R

Outline Z, z Discrete log Diffie-Hellman
o) 00000000 0000000000000000 000 000000
: :

CPSC 367: Cryptography and Security

Michael J. Fischer

Lecture 10
February 19, 2019

CPSC 367, Lecture 10 1/35
00

Outline Z, z* Discrete log Diffie-Hellman

n
L] 00000000 000000000000 0O000 000 000000
:

Integers Modulo n

Multiplicative Subgroup of Z,
Greatest common divisor
Multiplicative subgroup of Z,

Discrete Logarithm

Diffie-Hellman Key Exchange

CPSC 367, Lecture 10 2/35

R

Outline Z, z Discrete log Diffie-Hellman
o) 90000000 0000000000000000 000 000000

Integers Modulo n

CPSC 367, Lecture 10 3/35
00

Outline Z, z; Discrete log Diffie-Hellman
o] 0@000000 0000000000000 000 000 000000
: :

The mod relation

We saw in lecture 9 that mod is a binary operation on integers.
Mod is also used to denote a relationship on integers:
a=b (mod n) iff n|(a—b).

That is, a and b have the same remainder when divided by n. An
immediate consequence of this definition is that

a=b (mod n) iff (amodn)=(bmod n).

Thus, the two notions of mod aren't so different after all!

We sometimes write a =, b to mean a= b (mod n).

| |
CPSC 367, Lecture 10 4/35

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln09.pdf

Outline Z, z Discrete log Diffie-Hellman
o] 00e00000 0000000000000 000 000 000000

Divides

b divides a (exactly), written b|a, in case a=0 (mod b) (or
equivalently, a = bq for some integer q).

Fact
If d|(a+ b), then either d divides both a and b, or d divides
neither of them.

Proof.
Suppose d|(a+ b) and d|a. Then a+ b= dq; and a = dg» for
some integers g; and g». Substituting for a and solving for b, we
get

b=dq —dg = d(q1 — q2).

Hence, d|b. O

|
CPSC 367, Lecture 10 5/35

Outline Z, z Discrete log Diffie-Hellman
o] 00080000 0000000000000 000 000 000000
: :

Mod is an equivalence relation

The two-place relationship =, is an equivalence relation.
The relation =, partitions the integers Z into n pairwise disjoint
infinite sets Cy, ..., C,_1, called residue classes, such that:

1. Every integer is in a unique residue class;

2. Integers x and y are equivalent (mod n) if and only if they
are members of the same residue class.

CPSC 367, Lecture 10 6/35
00

Outline Z, z Discrete log Diffie-Hellman
o] 0000000 0000000000000 000 000 000000
: :

Representatives for residue classes

The unique class C; containing integer b is denoted by [b]=, or
simply by [b].
Fact

[a] = [b] iffa= b (mod n).

If x € [b], then x is said to be a representative or name of the
residue class [b]. Obviously, b is a representative of [b].
For example, if n =7, then [—11], [—4], [3], [10], [17] are all

names for the same residue class

G=1{.,-11,-4,3,10,17,...}.

| |
CPSC 367, Lecture 10 7/35

Outline z

n z Discrete log Diffie-Hellman
o 00000800 0000000000000000 000 000000
:

Canonical names

The canonical or preferred name for the class [b] is the unique
representative x of [b] in the range 0 < x < n—1.

For example, if n =7, the canonical name for [10] is 3.

Why is the canonical name unique?

CPSC 367, Lecture 10 8/35
00

Outline Z, z Discrete log Diffie-Hellman

n
[©] 000000 @0 000000000000 0O000 000 000000
: :

Mod is a congruence relation

Definition
The relation = is a congruence relation with respect to addition,
subtraction, and multiplication of integers if

1. = is an equivalence relation, and

2. for each arithmetic operation ® € {+,—, x}, if a = 4’ and
b="b,thenacob=adob.

The class containing the result of a ® b depends only on the
classes to which a and b belong and not the particular
representatives chosen. Thus,

[a® bl =[d ®b].

| |
CPSC 367, Lecture 10 9/35

Outline Z, z* Discrete log Diffie-Hellman

n
[©] 0000000e 000000000000 0O000 000 000000
:

Operations on residue classes

We can extend our operations to work directly on the family of
residue classes (rather than on integers).

Let ® be an arithmetic operation in {4, —, x}, and let [a] and [b]
be residue classes. Define [a] ® [b] = [a ® b].

