

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 10 February 19, 2019

Integers Modulo n

Multiplicative Subgroup of Z_n

Greatest common divisor Multiplicative subgroup of Z_n

Discrete Logarithm

Diffie-Hellman Key Exchange

Outline	Zn	Z [*] _n	Discrete log	Diffie-Hellman
0	0000000	000000000000000	000	000000

Integers Modulo n

The mod relation

We saw in <u>lecture 9</u> that mod is a binary operation on integers. Mod is also used to denote a relationship on integers:

 $a \equiv b \pmod{n}$ iff $n \mid (a - b)$.

That is, a and b have the same remainder when divided by n. An immediate consequence of this definition is that

 $a \equiv b \pmod{n}$ iff $(a \mod n) = (b \mod n)$.

Thus, the two notions of mod aren't so different after all!

We sometimes write $a \equiv_n b$ to mean $a \equiv b \pmod{n}$.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	○○●○○○○○	000000000000000000000000000000000000	000	000000

Divides

b divides *a* (exactly), written $b \mid a$, in case $a \equiv 0 \pmod{b}$ (or equivalently, a = bq for some integer *q*).

Fact

If d|(a + b), then either d divides both a and b, or d divides neither of them.

Proof.

Suppose d | (a + b) and d | a. Then $a + b = dq_1$ and $a = dq_2$ for some integers q_1 and q_2 . Substituting for a and solving for b, we get

$$b = dq_1 - dq_2 = d(q_1 - q_2).$$

Hence, $d \mid b$.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	○○○●○○○○	000000000000000000000000000000000000	000	000000

Mod is an equivalence relation

The two-place relationship \equiv_n is an *equivalence relation*.

The relation \equiv_n partitions the integers **Z** into *n* pairwise disjoint infinite sets C_0, \ldots, C_{n-1} , called *residue classes*, such that:

- 1. Every integer is in a unique residue class;
- 2. Integers x and y are equivalent (mod n) if and only if they are members of the same residue class.

Outline
oZ
n
oZ
n
oDiscrete log
oDiffie-Hellman
o

Representatives for residue classes

The unique class C_j containing integer b is denoted by $[b]_{\equiv_n}$ or simply by [b].

Fact

$$[a] = [b]$$
 iff $a \equiv b \pmod{n}$.

If $x \in [b]$, then x is said to be a *representative* or *name* of the residue class [b]. Obviously, b is a representative of [b].

For example, if n = 7, then [-11], [-4], [3], [10], [17] are all names for the same residue class

$$C_3 = \{\ldots, -11, -4, 3, 10, 17, \ldots\}.$$

Outline	Zn	Z_n^*	Discrete log	Diffie-Hellman
0	00000000	0000000000000000	000	000000

Canonical names

The *canonical* or preferred name for the class [b] is the unique representative x of [b] in the range $0 \le x \le n-1$.

For example, if n = 7, the canonical name for [10] is 3.

Why is the canonical name unique?

Outline	Zn	Z_n^*	Discrete log	Diffie-Hellman
0	00000000	00000000000000000	000	000000

Mod is a congruence relation

Definition

The relation \equiv is a *congruence relation* with respect to addition, subtraction, and multiplication of integers if

- $1.~\equiv$ is an equivalence relation, and
- 2. for each arithmetic operation $\odot \in \{+, -, \times\}$, if $a \equiv a'$ and $b \equiv b'$, then $a \odot b \equiv a' \odot b'$.

The class containing the result of $a \odot b$ depends only on the classes to which a and b belong and not the particular representatives chosen. Thus,

$$[a \odot b] = [a' \odot b'].$$

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	○○○○○○●	000000000000000000000000000000000000	000	000000

Operations on residue classes

We can extend our operations to work directly on the family of residue classes (rather than on integers).

Let \odot be an arithmetic operation in $\{+, -, \times\}$, and let [a] and [b] be residue classes. Define $[a] \odot [b] = [a \odot b]$.

If you've followed everything so far, it should be no surprise that the canonical name for $[a \odot b]$ is $(a \odot b) \mod n!$

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	●○○○○○○○○○○○○○○	000	000000

Multiplicative Subgroup of Z_n

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	●●●●●●●●●●●	000	000000
GCD				

Greatest common divisor

Definition

The greatest common divisor of two integers a and b, written gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of every integer, and the divisor of a non-zero number cannot be larger (in absolute value) than the number itself.

Question: Why isn't gcd(0,0) well defined?

Outline Z_n Z^{*}_n Discrete log Diffie-Hellman occord occord occord occord occord

Computing the GCD

gcd(*a*, *b*) is easily computed if *a* and *b* are given in factored form. Namely, let p_i be the *i*th prime. Write $a = \prod p_i^{e_i}$ and $b = \prod p_i^{f_i}$.

Then

 $gcd(a, b) = \prod p_i^{\min(e_i, f_i)}.$

Example: $168 = 2^3 \cdot 3 \cdot 7$ and $450 = 2 \cdot 3^2 \cdot 5^2$, so $gcd(168, 450) = 2 \cdot 3 = 6$.

