ,

I any initialization vectors.

Any such equation that can be “solved” for mi (by possibly using
Dk() to invert Ek()) is a suitable chaining mode in the sense that
Alice can produce the ciphertext and Bob can decrypt it.

Of course, the resulting security properties depend heavily on the
particular expression chosen.

CPSC 367, Lecture 8 13/37



Outline Chaining Modes Public-key RSA Appendix

Byte chaining modes

Stream ciphers from OFB and CFB block ciphers
OFB and CFB block modes can be turned into stream ciphers.

Both compute ci = mi ⊕ ki , where

I ki = Ek(ki−1) (for OFB);

I ki = Ek(ci−1) (for CFB).

Assume a block size of b bytes. Number the bytes in block mi as
mi ,0, . . . ,mi ,b−1 and similarly for ci and ki .

Then ci ,j = mi ,j ⊕ ki ,j , so each output byte ci ,j can be computed
before knowing mi ,j ′ for j ′ > j ; no need to wait for all of mi .

One must keep track of j . When j = b, the current block is
finished, i must be incremented, j must be reset to 0, and ki+1

must be computed.

CPSC 367, Lecture 8 14/37



Outline Chaining Modes Public-key RSA Appendix

Byte chaining modes

Extended OFB and CFB modes

Simpler (for hardware implementation) and more uniform stream
ciphers result by also computing ki a byte at a time.

The idea: Use a shift register X to accumulate the feedback bits
from previous stages of encryption so that the full-sized blocks
needed by the block chaining method are available.

X is initialized to some public initialization vector.

Details are in the appendix .

CPSC 367, Lecture 8 15/37



Outline Chaining Modes Public-key RSA Appendix

Public-key Cryptography

CPSC 367, Lecture 8 16/37



Outline Chaining Modes Public-key RSA Appendix

Public-key cryptography

Classical cryptography uses a single key for both encryption and
decryption. This is also called a symmetric or 1-key cryptography.

There is no logical reason why the encryption and decryption keys
should be the same.

Allowing them to differ gives rise to asymmetric cryptography, also
known as public-key or 2-key cryptography.

CPSC 367, Lecture 8 17/37



Outline Chaining Modes Public-key RSA Appendix

Asymmetric cryptosystems

An asymmetric cryptosystem has a pair k = (ke , kd) of related
keys, the encryption key ke and the decryption key kd .

Alice encrypts a message m by computing c = Eke (m).
Bob decrypts c by computing m = Dkd (c).

We sometimes write e and d as shorthand for ke and kd ,
respectively.

As always, the decryption function inverts the encryption function,
so m = Dd(Ee(m)).

CPSC 367, Lecture 8 18/37



Outline Chaining Modes Public-key RSA Appendix

Security requirement

Should be hard for Eve to find m given c = Ee(m) and e.

I The system remains secure even if the encryption key e is
made public!

I e is said to be the public key and d the private key.

Reason to make e public.

I Anybody can send an encrypted message to Bob. Sandra
obtains Bob’s public key e and sends c = Ee(m) to Bob.

I Bob recovers m by computing Dd(c), using his private key d .

This greatly simplifies key management. No longer need a secure
channel between Alice and Bob for the initial key distribution
(which I have carefully avoided talking about so far).

CPSC 367, Lecture 8 19/37



Outline Chaining Modes Public-key RSA Appendix

Man-in-the-middle attack against 2-key cryptosystem

An active adversary Mallory can carry out a nasty
man-in-the-middle attack.

I Mallory sends his own encryption key to Sandra when she
attempts to obtain Bob’s key.

I Not knowing she has been duped, Sandra encrypts her private
data using Mallory’s public key, so Mallory can read it (but
Bob cannot)!

I To keep from being discovered, Mallory intercepts each
message from Sandra to Bob, decrypts using his own
decryption key, re-encrypts using Bob’s public encryption key,
and sends it on to Bob. Bob, receiving a validly encrypted
message, is none the wiser.

CPSC 367, Lecture 8 20/37



Outline Chaining Modes Public-key RSA Appendix

Passive attacks against a 2-key cryptosystem

Making the encryption key public also helps a passive attacker.

