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Asymmetric digital signatures

An asymmetric (public-key) digital signature can be viewed as a
2-key MAC, just as an asymmetric (public-key) cryptosystem is a
2-key version of a classical cryptosystem.

In the literature, the term digital signature generally refers to the
asymmetric version.
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Asymmetric digital signatures

Let M be a message space and S a signature space.

A signature scheme consists of a private signing key d , a public
verification key e, a signature function Sd :M→ S, and a
verification predicate Ve ⊆M×S.1

A signed message is a pair (m, s) ∈M× S. A signed message is
valid if Ve(m, s) holds, and we say that (m, s) is signed with
respect to e.

1As with RSA, we denote the private component of the key pair by the
letter d and the public component by the letter e, although they no longer
have same mnemonic significance.
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Fundamental property of a signature scheme

Basic requirement:

The signing function always produces a valid signature, that is,

Ve(m,Sd(m)) (1)

holds for all m ∈M.

Assuming e is Alice’s public verification key, and only Alice knows
the corresponding signing key d , then a signed message (m, s) that
is valid under e identifies Alice with m (possibly erroneously, as we
shall see).
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Implications of Digital Signatures

What does a digital signature imply?

We like to think of a digital signature as a digital analog to a
conventional signature.

I A conventional signature binds a person to a document.
Barring forgery, a valid signature indicates that a particular
individual performed the action of signing the document.

I A digital signature binds a signing key to a document. Barring
forgery, a valid digital signature indicates that a particular
signing key was used to sign the document.

However, there is an important difference. A digital signature only
binds the signing key to the document.

Other considerations must be used to bind the individual to the
signing key.
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Implications of Digital Signatures

Disavowal

An individual can always disavow a signature on the grounds that
the private signing key has become compromised.

Here are two ways that this can happen.

I Her signing key might be copied, perhaps by keystroke
monitors or other forms of spyware that might have infected
her computer, or a stick memory or laptop containing the key
might be stolen.

I She might deliberately publish her signing key in order to
relinquish responsibility for documents signed by it.

For both of these reasons, one cannot conclude without a
reasonable doubt that a digitally signed document was indeed
signed by the purported holder of the signing key.
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Implications of Digital Signatures

Practical usefulness of digital signatures

This isn’t to say that digital signatures aren’t useful; only that they
have significantly different properties than conventional signatures.

In particular, they are subject to disavowal by the signer in a way
that conventional signatures are not.

Nevertheless, they are still very useful in situations where disavowal
is not a problem.

CPSC 367, Lecture 12 9/30



Outline Asymmetric Digital Signatures Algorithms Security Using Digital Signatures Signing Message Digests

Digital Signature Algorithms
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Signatures from commutative cryptosystems

RSA digital signature scheme

Let n be an RSA modulus and (e, d) an RSA key pair.
e is public and d is private as usual.

I Signing function: Sd(m) = Dd(m)

I Verification predicate: Ve(m, s)⇔ m = Ee(s).

Must verify that Ve(m, Sd(m)) holds for all messages m, i.e., that
m = Ee(Dd(m)) holds.

This is the reverse of the requirement for RSA to be a valid
cryptosystem, viz. m = Dd(Ee(m)) for all m ∈ Zm.

RSA satisfies both conditions since

m ≡ Dd(Ee(m)) ≡ (me)d ≡ (md)e ≡ Ee(Dd(m)) (mod n).
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Signatures from commutative cryptosystems

Commutative cryptosystems

A cryptosystem with this property that Dd ◦ Ee = Ee ◦ Dd is said
to be commutative, where “◦” denotes functional composition.

Indeed, any commutative public key cryptosystem can be used for
digital signatures in exactly this same way as we did for RSA.
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Signatures from non-commutative cryptosystems

Signatures from non-commutative cryptosystems

What if Ee and Dd do not commute?

One could define:

I Signing function: Se(m) = Ee(m)

I Verification predicate: Vd(m, s)⇔ m = Dd(s).

Every validly-signed message (m,Se(m)) would verify since
Dd(Ee(m)) = m is the basic property of a cryptosystem.

Now, Alice has to keep e private and make d public, which she can
do. However, the resulting system might not be secure, since even
though it may be hard for Eve to find d from e and n, it does not
follow that it is hard to find e from d and n.
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Signatures from non-commutative cryptosystems

Interchanging public and private keys

For RSA, it is just as hard to find e from d as it is to find d from e.

That’s because RSA is completely symmetric in e and d .

Not all cryptosystems enjoy this symmetry property.
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Signatures from non-commutative cryptosystems

ElGamal cryptosystem is not symmetric

The ElGamal scheme discussed in lecture 11 is based on the
equation

b = g y (mod p),

where y is private and b public.

Finding y from b, g , p is the discrete log problem — believed to be
hard.

Finding b from y , g , p, is straightforward, so the roles of public and
private key cannot be interchanged while preserving security.

ElGamal found a different way to use the ideas of discrete
logarithm to build a signature scheme, which we discuss later.

CPSC 367, Lecture 12 15/30

http://zoo.cs.yale.edu/classes/cs367/2019s/lectures/ln11.pdf


Outline Asymmetric Digital Signatures Algorithms Security Using Digital Signatures Signing Message Digests

Security of Digital Signatures

CPSC 367, Lecture 12 16/30



Outline Asymmetric Digital Signatures Algorithms Security Using Digital Signatures Signing Message Digests

Forgery

Desired security properties of digital signatures
Digital signatures must be difficult to forge.

