
Outline Zn Z∗
n Discrete log Diffie-Hellman

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 10
February 19, 2019

CPSC 367, Lecture 10 1/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Integers Modulo n

Multiplicative Subgroup of Zn

Greatest common divisor
Multiplicative subgroup of Zn

Discrete Logarithm

Diffie-Hellman Key Exchange

CPSC 367, Lecture 10 2/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Integers Modulo n

CPSC 367, Lecture 10 3/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

The mod relation

We saw in lecture 9 that mod is a binary operation on integers.

Mod is also used to denote a relationship on integers:

a ≡ b (mod n) iff n |(a− b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a ≡ b (mod n) iff (a mod n) = (b mod n).

Thus, the two notions of mod aren’t so different after all!

We sometimes write a ≡n b to mean a ≡ b (mod n).

CPSC 367, Lecture 10 4/35

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln09.pdf

Outline Zn Z∗
n Discrete log Diffie-Hellman

Divides

b divides a (exactly), written b |a, in case a ≡ 0 (mod b) (or
equivalently, a = bq for some integer q).

Fact
If d |(a + b), then either d divides both a and b, or d divides
neither of them.

Proof.
Suppose d |(a + b) and d |a. Then a + b = dq1 and a = dq2 for
some integers q1 and q2. Substituting for a and solving for b, we
get

b = dq1 − dq2 = d(q1 − q2).

Hence, d |b.

CPSC 367, Lecture 10 5/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Mod is an equivalence relation

The two-place relationship ≡n is an equivalence relation.

The relation ≡n partitions the integers Z into n pairwise disjoint
infinite sets C0, . . . ,Cn−1, called residue classes, such that:

1. Every integer is in a unique residue class;

2. Integers x and y are equivalent (mod n) if and only if they
are members of the same residue class.

CPSC 367, Lecture 10 6/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Representatives for residue classes

The unique class Cj containing integer b is denoted by [b]≡n or
simply by [b].

Fact
[a] = [b] iff a ≡ b (mod n).

If x ∈ [b], then x is said to be a representative or name of the
residue class [b]. Obviously, b is a representative of [b].

For example, if n = 7, then [−11], [−4], [3], [10], [17] are all
names for the same residue class

C3 = {. . . ,−11,−4, 3, 10, 17, . . .}.

CPSC 367, Lecture 10 7/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Canonical names

The canonical or preferred name for the class [b] is the unique
representative x of [b] in the range 0 ≤ x ≤ n − 1.

For example, if n = 7, the canonical name for [10] is 3.

Why is the canonical name unique?

CPSC 367, Lecture 10 8/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Mod is a congruence relation

Definition
The relation ≡ is a congruence relation with respect to addition,
subtraction, and multiplication of integers if

1. ≡ is an equivalence relation, and

2. for each arithmetic operation � ∈ {+,−,×}, if a ≡ a′ and
b ≡ b′, then a� b ≡ a′ � b′.

The class containing the result of a� b depends only on the
classes to which a and b belong and not the particular
representatives chosen. Thus,

[a� b] = [a′ � b′].

CPSC 367, Lecture 10 9/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Operations on residue classes

We can extend our operations to work directly on the family of
residue classes (rather than on integers).

Let � be an arithmetic operation in {+,−,×}, and let [a] and [b]
be residue classes. Define [a]� [b] = [a� b].

If you’ve followed everything so far, it should be no surprise that
the canonical name for [a� b] is (a� b) mod n !

CPSC 367, Lecture 10 10/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Multiplicative Subgroup of Zn

CPSC 367, Lecture 10 11/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d |a and d |b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn’t gcd(0, 0) well defined?

CPSC 367, Lecture 10 12/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let pi be the i th prime. Write a =
∏

peii and b =
∏

p fi
i .

Then
gcd(a, b) =

∏
p

min(ei ,fi)
i .

Example: 168 = 23 · 3 · 7 and 450 = 2 · 32 · 52, so
gcd(168, 450) = 2 · 3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)

CPSC 367, Lecture 10 13/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid’s algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.

CPSC 367, Lecture 10 14/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0 and a ≥ b ≥ 0:

gcd(a, b) = gcd(b, a) (1)

gcd(a, 0) = a (2)

gcd(a, b) = gcd(a− b, b) (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows
from the fact that every positive integer divides 0. Identity 3
follows from the basic fact relating divides and addition on slide 5.

CPSC 367, Lecture 10 15/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a− b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a|+ |b|, the sum of the
absolute value of the two arguments.

CPSC 367, Lecture 10 16/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

An easy recursive GCD algorithm

int gcd(int a, int b)

{

if (a < b) return gcd(b, a);

else if (b == 0) return a;

else return gcd(a-b, b);

}

This algorithm is not very efficient, as you will quickly discover if
you attempt to use it, say, to compute gcd(1000000, 2).

CPSC 367, Lecture 10 17/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can’t be
applied any more produces the sequence of pairs

(a, b), (a− b, b), (a− 2b, b), . . . , (a− qb, b).

The sequence stops when a− qb < b.

How many times you can subtract b from a while remaining
non-negative?
Answer: The quotient q = ba/bc.

CPSC 367, Lecture 10 18/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Using division in place of repeated subtractions

The amout a− qb that is left after q subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b).

This proves the identity

gcd(a, b) = gcd(a mod b, b). (4)

CPSC 367, Lecture 10 19/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Full Euclidean algorithm
Recall the inefficient GCD algorithm.
int gcd(int a, int b) {

if (a < b) return gcd(b, a);

else if (b == 0) return a;

else return gcd(a-b, b);

}

The following algorithm is exponentially faster.
int gcd(int a, int b) {

if (b == 0) return a;

else return gcd(b, a%b);

}

Principal change: Replace gcd(a-b,b) with gcd(b, a%b).
Besides collapsing repeated subtractions, we have a ≥ b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.