If you've followed everything so far, it should be no surprise that
the canonical name for [a ® b] is (a ® b) mod n!

|
CPSC 367, Lecture 10 10/35

R

Outline zZ, z* Discrete log Diffie-Hellman

n
[©] 00000000 @000000000000000 000 000000
: :

Multiplicative Subgroup of Z,,

CPSC 367, Lecture 10 11/35
00

Outline Z, z Discrete log Diffie-Hellman
o] 00000000 O@00000000000000 000 000000

: :
GCD

: :

Greatest common divisor

Definition
The greatest common divisor of two integers a and b, written
gcd(a, b), is the largest integer d such that d|a and d|b.

gcd(a, b) is always defined unless a = b = 0 since 1 is a divisor of
every integer, and the divisor of a non-zero number cannot be
larger (in absolute value) than the number itself.

Question: Why isn't gcd(0, 0) well defined?

: :
CPSC 367, Lecture 10 12/35

Outline Z, z Discrete log Diffie-Hellman
o] 00000000 0O0e0000000000000 000 000000

: :
GCD

: :

Computing the GCD

gcd(a, b) is easily computed if a and b are given in factored form.

Namely, let p; be the i*® prime. Write a =[] p{" and b = Hp,ﬁ.

Then
ng a, b H mm(e,,f)

Example: 168 =23.3-7 and 450 =2-3%.52, so
gcd(168,450) =2 -3 = 6.

However, factoring is believed to be a hard problem, and no
polynomial-time factorization algorithm is currently known. (If it
were easy, then Eve could use it to break RSA, and RSA would be
of no interest as a cryptosystem.)

| |
CPSC 367, Lecture 10 13/35

Outline zZ, z Discrete log Diffie-Hellman

[©] 00000000 0O00@00000000OO0O 000 000000
:

GCD
:

Euclidean algorithm

Fortunately, gcd(a, b) can be computed efficiently without the
need to factor a and b using the famous Euclidean algorithm.

Euclid's algorithm is remarkable, not only because it was
discovered a very long time ago, but also because it works without
knowing the factorization of a and b.

CPSC 367, Lecture 10 14/35

00

Outline Z, z Discrete log Diffie-Hellman
o] 00000000 0O000e00000000O000 000 000000

GCD
: :

Euclidean identities

The Euclidean algorithm relies on several identities satisfied by the
gcd function. In the following, assume a > 0and a> b > 0:

ged(a,b) = ged(b, a) (1)
ged(a,0) = a (2)
ged(a, b) = ged(a— b, b) (3)

Identity 1 is obvious from the definition of gcd. Identity 2 follows
from the fact that every positive integer divides 0. ldentity 3
follows from the basic fact relating divides and addition on slide 5.

|
CPSC 367, Lecture 10 15/35

00

Outline Z, z Discrete log Diffie-Hellman
o] 00000000 0O0000e0000000000 000 000000

: :
GCD

: :

Computing GCD without factoring

The Euclidean identities allow the problem of computing gcd(a, b)
to be reduced to the problem of computing gcd(a — b, b).

The new problem is “smaller” as long as b > 0.

The size of the problem gcd(a, b) is |a| + |b|, the sum of the
absolute value of the two arguments.

| |
CPSC 367, Lecture 10 16/35

00

Outline zZ, z Discrete log Diffie-Hellman
o 00000000 0000008000000000 000 000000

:
GCD

An easy recursive GCD algorithm

int gcd(int a, int b)

{
if (a < b) return gcd(b, a);
else if (b == 0) return a;
else return gcd(a-b, b);

}

This algorithm is not very efficient, as you will quickly discover if
you attempt to use it, say, to compute gcd(1000000, 2).

:
CPSC 367, Lecture 10 17/35

Outline zZ, z Discrete log Diffie-Hellman
o 00000000 0000000®00000000 000 000000

:
GCD

Repeated subtraction

Repeatedly applying identity (3) to the pair (a, b) until it can't be
applied any more produces the sequence of pairs

(a,b),(a— b,b),(a—2b,b),...,(a— gb,b).
The sequence stops when a — gb < b.

How many times you can subtract b from a while remaining
non-negative?
Answer: The quotient g = [a/b].

|
CPSC 367, Lecture 10 18/35

Outline Z, z

n Discrete log Diffie-Hellman
o 00000000 0000000080000000 000 000000
:

:
GCD

Using division in place of repeated subtractions

The amout a — gb that is left after g subtractions is just the
remainder a mod b.