1. Chosen-plaintext attacks are always available since Eve can
generate as many plaintext-ciphertext pairs as she wishes
using the public encryption function Ee().

2. The public encryption function also gives Eve a foolproof way
to check validity of a potential decryption. Namely, Eve can
verify Dd(c) = m0 for some candidate message m0 by
checking that c = Ee(m0).

Redundancy in the set of meaningful messages is no longer
necessary for brute force attacks.

CPSC 367, Lecture 8 21/37



Outline Chaining Modes Public-key RSA Appendix

Facts about asymmetric cryptosystems

Good asymmetric cryptosystems are much harder to design than
good symmetric cryptosystems.

All known asymmetric systems are orders of magnitude slower than
corresponding symmetric systems.

CPSC 367, Lecture 8 22/37



Outline Chaining Modes Public-key RSA Appendix

Hybrid cryptosystems
Asymmetric and symmetric cryptosystems are often used together.
Let (E 2,D2) be a 2-key cryptosystem and (E 1,D1) be a 1-key
cryptosystem.

Here’s how Alice sends a secret message m to Bob.

I Alice generates a random session key k .

I Alice computes c1 = E 1
k (m) and c2 = E 2

e (k), where e is Bob’s
public key, and sends (c1, c2) to Bob.

I Bob computes k = D2
d(c2) using his private decryption key d

and then computes m = D1
k (c1).

This is much more efficient than simply sending E 2
e (m) in the

usual case that m is much longer than k.

Note that the 2-key system is used to encrypt random strings!

CPSC 367, Lecture 8 23/37



Outline Chaining Modes Public-key RSA Appendix

RSA

CPSC 367, Lecture 8 24/37



Outline Chaining Modes Public-key RSA Appendix

Overview of RSA

Probably the most commonly used asymmetric cryptosystem today
is RSA, named from the initials of its three inventors, Rivest,
Shamir, and Adelman.

Unlike the symmetric systems we have been talking about so far,
RSA is based not on substitution and transposition but on
arithmetic involving very large integers—numbers that are
hundreds or even thousands of bits long.

To understand why RSA works requires knowing a bit of number
theory. However, the basic ideas can be presented quite simply,
which I will do now.

CPSC 367, Lecture 8 25/37



Outline Chaining Modes Public-key RSA Appendix

RSA spaces

The message space, ciphertext space, and key space for RSA is the
set of integers Zn = {0, . . . , n − 1} for some very large integer n.

For now, think of n as a number so large that its binary
representation is 1024 bits long.

Such a number is unimaginably big. It is bigger than 21023 ≈ 10308.

For comparison, the number of atoms in the observable universe1

is estimated to be “only” 1080.

1Wikipedia, https://en.wikipedia.org/wiki/Observable universe

CPSC 367, Lecture 8 26/37

https://en.wikipedia.org/wiki/Observable_universe


Outline Chaining Modes Public-key RSA Appendix

Encoding bit strings by integers

To use RSA as a block cipher on bit strings, Alice must convert
each block to an integer m ∈ Zn, and Bob must convert m back to
a block.

Many such encodings are possible, but perhaps the simplest is to
prepend a “1” to the block x and regard the result as a binary
integer m.

To decode m to a block, write out m in binary and then delete the
initial “1” bit.

To ensure that m < n as required, we limit the length of our blocks
to 1022 bits.

CPSC 367, Lecture 8 27/37



Outline Chaining Modes Public-key RSA Appendix

RSA key generation

Here’s how Bob generates an RSA key pair.

I Bob chooses two sufficiently large distinct prime numbers p
and q and computes n = pq.
For security, p and q should be about the same length (when
written in binary).

I He computes two numbers e and d with a certain
number-theoretic relationship.

I The public key is the pair ke = (e, n). The private key is the
pair kd = (d , n). The primes p and q are no longer needed
and should be discarded.

CPSC 367, Lecture 8 28/37



Outline Chaining Modes Public-key RSA Appendix

RSA encryption and decryption

To encrypt, Alice computes c = me mod n. 2

To decrypt, Bob computes m = cd mod n.