Some increasingly stringent notions of forgery-resistance:

I Resistance to forging valid signature for particular message m.

I Above, but where adversary knows a set of valid signed
messages (m1, s1), . . . , (mk , sk), and m 6∈ {m1, . . . ,mk}.

I Above, but where adversary can choose a set of valid signed
messages, specifying either the messages (corresponding to a
chosen plaintext attack) or the signatures (corresponding to
chosen ciphertext attack).

I Any of the above, but where one wishes to protect against
generating any valid signed message (m′, s ′) different from
those already seen, not just for a particular predetermined m.
This is called existential forgery.
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Forgery

Forging random RSA signed messages

RSA signatures are indeed vulnerable to existential forgery.

An attacker simply chooses s ′ at random and computes
m′ = Ee(s ′).

The signed message (m′, s ′) is trivially valid since the verification
predicate is simply m′ = Ee(s ′).
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Forgery

Importance of random signed messages

One often wants to sign random strings.

For example, in the Diffie-Hellman key exchange protocol discussed
in lecture 10, Alice and Bob exchange random-looking numbers
a = g x mod p and b = g y mod p.

In order to discourage man-in-the-middle attacks, they may wish to
sign these strings (assuming they already have each other’s public
verification keys).

With RSA signatures, Mallory could feed bogus signed values to
Alice and Bob. The signatures would check, and both would think
they had successfully established a shared key k when in fact they
had not.
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Using Digital Signatures
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Adding redundancy

Adding redundancy

Recall: RSA signatures are subject to existential forgery.

Redundancy can be used to prevent this.

Example: Prefix a fixed string σ to the front of each message
before signing.

This gives rise to a variant RSA signature scheme (Sσ
d ,V

σ
e ).

I Signing function: Sσ
d (m) = Dd(σm)

I Verification predicate: V σ
e (m, s)⇐⇒ σm = Ee(s).
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Adding redundancy

Security of signatures with fixed redundancy

The security of this scheme depends on the mixing properties of
the encryption and decryption functions, that is, the extent to
which each output bit depends on most of the input bits.

Not all cryptosystems mix well.

For example, a block cipher used in ECB mode (see lecture 6
and lecture 8) encrypts a block at a time, so each block of output
bits depends only on the corresponding block of input bits.
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Adding redundancy

Forging signatures with fixed redundancy

Suppose it happens that

Sσ
d (m) = Dd(σm) = Dd(σ) · Dd(m).

Then Mallory can forge random messages assuming he knows just
one valid signed message (m0, s0). Here’s how.

I He knows that s0 = Dd(σ) ·Dd(m), so from s0 he extracts the
prefix s00 = Dd(σ).

I He now chooses a random s ′01 and computes m′ = Ee(s ′01)
and s ′ = s00 · s ′01.

I The signed message (m′, s ′) is valid since
Ee(s ′) = Ee(s00 · s ′01) = Ee(s00) · Ee(s ′01) = σm′.
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Signing Message Digests
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Message digests

A better way to prevent forgery is to sign a message digest of the
message rather than sign m itself.

A message digest function h, also called a cryptographic one-way
hash function or a fingerprint function, maps long strings to short
random-looking strings.

I To sign a message m, Alice computes Sd(m) = Dd(h(m)).

I To verify the signature s, Bob checks that h(m) = Ee(s).
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Forging signed message digests

For Mallory to generate a forged signed message (m′, s ′) he must
somehow come up with m′ and s ′ satisfying

h(m′) = Ee(s ′) (2)

That is, he must find m′ and s ′ that both map to the same string,
where m′ is mapped by h and s ′ by Ee .

Two natural approaches for attempting to satisfying (2):

1. Pick m′ at random and solve for s ′.

2. Pick s ′ at random and solve for m′.
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Approach 1: Solve for s ′

Equation:
h(m′) = Ee(s ′) (2)

To solve for s ′ given m′ requires computing

E−1e (h(m′)) = Dd(h(m′)) = s ′.

Alice can compute Dd , which is what enables her to sign messages.

But Mallory presumably cannot compute Dd without knowing d ,
for if he could, he could also break the underlying cryptosystem.
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Approach 2: Solve for m′

Equation:
h(m′) = Ee(s ′) (2)

To solve for m′ given s ′ requires “inverting” h.

Since h is many-one, a value y = Ee(s ′) can have many “inverses”
or preimages.

To successfully forge a signed message, Mallory needs to find only
one value m′ such that h(m′) = Ee(s ′).

However, the defining property of a cryptographic hash function is
that, given y , it should be hard to find any x ∈ h−1(y).

Hence, Mallory cannot feasibly find m′ satisfying 2.
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Other attempts

Of course, these are not the only two approaches that Mallory
might take.

Perhaps there are ways of generating valid signed messages (m′, s ′)
where m′ and s ′ are generated together.

I do not know of such a method, but this doesn’t say one doesn’t
exist.
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More advantages of signing message digests

Another advantage of signing message digests rather than signing
messages directly: the signatures are shorter.

An RSA signature of m is roughly the same length as m.

An RSA signature of h(m) is a fixed length, regardless of how long
m is.

For both reasons of security and efficiency, signed message digests
are what is used in practice.

We’ll talk more about message digests later on.
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