CPSC 367, Lecture 10 20/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

GCD

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int gcd(int a, int b) {

int aa;

while (b > 0) {

aa = a;

a = b;

b = aa % b;

}

return a;

}

CPSC 367, Lecture 10 21/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Relatively prime numbers, Z∗
n , and φ(n)

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z∗n be the set of integers in Zn that are relatively prime to n, so

Z∗n = {a ∈ Zn | gcd(a, n) = 1}.

Example:

Z∗21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}.

CPSC 367, Lecture 10 22/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Relatively prime numbers, Z∗
n , and φ(n)

Euler’s totient function φ(n)

φ(n) is the cardinality (number of elements) of Z∗n, i.e.,

φ(n) = |Z∗n|.

Example: φ(21) = |Z∗21| = 12.

Go back and count them!

CPSC 367, Lecture 10 23/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Relatively prime numbers, Z∗
n , and φ(n)

Properties of φ(n)

1. If p is prime, then
φ(p) = p − 1.

2. More generally, if p is prime and k ≥ 1, then

φ(pk) = pk − pk−1 = (p − 1)pk−1.

3. If gcd(m, n) = 1, then

φ(mn) = φ(m)φ(n).

CPSC 367, Lecture 10 24/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Relatively prime numbers, Z∗
n , and φ(n)

Example: φ(126)

Can compute φ(n) for all n ≥ 1 given the factorization of n.

φ(126) = φ(2) · φ(32) · φ(7)

= (2− 1) · (3− 1)(32−1) · (7− 1)

= 1 · 2 · 3 · 6 = 36.

The 36 elements of Z∗126 are:

1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 53, 55,
59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103,
107, 109, 113, 115, 121, 125.

CPSC 367, Lecture 10 25/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Relatively prime numbers, Z∗
n , and φ(n)

A formula for φ(n)

Here is an explicit formula for φ(n).

Theorem
Write n in factored form, so n = pe1

1 · · · p
ek
k , where p1, . . . , pk are

distinct primes and e1, . . . , ek are positive integers.1 Then

φ(n) = (p1 − 1) · pe1−1
1 · · · (pk − 1) · pek−1

k .

Important: For the product of distinct primes p and q,

φ(pq) = (p − 1)(q − 1).

1By the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.

CPSC 367, Lecture 10 26/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Discrete Logarithm

CPSC 367, Lecture 10 27/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Logarithms modp

Let y = bx over the reals. The ordinary base-b logarithm is the
inverse of exponentiation, so x = logb(y)

The discrete logarithm is defined similarly, but now arithmetic is
performed in Z∗p for a prime p.

In particular, the base-b discrete logarithm of y modulo p is the
least non-negative integer x such that y ≡ bx (mod p) (if it
exists). We write x = logb(y) mod p.

Fact (not needed yet): If b is a primitive root2 of p, then logb(y)
is defined for every y ∈ Z∗p.

2We will talk about primitive roots later.

CPSC 367, Lecture 10 28/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Discrete log problem

The discrete log problem is the problem of computing
logb(y) mod p, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed
to be intractable.

However, the inverse of the function logb() mod p is the function
powerb(x) = bx mod p, which is easily computable.

powerb is believed to be a one-way function, that is a function that
is easy to compute but hard to invert.

CPSC 367, Lecture 10 29/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Diffie-Hellman Key Exchange

CPSC 367, Lecture 10 30/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Key exchange problem

The key exchange problem is for Alice and Bob to agree on a
common random key k.

One way for this to happen is for Alice to choose k at random and
then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

CPSC 367, Lecture 10 31/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to
agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k . The
protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large
prime and g a primitive root of p.

From the fact on slide 28, these assumptions imply the existence of
logg (y) for every y ∈ Z∗p.)

CPSC 367, Lecture 10 32/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

D-H key exchange protocol

Alice Bob

Choose random x ∈ Zφ(p). Choose random y ∈ Zφ(p).

a = g x mod p. b = g y mod p.

Send a to Bob. Send b to Alice.

ka = bx mod p. kb = ay mod p.

Diffie-Hellman Key Exchange Protocol.

Clearly, ka = kb since

ka ≡ bx ≡ g xy ≡ ay ≡ kb (mod p).

Hence, k = ka = kb is a common key.

CPSC 367, Lecture 10 33/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Why choose from Zφ(p)?

One might ask why x and y should be chosen from Zφ(p) rather
than from Zp?

The reason is because of another number-theoretic fact that we
haven’t talked about – Euler’s theorem – which says

gφ(p) ≡ 1 (mod p).

It follows that if x ≡ y (mod φ(p)), then g x ≡ g y (mod p).

CPSC 367, Lecture 10 34/35

Outline Zn Z∗
n Discrete log Diffie-Hellman

Security of DH key exchange

In practice, Alice and Bob may use this protocol to generate a
session key for a symmetric cryptosystem, which they subsequently
use to exchange private information.

The security of this protocol relies on Eve’s presumed inability to
compute k from a and b and the public information p and g . This
is sometime called the Diffie-Hellman problem and, like discrete
log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log,
for if Eve could find the discrete log of a, then she would know x
and could compute ka the same way that Alice does.

However, it is not known to be as hard as discrete log.

CPSC 367, Lecture 10 35/35

	Outline
	Integers Modulo n
	Multiplicative Subgroup of Zn
	Greatest common divisor
	Multiplicative subgroup of Zn

	Discrete Logarithm
	Diffie-Hellman Key Exchange