Here, a mod n denotes the remainder when a is divided by n.

This works because e and d are chosen so that, for all m,

m = (me mod n)d mod n. (1)

That’s all there is to it, once the keys have been found.

Most of the complexity in implementing RSA has to do with key
generation, which fortunately is done only infrequently.

2For now, assume all messages and ciphertexts are integers in Zn.

CPSC 367, Lecture 8 29/37



Outline Chaining Modes Public-key RSA Appendix

RSA questions
You should already be asking yourself the following questions:

I How does one find n, e, d such that (1) is satisfied?

I Why is RSA believed to be secure?

I How can one implement RSA on a computer when most
computers only support arithmetic on 32-bit or 64-bit
integers, and how long does it take?

I How can one possibly compute me mod n for 1024 bit
numbers. me , before taking the remainder, has size roughly(

21024
)21024

= 21024×2
1024

= 22
10×21024 = 22

1034
.

This is a number that is roughly 21034 bits long! No computer
has enough memory to store that number, and no computer is
fast enough to compute it.

CPSC 367, Lecture 8 30/37



Outline Chaining Modes Public-key RSA Appendix

Appendix

CPSC 367, Lecture 8 31/37



Outline Chaining Modes Public-key RSA Appendix

Extended OFB and CFB notation

Details for extended modes .

Assume block size b = 16 bytes.

Define two operations: L and R on blocks:

I L(x) is the leftmost byte of x ;

I R(x) is the rightmost b − 1 bytes of x .

CPSC 367, Lecture 8 32/37



Outline Chaining Modes Public-key RSA Appendix

Extended OFB and CFB similarities

The extended versions of OFB and CFB are very similar.

Both maintain a one-block shift register X .

The shift register value Xs at stage s depends only on c1, . . . , cs−1
(which are now single bytes) and the master key k .

At stage i , Alice

I computes Xs according to Extended OFB or Extended CFB
rules;

I computes byte key ks = L(Ek(Xs));

I encrypts message byte ms as cs = ms ⊕ ks .

Bob decrypts similarly.

CPSC 367, Lecture 8 33/37



Outline Chaining Modes Public-key RSA Appendix

Shift register rules

The two modes differ in how they update the shift register.

Extended OFB mode
Xs = R(Xs−1) · ks−1

Extended CFB mode
Xs = R(Xs−1) · cs−1

(‘·’ denotes concatenation.)

Summary:

I Extended OFB keeps the most recent b key bytes in X .

I Extended CFB keeps the most recent b ciphertext bytes in X ,

CPSC 367, Lecture 8 34/37



Outline Chaining Modes Public-key RSA Appendix

Comparison of extended OFB and CFB modes

The differences seem minor, but they have profound implications
on the resulting cryptosystem.

I In eOFB mode, Xs depends only on s and the master key k
(and the initialization vector IV), so loss of a ciphertext byte
causes loss of only the corresponding plaintext byte.

I In eCFB mode, loss of ciphertext byte cs causes ms and all
succeeding message bytes to become undecipherable until cs
is shifted off the end of X . Thus, b message bytes are lost.

CPSC 367, Lecture 8 35/37



Outline Chaining Modes Public-key RSA Appendix

Downside of extended OFB

The downside of eOFB is that security is lost if the same master
key is used twice for different messages. CFB does not suffer from
this problem since different messages lead to different ciphertexts
and hence different keystreams.

Nevertheless, eCFB has the undesirable property that the
keystreams are the same up to and including the first byte in which
the two message streams differ.

This enables Eve to determine the length of the common prefix of
the two message streams and also to determine the XOR of the
first bytes at which they differ.

CPSC 367, Lecture 8 36/37



Outline Chaining Modes Public-key RSA Appendix

Possible solution

Possible solution to both problems: Use a different initialization
vector for each message. Prefix the ciphertext with the
(unencrypted) IV so Bob can still decrypt.

CPSC 367, Lecture 8 37/37


	Outline
	Chaining Modes
	Block chaining modes
	Extending chaining modes to bytes

	Public-key Cryptography
	RSA
	Appendix

