CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 10
February 19, 2019

Integers Modulo n

Multiplicative Subgroup of \mathbf{Z}_{n}
Greatest common divisor
Multiplicative subgroup of \mathbf{Z}_{n}

Discrete Logarithm

Diffie-Hellman Key Exchange

Integers Modulo n

The mod relation

We saw in lecture 9 that mod is a binary operation on integers. Mod is also used to denote a relationship on integers:

$$
a \equiv b(\bmod n) \quad \text { iff } \quad n \mid(a-b)
$$

That is, a and b have the same remainder when divided by n. An immediate consequence of this definition is that

$$
a \equiv b(\bmod n) \quad \text { iff } \quad(a \bmod n)=(b \bmod n)
$$

Thus, the two notions of mod aren't so different after all!
We sometimes write $a \equiv_{n} b$ to mean $a \equiv b(\bmod n)$.

Divides

b divides a (exactly), written $b \mid a$, in case $a \equiv 0(\bmod b)$ (or equivalently, $a=b q$ for some integer q).

Fact
If $d \mid(a+b)$, then either d divides both a and b, or d divides neither of them.

Proof.
Suppose $d \mid(a+b)$ and $d \mid a$. Then $a+b=d q_{1}$ and $a=d q_{2}$ for some integers q_{1} and q_{2}. Substituting for a and solving for b, we get

$$
b=d q_{1}-d q_{2}=d\left(q_{1}-q_{2}\right)
$$

Hence, $d \mid b$.

Mod is an equivalence relation

The two-place relationship \equiv_{n} is an equivalence relation.
The relation \equiv_{n} partitions the integers \mathbf{Z} into n pairwise disjoint infinite sets C_{0}, \ldots, C_{n-1}, called residue classes, such that:

1. Every integer is in a unique residue class;
2. Integers x and y are equivalent $(\bmod n)$ if and only if they are members of the same residue class.

Representatives for residue classes

The unique class C_{j} containing integer b is denoted by $[b]_{\equiv_{n}}$ or simply by [b].

Fact

$$
[a]=[b] \text { iff } a \equiv b(\bmod n) .
$$

If $x \in[b]$, then x is said to be a representative or name of the residue class $[b]$. Obviously, b is a representative of $[b]$.

For example, if $n=7$, then [-11], [-4$]$, [3], [10], [17] are all names for the same residue class

$$
C_{3}=\{\ldots,-11,-4,3,10,17, \ldots\}
$$

Canonical names

The canonical or preferred name for the class $[b]$ is the unique representative x of $[b]$ in the range $0 \leq x \leq n-1$.

For example, if $n=7$, the canonical name for [10] is 3 .
Why is the canonical name unique?

Mod is a congruence relation

Definition

The relation \equiv is a congruence relation with respect to addition, subtraction, and multiplication of integers if
$1 . \equiv$ is an equivalence relation, and
2. for each arithmetic operation $\odot \in\{+,-, \times\}$, if $a \equiv a^{\prime}$ and $b \equiv b^{\prime}$, then $a \odot b \equiv a^{\prime} \odot b^{\prime}$.

The class containing the result of $a \odot b$ depends only on the classes to which a and b belong and not the particular representatives chosen. Thus,

$$
[a \odot b]=\left[a^{\prime} \odot b^{\prime}\right] .
$$

Operations on residue classes

We can extend our operations to work directly on the family of residue classes (rather than on integers).

Let \odot be an arithmetic operation in $\{+,-, \times\}$, and let $[a]$ and $[b]$ be residue classes. Define $[a] \odot[b]=[a \odot b]$.

If you've followed everything so far, it should be no surprise that the canonical name for $[a \odot b]$ is $(a \odot b) \bmod n$!

Multiplicative Subgroup of \mathbf{Z}_{n}

Greatest common divisor

Definition

The greatest common divisor of two integers a and b, written $\operatorname{gcd}(a, b)$, is the largest integer d such that $d \mid a$ and $d \mid b$.
$\operatorname{gcd}(a, b)$ is always defined unless $a=b=0$ since 1 is a divisor of every integer, and the divisor of a non-zero number cannot be larger (in absolute value) than the number itself.

Question: Why isn't $\operatorname{gcd}(0,0)$ well defined?

Computing the GCD

$\operatorname{gcd}(a, b)$ is easily computed if a and b are given in factored form.
Namely, let p_{i} be the $i^{\text {th }}$ prime. Write $a=\prod p_{i}^{e_{i}}$ and $b=\prod p_{i}^{f_{i}}$. Then

$$
\operatorname{gcd}(a, b)=\prod p_{i}^{\min \left(e_{i}, f_{i}\right)}
$$

Example: $168=2^{3} \cdot 3 \cdot 7$ and $450=2 \cdot 3^{2} \cdot 5^{2}$, so $\operatorname{gcd}(168,450)=2 \cdot 3=6$.