Hence, one can go directly from the pair (a, b) to the pair
(a mod b, b).

This proves the identity

ged(a, b) = ged(a mod b, b). (4)

CPSC 367, Lecture 10 19/35
00

Outline Z, z Discrete log Diffie-Hellman

[©] 00000000 000000000 @0OOO000 000 000000
:

GCD
|

Full Euclidean algorithm

Recall the inefficient GCD algorithm.
int gcd(int a, int b) {
if (a < b) return gcd(b, a);
else if (b == 0) return a;

else return gcd(a-b, b);
}
The following algorithm is exponentially faster.
int gcd(int a, int b) {

if (b == 0) return a;

else return gcd(b, alb);
}
Principal change: Replace gcd(a-b,b) with gcd(b, alb).
Besides collapsing repeated subtractions, we have a > b for all but
the top-level call on gcd(a, b). This eliminates roughly half of the
remaining recursive calls.

CPSC 367, Lecture 10 20/35

Outline Z, z Discrete log Diffie-Hellman

[©] 00000000 0000000000000 000 000000
:

GCD
: :

Complexity of GCD

The new algorithm requires at most in O(n) stages, where n is the
sum of the lengths of a and b when written in binary notation, and
each stage involves at most one remainder computation.

The following iterative version eliminates the stack overhead:

int ged(int a, int b) {
int aa;
while (b > 0) {

return a;

3

CPSC 367, Lecture 10 21/35

00

Outline zZ, z Discrete log Diffie-Hellman

[©] 00000000 00000000000 e0000 000 000000
:

Relatively prime numbers, Z:, and ¢(n)
:

Relatively prime numbers

Two integers a and b are relatively prime if they have no common
prime factors.

Equivalently, a and b are relatively prime if gcd(a, b) = 1.

Let Z} be the set of integers in Z, that are relatively prime to n, so
Z; ={acZ,|gcd(a,n) =1}

Example:

5, = {1,2,4,5,8,10,11,13,16, 17, 19, 20}.

:
CPSC 367, Lecture 10 22/35

Outline Z, Z:

Discrete log Diffie-Hellman
o 00000000 000000000000e000 000 000000
:

Relatively prime numbers, Z:, and ¢(n)

Euler's totient function ¢(n)

¢(n) is the cardinality (number of elements) of Z7, i.e.,

¢(n) = |Z5].
Example: ¢(21) = |Z3;| = 12.

Go back and count them!

CPSC 367, Lecture 10 23/35
00

Outline Z, Z:

Discrete log Diffie-Hellman
o 00000000 0000000000000e00 000 000000
:

|
Relatively prime numbers, Z:, and ¢(n)

Properties of ¢(n)

1. If p is prime, then
o(p)=p—1.
2. More generally, if p is prime and k > 1, then
p(p*) =p* —p* P =(p—1)p" "
3. If gcd(m, n) =1, then
¢(mn) = ¢(m)d(n).

CPSC 367, Lecture 10 24/35

Outline Z, Z:

Discrete log Diffie-Hellman
o) 00000000 0000000000000080 000 000000
:

|
Relatively prime numbers, Z:, and ¢(n)

Example: ¢(126)

Can compute ¢(n) for all n > 1 given the factorization of n.

0(126) = ¢(2)-4(3*)- 6(7)
= 2-1)-@-1)E)-(7-1)
1-2-3-6=36.
The 36 elements of Z7,4 are:

1,5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, b3, 55,
59, 61, 65, 67, 71, 73, 79, 83, 85, 89, 95, 97, 101, 103,
107, 109, 113, 115, 121, 125.

|
CPSC 367, Lecture 10 25/35

00

Outline Z, z Discrete log Diffie-Hellman
o] 00000000 0000000000000 00e 000 000000
: :

Relatively prime numbers, Z:, and ¢(n)
: :

A formula for ¢(n)

Here is an explicit formula for ¢(n).

Theorem
Write n in factored form, so n = pf* - - - pi", where p1,...,px are
distinct primes and ey, ..., e are positive integers.® Then

6(n) = (pr — 1) - 1 (pe — 1) - pi ™.
Important: For the product of distinct primes p and q,

o(pq) = (p—1)(qg - 1).