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm is currently known. (If it were easy, then Eve could use it to break RSA, and RSA would be of no interest as a cryptosystem.)

Outline	Z <i>n</i>	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○●○○○○○○○○○○○○	000	000000
GCD				

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the need to factor *a* and *b* using the famous *Euclidean algorithm*.

Euclid's algorithm is remarkable, not only because it was discovered a very long time ago, but also because it works without knowing the factorization of a and b.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	000000000000000000000000000000000000	000	000000
GCD				

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the gcd function. In the following, assume a > 0 and $a \ge b \ge 0$:

$$gcd(a,b) = gcd(b,a)$$
(1)

$$gcd(a,0) = a \tag{2}$$

$$gcd(a, b) = gcd(a - b, b)$$
 (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows from the fact that every positive integer divides 0. Identity 3 follows from the basic fact relating divides and addition on slide 5.

Outline	Z <i>n</i>	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○○○●○○○○○○○○○	000	000000
GCD				

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b) to be reduced to the problem of computing gcd(a - b, b).

The new problem is "smaller" as long as b > 0.

The size of the problem gcd(a, b) is |a| + |b|, the sum of the absolute value of the two arguments.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○○○○●○○○○○○○○	000	000000
GCD				

An easy recursive GCD algorithm

```
int gcd(int a, int b)
{
    if ( a < b ) return gcd(b, a);
    else if ( b == 0 ) return a;
    else return gcd(a-b, b);
}</pre>
```

This algorithm is not very efficient, as you will quickly discover if you attempt to use it, say, to compute gcd(1000000, 2).

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○○○○●○○○○○○○	000	000000
GCD				

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be applied any more produces the sequence of pairs

 $(a, b), (a - b, b), (a - 2b, b), \dots, (a - qb, b).$

The sequence stops when a - qb < b.

How many times you can subtract *b* from *a* while remaining non-negative? Answer: The quotient $q = \lfloor a/b \rfloor$.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	0000000	○○○○○○○●○○○○○○	000	000000
GCD				

Using division in place of repeated subtractions

The amout a - qb that is left after q subtractions is just the remainder $a \mod b$.

Hence, one can go directly from the pair (a, b) to the pair $(a \mod b, b)$.

This proves the identity

 $gcd(a, b) = gcd(a \mod b, b).$ (4)

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○○○○○○○●○○○○○○	000	000000
GCD				

Full Euclidean algorithm Recall the inefficient GCD algorithm. int gcd(int a, int b) {

```
if ( a < b ) return gcd(b, a);
else if ( b == 0 ) return a;
```

```
else return gcd(a-b, b);
```

```
}
```

The following algorithm is exponentially faster.

```
int gcd(int a, int b) {
    if ( b == 0 ) return a;
    else return gcd(b, a%b);
```

}

Principal change: Replace gcd(a-b,b) with gcd(b, a%). Besides collapsing repeated subtractions, we have $a \ge b$ for all but the top-level call on gcd(a, b). This eliminates roughly half of the remaining recursive calls.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○○○○○○○○○○○○	000	000000
GCD				

Complexity of GCD

The new algorithm requires at most in O(n) stages, where *n* is the sum of the lengths of *a* and *b* when written in binary notation, and each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

```
int gcd(int a, int b) {
    int aa;
    while (b > 0) {
        aa = a;
        a = b;
        b = aa % b;
    }
    return a;
}
```


Relatively prime numbers

Two integers *a* and *b* are *relatively prime* if they have no common prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let \mathbf{Z}_n^* be the set of integers in \mathbf{Z}_n that are relatively prime to *n*, so

$$\mathbf{Z}_n^* = \{ a \in \mathbf{Z}_n \mid \gcd(a, n) = 1 \}.$$

Example:

$$\textbf{Z}_{21}^{*} = \{1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20\}.$$

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○○○○○○○○●○○○	000	000000
Relatively prim	e numbers, \mathbf{Z}_n^* , and $\phi(n)$			

Euler's totient function $\phi(n)$

 $\phi(n)$ is the cardinality (number of elements) of \mathbf{Z}_n^* , i.e.,

 $\phi(n) = |\mathbf{Z}_n^*|.$

Example: $\phi(21) = |\mathbf{Z}_{21}^*| = 12.$

Go back and count them!

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	○○○○○○○○○○○○○○	000	000000
Relatively prime	e numbers, \mathbf{Z}_n^* , and $\phi(n)$			

Properties of $\phi(n)$

1. If p is prime, then

 $\phi(p)=p-1.$

2. More generally, if p is prime and $k \ge 1$, then

$$\phi(p^k) = p^k - p^{k-1} = (p-1)p^{k-1}$$

3. If gcd(m, n) = 1, then

 $\phi(mn) = \phi(m)\phi(n).$

Example: $\phi(126)$

Can compute $\phi(n)$ for all $n \ge 1$ given the factorization of n.

$$\phi(126) = \phi(2) \cdot \phi(3^2) \cdot \phi(7)$$

= $(2-1) \cdot (3-1)(3^{2-1}) \cdot (7-1)$
= $1 \cdot 2 \cdot 3 \cdot 6 = 36.$

The 36 elements of \mathbf{Z}_{126}^* are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125.