However, factoring is believed to be a hard problem, and no polynomial-time factorization algorithm is currently known. (If it were easy, then Eve could use it to break RSA, and RSA would be of no interest as a cryptosystem.)

Euclidean algorithm

Fortunately, $\operatorname{gcd}(a, b)$ can be computed efficiently without the need to factor a and b using the famous Euclidean algorithm.

Euclid's algorithm is remarkable, not only because it was discovered a very long time ago, but also because it works without knowing the factorization of a and b.

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the gcd function. In the following, assume $a>0$ and $a \geq b \geq 0$:

$$
\begin{align*}
\operatorname{gcd}(a, b) & =\operatorname{gcd}(b, a) \tag{1}\\
\operatorname{gcd}(a, 0) & =a \tag{2}\\
\operatorname{gcd}(a, b) & =\operatorname{gcd}(a-b, b) \tag{3}
\end{align*}
$$

Identity 1 is obvious from the definition of gcd. Identity 2 follows from the fact that every positive integer divides 0 . Identity 3 follows from the basic fact relating divides and addition on slide 5 .

Computing GCD without factoring

The Euclidean identities allow the problem of computing $\operatorname{gcd}(a, b)$ to be reduced to the problem of computing $\operatorname{gcd}(a-b, b)$.

The new problem is "smaller" as long as $b>0$.
The size of the problem $\operatorname{gcd}(a, b)$ is $|a|+|b|$, the sum of the absolute value of the two arguments.

An easy recursive GCD algorithm

```
int gcd(int a, int b)
{
    if ( a < b ) return gcd(b, a);
    else if ( b == O ) return a;
    else return gcd(a-b, b);
}
```

This algorithm is not very efficient, as you will quickly discover if you attempt to use it, say, to compute $\operatorname{gcd}(1000000,2)$.

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be applied any more produces the sequence of pairs

$$
(a, b),(a-b, b),(a-2 b, b), \ldots,(a-q b, b)
$$

The sequence stops when $a-q b<b$.
How many times you can subtract b from a while remaining non-negative?
Answer: The quotient $q=\lfloor a / b\rfloor$.

Using division in place of repeated subtractions

The amout $a-q b$ that is left after q subtractions is just the remainder $a \bmod b$.

Hence, one can go directly from the pair (a, b) to the pair $(a \bmod b, b)$.

This proves the identity

$$
\begin{equation*}
\operatorname{gcd}(a, b)=\operatorname{gcd}(a \bmod b, b) \tag{4}
\end{equation*}
$$

Full Euclidean algorithm

Recall the inefficient GCD algorithm.

```
int gcd(int a, int b) {
    if ( a < b ) return gcd(b, a);
    else if ( b == 0 ) return a;
    else return gcd(a-b, b);
}
```

The following algorithm is exponentially faster.

```
int gcd(int a, int b) {
```

 if \((b==0)\) return \(a ;\)
 else return \(\operatorname{gcd}(b, a \% b)\);
 \}

Principal change: Replace $\operatorname{gcd}(\mathrm{a}-\mathrm{b}, \mathrm{b})$ with $\operatorname{gcd}(\mathrm{b}, \mathrm{a} \% \mathrm{~b})$.
Besides collapsing repeated subtractions, we have $a \geq b$ for all but the top-level call on $\operatorname{gcd}(a, b)$. This eliminates roughly half of the remaining recursive calls.

Complexity of GCD

The new algorithm requires at most in $O(n)$ stages, where n is the sum of the lengths of a and b when written in binary notation, and each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

```
int gcd(int a, int b) {
    int aa;
    while (b > 0) {
        aa = a;
        a = b;
        b}=\textrm{aa}%\textrm{b}
    }
    return a;
}
```


Relatively prime numbers

Two integers a and b are relatively prime if they have no common prime factors.
Equivalently, a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.
Let \mathbf{Z}_{n}^{*} be the set of integers in \mathbf{Z}_{n} that are relatively prime to n, so

$$
\mathbf{Z}_{n}^{*}=\left\{a \in \mathbf{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

Example:

$$
\mathbf{Z}_{21}^{*}=\{1,2,4,5,8,10,11,13,16,17,19,20\} .
$$

Euler's totient function $\phi(n)$

$\phi(n)$ is the cardinality (number of elements) of \mathbf{Z}_{n}^{*}, i.e.,

$$
\phi(n)=\left|\mathbf{Z}_{n}^{*}\right| .
$$

Example: $\phi(21)=\left|\mathbf{Z}_{21}^{*}\right|=12$.
Go back and count them!