!By the fundamental theorem of arithmetic, every integer can be written
uniquely in this way up to the ordering of the factors.
: :

CPSC 367, Lecture 10 26/35
00

R

Outline Z, z Discrete log Diffie-Hellman
o) 00000000 0000000000000000 00 000000

Discrete Logarithm

CPSC 367, Lecture 10 27/35
00

Outline Z, ” Discrete log Diffie-Hellman
o) 00000000 0000000000000000 00 000000
: :

Logarithms modp

Let y = b* over the reals. The ordinary base-b logarithm is the
inverse of exponentiation, so x = log,(y)

The discrete logarithm is defined similarly, but now arithmetic is
performed in Z7, for a prime p.

In particular, the base-b discrete logarithm of y modulo p is the
least non-negative integer x such that y = b* (mod p) (if it
exists). We write x = log,(y) mod p.

Fact (not needed vet): If b is a primitive root® of p, then log,(y)
is defined for every y € Z,.

2\We will talk about primitive roots later.
: :
CPSC 367, Lecture 10 28/35

Outline Z, z Discrete log Diffie-Hellman

n
[©] 00000000 000000000000 0O000 ooe 000000
:

Discrete log problem

The discrete log problem is the problem of computing
log, () mod p, where p is a prime and b is a primitive root of p.

No efficient algorithm is known for this problem and it is believed
to be intractable.

However, the inverse of the function log,() mod p is the function
power,(x) = b* mod p, which is easily computable.

power,, is believed to be a one-way function, that is a function that
is easy to compute but hard to invert.

CPSC 367, Lecture 10 29/35

00

R

Outline zZ, z Discrete log Diffie-Hellman
o 00000000 0000000000000000 000 ©00000

Diffie-Hellman Key Exchange

CPSC 367, Lecture 10 30/35
00

Outline zZ, " Discrete log Diffie-Hellman
o 00000000 0000000000000000 000 000000

Key exchange problem

The key exchange problem is for Alice and Bob to agree on a
common random key k.

One way for this to happen is for Alice to choose k at random and
then communicate it to Bob over a secure channel.

But that presupposes the existence of a secure channel.

|
CPSC 367, Lecture 10 31/35
00

Outline Z, z Discrete log Diffie-Hellman

n
[©] 00000000 000000000000 0O000 000 0O0@000
:

D-H key exchange overview

The Diffie-Hellman Key Exchange protocol allows Alice and Bob to
agree on a secret k without having prior secret information and
without giving an eavesdropper Eve any information about k. The
protocol is given on the next slide.

We assume that p and g are publicly known, where p is a large
prime and g a primitive root of p.

From the fact on slide 28, these assumptions imply the existence of
log,(y) for every y € Z3,.)

CPSC 367, Lecture 10 32/35

Outline zZ, z Discrete log Diffie-Hellman
o 00000000 0000000000000000 000 000000
: :

D-H key exchange protocol

Alice Bob
Choose random x € Z). Choose random y € Z).
a= g~ mod p. b= g¥ mod p.
Send a to Bob. Send b to Alice.
ky = b* mod p. kp = @ mod p.

Diffie-Hellman Key Exchange Protocol.
Clearly, ks = kp since
ky=b"=g¥ =23 = kp, (mod p).

Hence, k = ky = kg is a common key.

| |
CPSC 367, Lecture 10 33/35

Outline zZ, z Discrete log Diffie-Hellman
o 00000000 0000000000000000 000 000000
: :

Why choose from Z;,?

One might ask why x and y should be chosen from Z) rather
than from Z,7?

The reason is because of another number-theoretic fact that we
haven't talked about — Euler’s theorem — which says

g?P) =1 (mod p).

It follows that if x =y (mod ¢(p)), then g¥ = g (mod p).

| |
CPSC 367, Lecture 10 34/35

Outline Z, z Discrete log Diffie-Hellman

n
[©] 00000000 000000000000 0O000 000 O0000e
: :

Security of DH key exchange

In practice, Alice and Bob may use this protocol to generate a
session key for a symmetric cryptosystem, which they subsequently
use to exchange private information.

The security of this protocol relies on Eve's presumed inability to
compute k from a and b and the public information p and g. This
is sometime called the Diffie-Hellman problem and, like discrete
log, is believed to be intractable.

Certainly the Diffie-Hellman problem is no harder that discrete log,
for if Eve could find the discrete log of a, then she would know x
and could compute k, the same way that Alice does.

However, it is not known to be as hard as discrete log.

| |
CPSC 367, Lecture 10 35/35

	Outline
	Integers Modulo n
	Multiplicative Subgroup of Zn
	Greatest common divisor
	Multiplicative subgroup of Zn

	Discrete Logarithm
	Diffie-Hellman Key Exchange