A formula for $\phi(n)$

Here is an explicit formula for $\phi(n)$.

Theorem

Write n in factored form, so $n = p_1^{e_1} \cdots p_k^{e_k}$, where p_1, \ldots, p_k are distinct primes and e_1, \ldots, e_k are positive integers.¹ Then

$$\phi(n) = (p_1 - 1) \cdot p_1^{e_1 - 1} \cdots (p_k - 1) \cdot p_k^{e_k - 1}.$$

Important: For the product of distinct primes p and q,

$$\phi(pq) = (p-1)(q-1).$$

¹By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the factors.

Outline Z _n	4	7* D	Discrete log	Diffie-Hellman
0 00	000000 0	000000000000000000000000000000000000000	•00	000000

Discrete Logarithm

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
O	0000000	000000000000000000000000000000000000	○●○	000000

Logarithms mod p

Let $y = b^x$ over the reals. The ordinary base-*b* logarithm is the inverse of exponentiation, so $x = \log_b(y)$

The discrete logarithm is defined similarly, but now arithmetic is performed in \mathbf{Z}_p^* for a prime *p*.

In particular, the base-*b* discrete logarithm of *y* modulo *p* is the least non-negative integer *x* such that $y \equiv b^x \pmod{p}$ (if it exists). We write $x = \log_b(y) \mod p$.

Fact (not needed yet): If b is a primitive root² of p, then $\log_b(y)$ is defined for every $y \in \mathbf{Z}_p^*$.

CPSC 367, Lecture 10

²We will talk about primitive roots later.

Οι	ıtline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0		00000000	000000000000000000000000000000000000	○○●	000000

Discrete log problem

The *discrete log problem* is the problem of computing $\log_b(y) \mod p$, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed to be intractable.

However, the inverse of the function $\log_b() \mod p$ is the function power_b(x) = $b^x \mod p$, which is easily computable.

power_b is believed to be a *one-way function*, that is a function that is easy to compute but hard to invert.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	00000000	000000000000000000000000000000000000	000	•00000

Diffie-Hellman Key Exchange

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	0000000	000000000000000000000000000000000000	000	○●○○○○

Key exchange problem

The *key exchange problem* is for Alice and Bob to agree on a common random key k.

One way for this to happen is for Alice to choose k at random and then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	0000000	000000000000000000000000000000000000	000	○○●○○○

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to agree on a secret k without having prior secret information and without giving an eavesdropper Eve any information about k. The protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large prime and g a primitive root of p.

From the fact on slide 28, these assumptions imply the existence of $\log_g(y)$ for every $y \in \mathbf{Z}_p^*$.)

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	0000000	000000000000000000000000000000000000	000	○○○●○○

D-H key exchange protocol

Alice	Bob
Choose random $x \in \mathbf{Z}_{\phi(p)}$.	Choose random $y \in \mathbf{Z}_{\phi(p)}$.
$a = g^{x} \mod p$. Send <i>a</i> to Bob.	$b = g^{y} \mod p$. Send <i>b</i> to Alice.
$k_a = b^{x} \mod p.$	$k_b = a^y \mod p.$

Diffie-Hellman Key Exchange Protocol.

Clearly, $k_a = k_b$ since

$$k_a \equiv b^x \equiv g^{xy} \equiv a^y \equiv k_b \pmod{p}.$$

Hence, $k = k_a = k_b$ is a common key.

Outline	Z _n	Z [*]	Discrete log	Diffie-Hellman
0	0000000	000000000000000000000000000000000000	000	0000●0

Why choose from $Z_{\phi(p)}$?

One might ask why x and y should be chosen from $Z_{\phi(p)}$ rather than from Z_p ?

The reason is because of another number-theoretic fact that we haven't talked about – Euler's theorem – which says

$$g^{\phi(p)} \equiv 1 \pmod{p}.$$

It follows that if $x \equiv y \pmod{\phi(p)}$, then $g^x \equiv g^y \pmod{p}$.

Outline 0	Z _n 00000000	Z [*] 000000000000000000000000000000000000	Discrete log 000	Diffie-Hellman ○○○○○●

Security of DH key exchange

In practice, Alice and Bob may use this protocol to generate a session key for a symmetric cryptosystem, which they subsequently use to exchange private information.

The security of this protocol relies on Eve's presumed inability to compute k from a and b and the public information p and g. This is sometime called the *Diffie-Hellman problem* and, like discrete log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log, for if Eve could find the discrete log of a, then she would know x and could compute k_a the same way that Alice does.

However, it is not known to be as hard as discrete log.