Properties of $\phi(n)$

1. If p is prime, then

$$
\phi(p)=p-1 .
$$

2. More generally, if p is prime and $k \geq 1$, then

$$
\phi\left(p^{k}\right)=p^{k}-p^{k-1}=(p-1) p^{k-1} .
$$

3. If $\operatorname{gcd}(m, n)=1$, then

$$
\phi(m n)=\phi(m) \phi(n) .
$$

Example: $\phi(126)$

Can compute $\phi(n)$ for all $n \geq 1$ given the factorization of n.

$$
\begin{aligned}
\phi(126) & =\phi(2) \cdot \phi\left(3^{2}\right) \cdot \phi(7) \\
& =(2-1) \cdot(3-1)\left(3^{2-1}\right) \cdot(7-1) \\
& =1 \cdot 2 \cdot 3 \cdot 6=36 .
\end{aligned}
$$

The 36 elements of \mathbf{Z}_{126}^{*} are:
$1,5,11,13,17,19,23,25,29,31,37,41,43,47,53,55$, $59,61,65,67,71,73,79,83,85,89,95,97,101,103$, $107,109,113,115,121,125$.

A formula for $\phi(n)$

Here is an explicit formula for $\phi(n)$.
Theorem
Write n in factored form, so $n=p_{1}^{e_{1}} \cdots p_{k}^{e_{k}}$, where p_{1}, \ldots, p_{k} are distinct primes and e_{1}, \ldots, e_{k} are positive integers. ${ }^{1}$ Then

$$
\phi(n)=\left(p_{1}-1\right) \cdot p_{1}^{e_{1}-1} \cdots\left(p_{k}-1\right) \cdot p_{k}^{e_{k}-1} .
$$

Important: For the product of distinct primes p and q,

$$
\phi(p q)=(p-1)(q-1) .
$$

[^0]
Discrete Logarithm

Logarithms $\bmod p$

Let $y=b^{x}$ over the reals. The ordinary base- b logarithm is the inverse of exponentiation, so $x=\log _{b}(y)$

The discrete logarithm is defined similarly, but now arithmetic is performed in \mathbf{Z}_{p}^{*} for a prime p.

In particular, the base- b discrete logarithm of y modulo p is the least non-negative integer x such that $y \equiv b^{x}(\bmod p)$ (if it exists). We write $x=\log _{b}(y) \bmod p$.

Fact (not needed yet): If b is a primitive root ${ }^{2}$ of p, then $\log _{b}(y)$ is defined for every $y \in \mathbf{Z}_{p}^{*}$.

[^1]
Discrete log problem

The discrete log problem is the problem of computing $\log _{b}(y) \bmod p$, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed to be intractable.

However, the inverse of the function $\log _{b}() \bmod p$ is the function power $_{b}(x)=b^{x} \bmod p$, which is easily computable.
power $_{b}$ is believed to be a one-way function, that is a function that is easy to compute but hard to invert.

Diffie-Hellman Key Exchange

Key exchange problem

The key exchange problem is for Alice and Bob to agree on a common random key k.

One way for this to happen is for Alice to choose k at random and then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to agree on a secret k without having prior secret information and without giving an eavesdropper Eve any information about k. The protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large prime and g a primitive root of p.

From the fact on slide 28, these assumptions imply the existence of $\log _{g}(y)$ for every $y \in \mathbf{Z}_{p}^{*}$.)

D-H key exchange protocol

Alice

Choose random $x \in \mathbf{Z}_{\phi(p)}$.
$a=g^{x} \bmod p$.
Send a to Bob.
$k_{a}=b^{\times} \bmod p$.

Bob

Choose random $y \in \mathbf{Z}_{\phi(p)}$.
$b=g^{y} \bmod p$.
Send b to Alice.
$k_{b}=a^{y} \bmod p$.

Diffie-Hellman Key Exchange Protocol.
Clearly, $k_{a}=k_{b}$ since

$$
k_{a} \equiv b^{x} \equiv g^{x y} \equiv a^{y} \equiv k_{b}(\bmod p) .
$$

Hence, $k=k_{a}=k_{b}$ is a common key.

Why choose from $\mathbf{Z}_{\phi(p)}$?

One might ask why x and y should be chosen from $\mathbf{Z}_{\phi(p)}$ rather than from \mathbf{Z}_{p} ?

The reason is because of another number-theoretic fact that we haven't talked about - Euler's theorem - which says

$$
g^{\phi(p)} \equiv 1(\bmod p)
$$

It follows that if $x \equiv y(\bmod \phi(p))$, then $g^{x} \equiv g^{y}(\bmod p)$.

Security of DH key exchange

In practice, Alice and Bob may use this protocol to generate a session key for a symmetric cryptosystem, which they subsequently use to exchange private information.

The security of this protocol relies on Eve's presumed inability to compute k from a and b and the public information p and g. This is sometime called the Diffie-Hellman problem and, like discrete log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log, for if Eve could find the discrete \log of a, then she would know x and could compute k_{a} the same way that Alice does.

However, it is not known to be as hard as discrete log.

[^0]: ${ }^{1}$ By the fundamental theorem of arithmetic, every integer can be written uniquely in this way up to the ordering of the factors.

[^1]: ${ }^{2}$ We will talk about primitive roots later.

